5E Öğretim Modelinin Kavramsal Anlama Düzeylerine Etkisi: Temas Açısını Etkileyen Faktörler
Yıl 2021,
Cilt: 6 Sayı: 1, 34 - 50, 29.09.2021
Ruhan Benlikaya
,
Mehmet Kahrıman
,
Mehmet Yılmaz
,
Ozlem Karakoc-topal
Öz
Bu çalışmanın amacı, temas açısını etkileyen faktörlerle ilgili olarak etkinlikler geliştirmek ve bu etkinliklerle 5E modeline uygun olarak yapılan öğretimin öğrencilerin kavramsal anlama düzeylerine etkisini incelemektir. Bu doğrultuda geliştirilen etkinlikler Seçmeli Nanobilim ve Nanoteknoloji dersini alan 11 Balıkesir Üniversitesi Tıp Fakültesi öğrencisine uygulanmıştır. Veri toplama araçları olarak, temas açısı ve temas açısını etkileyen faktörlerle ilgili 2 açık uçlu sorudan oluşan Temas Açısı Kavramsal Anlama Testi (TAKAT) ile 5E modelinin değerlendirme basamağında öğretim sürecine yönelik gruplardan alınan yazılı görüşler kullanılmıştır. TAKAT’da öğrencilerin verdikleri cevaplar Tam Anlama (TA), Kısmi Anlama, Yanlış Kavrama (YK) ve Anlamama düzeylerine göre gruplandırılarak, ön ve son testler açısından karşılaştırılmıştır. Karşılaştırmada YK düzeyindeki cevapların giderildiği ve TA düzeyindeki cevapların arttığı görülmüştür. Bunun yanı sıra, temas açısına etkileyen faktörleri açıklarken son testte hala sadece adezyon ya da sadece kohezyon kuvvetlerini düşünen öğrencilerin olduğu görülmüştür. Öğrenciler öğretim süreciyle ilgili olumlu görüş belirtmişlerdir. Uygulanan etkinliklerin ve öğretimin geliştirilmesine yönelik önerilerde bulunulmuştur.
Teşekkür
Teşekkür
ODTÜ Merkez Laboratuvarına SEM analizleri için teşekkür ederiz.
Kaynakça
- Abraham, M. R., Grzybowski, E. B., Renner, J. W. & Marek, E. A. (1992). Understandings and misunderstandings of eight graders of five chemistry concepts found in textbooks. Journal of Research in Science Teaching, 29(2), 105-120.
- Acar, B. ve Tarhan, L. (2008). Effects of cooperative learning on students' understanding of metallic bonding. Research in Science Education, 38, 401–420.
- Acar Sesen, B. (2013). Diagnosing pre-service science teachers' understanding of chemistry concepts by using computer-mediated predict–observe–explain tasks. Chemistry Education Research and Practice, 14(3), 239-246.
- Akdeniz, N. (2017). Fen bilimleri öğretmen adaylarına yönelik nanobilim kavramsal anlama testinin geliştirilmesi. (Yüksek lisans tezi). Yükseköğretim Kurulu Ulusal Tez Merkezi veri tabanından erişildi (Tez No. 456166).
- Barthlott, W. & Neinhuis, C. (1997). Purity of The Sacred Lotus, or Escape From Contamination in Biological Surfaces. Planta, 202 (1), 1-8.
- Bybee, R. (1997). Achieving scientific literacy: From purposes to practices. Portsmouth, NH: Heinemann Publications.
- Coll, R. & Taylor, N. (2001). Alternative Conceptions of Chemical Bonding Held by Upper Secondary and Tertiary Students. Research in Science & Technological Education, 19, 171-191.
- Demircioğlu, H. ve Özdemir, R. (2019). Bağlam Temelli Öğrenme Yaklaşımının Öğretmen Adaylarının Nanoteknoloji Konusunu Anlamaları Üzerindeki Etkisi. Journal of Computer and Education Research, 7 (14) , 314-336 .
- Driver, R. (1989). "Changing Conceptions." Adey, P., Bliss, J., Head, J. & Shayer, M. (editors). in Adolescent Development and School Science , (s. 79–104). New York: The Falmer Press.
- Erdem E. ve Morgil İ. (2002). Lise Öğrencilerinin Temel Polimer Bilgileri Üzerine Bir Çalışma. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 23, 88-94.
- Eid, K. F., Panth, M. & Sommers, A. D. (2018). The physics of water droplets on surfaces: exploring the effects of roughness and surface chemistry. European Journal of Physics, 39(2), 025804.
- Erayman Y. ve Korkmaz Y. (2017). Süperhidrofob Tekstil Yüzeylerin Florsuz Bileşikler Kullanılarak Sol-Jel Yöntemi ile Modifikasyonu. Tekstil ve Mühendis, 24 (105), 41-52.
- Fowler, L. S. (1980). An application of Piaget's theory of cognitive development in teaching chemistry: the learning chemistry. Journal of Chemical Education, 57(2), 135-136.
- Hansen, G., Hamouda, A. & Denoyel, R. (2000). The effect of pressure on contact angles and wettability in the mica/water/n-decane system and the calcite+stearic acid/water/n-decane system. Colloids and Surfaces A-physicochemical and Engineering Aspects. Colloid Surface A, 172, 7-16.
- Işık Erol, D. (2020). Doğadaki mikro ve nanoyapıların 3B baskılı modellerinin oluşturulması ve argüman temelli nanobilim öğretiminde kullanılması. (Yüksek lisans tezi). Yükseköğretim Kurulu Ulusal Tez Merkezi veri tabanından erişildi (Tez No. 616795).
- Jones, M. G., Blonder, R., Gardner, G.E., Albe, V., Falyo, M. & Chevrier, J. (2013). Nanotechnology and Nanoscale Science: Educational challenges. International Journal of Science Education, 35(9), 1490-1512.
- Katselas, A., Motion, A., O'reilly, C. & Ceto, C. (2019). Chemical curiosity on campus: An undergraduate project on the structure and wettability of natural surfaces. Journal of Chemical Education, 96, 1998-2002.
- Keyf, S., (2019). Hidrofobik Bakır Stearat Sentezinin Box-Benhken Tasarımıyla Modellenmesi. Avrupa Bilim ve Teknoloji Dergisi, 16, 834-840.
- Kubisch F. & Heyne T. (2016). Students' Alternative Conceptions about the Lotus Effect: To Confront or to Ignore?. Journal of Biological Education, 50 (1), 86-100.
- Lati, W., Triampo, D. & Yodyingyong, S. (2019). Exposure to nanoscience and nanotechnology using guided- inquiry-based activities with silica aerogel to promote high school students' motivation. Journal of Chemical Education, 96, 1109-1116.
- Lawson, A. (2001). Using the learning cycle to teach biology concepts and reasoning patterns. Journal of Biological Education, 35, 165-169.
- McGuire, J. & Yang, J. (1991). The effect of drop volume on contact angle. Journal of Food Protection, 54(3), 232-235.
- Miles, M. B. & Huberman, A. M. (1994). Qualitative data analysis: An expanded Sourcebook. (2nd ed). Thousand Oaks, CA: Sage
- Peikos, G., Spyrtou, A., Pnevmatikos, D. & Papadopoulou, P. (2020). Nanoscale science and technology education: primary school students' preconceptions of the lotus effect and the concept of size. Research in Science and Technological Education, doi: 10.1080/02635143.2020.1841149.
- Pérez, J. B., Pérez, M. B., Calatayud, M. L., García-Lopera, R. & Sabater, J. V. (2017). Students' misconceptions on chemical bonding: a comparative study between high school and first year university students. Asian Journal of Education and e Learning, 5 (1), 1-15.
- Seifried, J. & Figueroa, M. A. (2016, June), Identification of Misconceptions Related to Size and Scale through a Nanotechnology-Based K-12 Activity, 2016 ASEE Annual Conference & Exposition konferansında sunulan bildiri, New Orleans, Louisiana.
- Taber, K. S. (2003). Mediating mental models of metals: Acknowledging the priority of the learners" prior learning. Science Education, 87, 732-758.
- Tavşancıl, E. ve Aslan E. (2001). İçerik analizi ve uygulama örnekleri. İstanbul: Epsilon Yayınları.
- Thompson, F. & Logue, S. (2006). An Exploration of Common Student Misconceptions in Science, International Education Journal, 7 (4), 553-559.
- Vitharana, P.R.K.A. (2015). Student misconceptions about plant transport– a Sri Lankan example. European Journal of Science and Mathematics Education, 3 (3), 275-288.
- Wan, Y-L., Lou, J., Yu, Z.-J., Li, X-Z. & Yu, H-D. (2014). Single-step fabrication of bionic-superhydrophobic surface using reciprocating-type high-speed wire cut electrical discharge machining, Chinese Science Bulletin, 59, 3691–3695.
- Wernhuar T., Tsai S-H., Lin C. M., Lee C-H. & Liou H-H (2012). Design of Physical Games for Learning the Lotus Effect, International Journal of Computer Science and Information Technology, 4, 37-49.
- West A. L., Tumlin T. M., Fakner A. M. & Griep M. H. (2015). Nanostructured Superhydrophobic Surfaces for Nanoeducation and Science, Technology, Engineering, and Mathematics (STEM) Outreach. https://www.researchgate.net/publication/272480038_Nanostructured_Superhydrophobic_Surfaces_for_Nanoeducation_and_Science_Technology_Engineering_and_Mathematics_STEM_Outreach
- Wong, J. & Yu, H-Z. (2013). Preparation of Transparent Superhydrophobic Glass Slides: Demonstration of Surface Chemistry Characteristics. Journal of Chemical Education, 90, 1203–1206.
- Wu, J., Farouk, T. & Ward, C. (2007). Pressure Dependence of the Contact Angle. The Journal of Physical Chemistry B., 111, 6189-97.
- Yolcu, H. (2017). Analogies to demonstrate the effect of roughness on surface wettability. Science Activities, 54 (3-4), 70-73.
- Yüzey Gerilimi, Orta Öğretim (Lise) Kimyası http://ortaogretimkimyasi.com/ders5_2.html (2021)
Effect of 5E Instruction Model on Conceptual Understanding Levels: The Factors Influencing Contact Angle
Yıl 2021,
Cilt: 6 Sayı: 1, 34 - 50, 29.09.2021
Ruhan Benlikaya
,
Mehmet Kahrıman
,
Mehmet Yılmaz
,
Ozlem Karakoc-topal
Öz
This study aimed to develop the activities related to the factors influencing on the contact angle and examine the effect of the instruction based on 5E model conducted with these activities on students' conceptual understanding levels. The activities developed for this aim were applied to 11 students of Balıkesir University Faculty of Medicine who took the Elective Nanoscience and Nanotechnology course. As data collection tools, the Contact Angle Conceptual Understanding Test (CACUT), which consists of 2 open-ended questions about the contact angle and the factors affecting the contact angle, and the written opinions of the groups about the instruction in the evaluation step of 5E model were used. The answers given by the students in CACUT were grouped according to Full Comprehension (FC), Partial Comprehension, Misunderstanding (M) and Not Understanding (U) levels and compared in terms of pre- and post-tests. It was observed in the comparison that the answers in MU level were eliminated and those in FCU increased. In addition, it was observed that there were still students who thought only adhesion or only cohesion forces in the post-test while explaining the factors affecting the contact angle. The students stated positive opinions about the instruction. Suggestions were made to improve the instruction and the activities.
Kaynakça
- Abraham, M. R., Grzybowski, E. B., Renner, J. W. & Marek, E. A. (1992). Understandings and misunderstandings of eight graders of five chemistry concepts found in textbooks. Journal of Research in Science Teaching, 29(2), 105-120.
- Acar, B. ve Tarhan, L. (2008). Effects of cooperative learning on students' understanding of metallic bonding. Research in Science Education, 38, 401–420.
- Acar Sesen, B. (2013). Diagnosing pre-service science teachers' understanding of chemistry concepts by using computer-mediated predict–observe–explain tasks. Chemistry Education Research and Practice, 14(3), 239-246.
- Akdeniz, N. (2017). Fen bilimleri öğretmen adaylarına yönelik nanobilim kavramsal anlama testinin geliştirilmesi. (Yüksek lisans tezi). Yükseköğretim Kurulu Ulusal Tez Merkezi veri tabanından erişildi (Tez No. 456166).
- Barthlott, W. & Neinhuis, C. (1997). Purity of The Sacred Lotus, or Escape From Contamination in Biological Surfaces. Planta, 202 (1), 1-8.
- Bybee, R. (1997). Achieving scientific literacy: From purposes to practices. Portsmouth, NH: Heinemann Publications.
- Coll, R. & Taylor, N. (2001). Alternative Conceptions of Chemical Bonding Held by Upper Secondary and Tertiary Students. Research in Science & Technological Education, 19, 171-191.
- Demircioğlu, H. ve Özdemir, R. (2019). Bağlam Temelli Öğrenme Yaklaşımının Öğretmen Adaylarının Nanoteknoloji Konusunu Anlamaları Üzerindeki Etkisi. Journal of Computer and Education Research, 7 (14) , 314-336 .
- Driver, R. (1989). "Changing Conceptions." Adey, P., Bliss, J., Head, J. & Shayer, M. (editors). in Adolescent Development and School Science , (s. 79–104). New York: The Falmer Press.
- Erdem E. ve Morgil İ. (2002). Lise Öğrencilerinin Temel Polimer Bilgileri Üzerine Bir Çalışma. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 23, 88-94.
- Eid, K. F., Panth, M. & Sommers, A. D. (2018). The physics of water droplets on surfaces: exploring the effects of roughness and surface chemistry. European Journal of Physics, 39(2), 025804.
- Erayman Y. ve Korkmaz Y. (2017). Süperhidrofob Tekstil Yüzeylerin Florsuz Bileşikler Kullanılarak Sol-Jel Yöntemi ile Modifikasyonu. Tekstil ve Mühendis, 24 (105), 41-52.
- Fowler, L. S. (1980). An application of Piaget's theory of cognitive development in teaching chemistry: the learning chemistry. Journal of Chemical Education, 57(2), 135-136.
- Hansen, G., Hamouda, A. & Denoyel, R. (2000). The effect of pressure on contact angles and wettability in the mica/water/n-decane system and the calcite+stearic acid/water/n-decane system. Colloids and Surfaces A-physicochemical and Engineering Aspects. Colloid Surface A, 172, 7-16.
- Işık Erol, D. (2020). Doğadaki mikro ve nanoyapıların 3B baskılı modellerinin oluşturulması ve argüman temelli nanobilim öğretiminde kullanılması. (Yüksek lisans tezi). Yükseköğretim Kurulu Ulusal Tez Merkezi veri tabanından erişildi (Tez No. 616795).
- Jones, M. G., Blonder, R., Gardner, G.E., Albe, V., Falyo, M. & Chevrier, J. (2013). Nanotechnology and Nanoscale Science: Educational challenges. International Journal of Science Education, 35(9), 1490-1512.
- Katselas, A., Motion, A., O'reilly, C. & Ceto, C. (2019). Chemical curiosity on campus: An undergraduate project on the structure and wettability of natural surfaces. Journal of Chemical Education, 96, 1998-2002.
- Keyf, S., (2019). Hidrofobik Bakır Stearat Sentezinin Box-Benhken Tasarımıyla Modellenmesi. Avrupa Bilim ve Teknoloji Dergisi, 16, 834-840.
- Kubisch F. & Heyne T. (2016). Students' Alternative Conceptions about the Lotus Effect: To Confront or to Ignore?. Journal of Biological Education, 50 (1), 86-100.
- Lati, W., Triampo, D. & Yodyingyong, S. (2019). Exposure to nanoscience and nanotechnology using guided- inquiry-based activities with silica aerogel to promote high school students' motivation. Journal of Chemical Education, 96, 1109-1116.
- Lawson, A. (2001). Using the learning cycle to teach biology concepts and reasoning patterns. Journal of Biological Education, 35, 165-169.
- McGuire, J. & Yang, J. (1991). The effect of drop volume on contact angle. Journal of Food Protection, 54(3), 232-235.
- Miles, M. B. & Huberman, A. M. (1994). Qualitative data analysis: An expanded Sourcebook. (2nd ed). Thousand Oaks, CA: Sage
- Peikos, G., Spyrtou, A., Pnevmatikos, D. & Papadopoulou, P. (2020). Nanoscale science and technology education: primary school students' preconceptions of the lotus effect and the concept of size. Research in Science and Technological Education, doi: 10.1080/02635143.2020.1841149.
- Pérez, J. B., Pérez, M. B., Calatayud, M. L., García-Lopera, R. & Sabater, J. V. (2017). Students' misconceptions on chemical bonding: a comparative study between high school and first year university students. Asian Journal of Education and e Learning, 5 (1), 1-15.
- Seifried, J. & Figueroa, M. A. (2016, June), Identification of Misconceptions Related to Size and Scale through a Nanotechnology-Based K-12 Activity, 2016 ASEE Annual Conference & Exposition konferansında sunulan bildiri, New Orleans, Louisiana.
- Taber, K. S. (2003). Mediating mental models of metals: Acknowledging the priority of the learners" prior learning. Science Education, 87, 732-758.
- Tavşancıl, E. ve Aslan E. (2001). İçerik analizi ve uygulama örnekleri. İstanbul: Epsilon Yayınları.
- Thompson, F. & Logue, S. (2006). An Exploration of Common Student Misconceptions in Science, International Education Journal, 7 (4), 553-559.
- Vitharana, P.R.K.A. (2015). Student misconceptions about plant transport– a Sri Lankan example. European Journal of Science and Mathematics Education, 3 (3), 275-288.
- Wan, Y-L., Lou, J., Yu, Z.-J., Li, X-Z. & Yu, H-D. (2014). Single-step fabrication of bionic-superhydrophobic surface using reciprocating-type high-speed wire cut electrical discharge machining, Chinese Science Bulletin, 59, 3691–3695.
- Wernhuar T., Tsai S-H., Lin C. M., Lee C-H. & Liou H-H (2012). Design of Physical Games for Learning the Lotus Effect, International Journal of Computer Science and Information Technology, 4, 37-49.
- West A. L., Tumlin T. M., Fakner A. M. & Griep M. H. (2015). Nanostructured Superhydrophobic Surfaces for Nanoeducation and Science, Technology, Engineering, and Mathematics (STEM) Outreach. https://www.researchgate.net/publication/272480038_Nanostructured_Superhydrophobic_Surfaces_for_Nanoeducation_and_Science_Technology_Engineering_and_Mathematics_STEM_Outreach
- Wong, J. & Yu, H-Z. (2013). Preparation of Transparent Superhydrophobic Glass Slides: Demonstration of Surface Chemistry Characteristics. Journal of Chemical Education, 90, 1203–1206.
- Wu, J., Farouk, T. & Ward, C. (2007). Pressure Dependence of the Contact Angle. The Journal of Physical Chemistry B., 111, 6189-97.
- Yolcu, H. (2017). Analogies to demonstrate the effect of roughness on surface wettability. Science Activities, 54 (3-4), 70-73.
- Yüzey Gerilimi, Orta Öğretim (Lise) Kimyası http://ortaogretimkimyasi.com/ders5_2.html (2021)