Araştırma Makalesi
BibTex RIS Kaynak Göster

In Silico Analysis of MicroRNAs in Salivary Fluids in Forensic Genetics

Yıl 2025, Cilt: 39 Sayı: 1, 86 - 92, 30.04.2025
https://doi.org/10.61970/adlitip.1655120

Öz

Objective: The aim of this study is to investigate the target genes presented as candidates for the use of miRNAs in saliva, which is an important biological fluid in forensic genetics, as reference/target markers, and the effects of these genes on active pathways using in silico methods.
Methods: Within the scope of our study, 26 full-text articles that met the inclusion criteria from studies on microRNAs reported to be deregulated in the field of forensic medicine were scanned from PubMed Central and Google Scholar and examined in depth. In these research articles, it was found that 36 miRNAs were differentially expressed in saliva. TAM 2.0 software was used in in silico analyses.
Results: When the research articles in forensic medicine included in our study were examined, it was found that 36 miRNAs were differentially expressed in saliva. Of these; It has been shown that the presence of markers such as mir-205, miR-203, mir-203a-3p, mir-223-3p, mir-658 only in saliva can distinguish saliva from other body fluids such as blood, semen, urine and vaginal fluid. As a result of in silico analyses, it was found that the genes targeted by the detected miRNAs target genes such as TP53, STAT3, KLF2, NKFB1, MYC, TGFB1, ZEB1, which are important in cells. It was determined that these genes play a role in epithelial-mesenchymal transition, thyroid hormone signaling pathway and TGF-beta signaling pathways in pancreatic, colorectal and prostate cancers.
Conclusion: Determination of saliva-specific miRNA profiles offers a significant advantage in distinguishing the source of body fluid found at the scene. Our findings in this study highlight the potential of miRNAs and their target genes in saliva as an important biomarker in many areas such as body fluid identification, trauma detection, time of death estimation and individual identification in forensic genetic applications.

Kaynakça

  • Glynn CL. Potential applications of microRNA profiling to forensic investigations. RNA. 2020;26(1):1-9.
  • Virkler K, Lednev IK. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int. 2009;188(1-3):1-17.
  • An JH, Shin KJ, Yang WI, Lee HY. Body fluid identification in forensics. BMB Rep. 2012;45(10):545-53.
  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-9.
  • Hanson EK, Lubenow H, Ballantyne J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem. 2009;387(2):303-14.
  • Wang Z, Zhang J, Wei W, Zhou D, Luo H, Chen X, et al. Identification of Saliva Using MicroRNA Biomarkers for Forensic Purpose. J Forensic Sci. 2015;60(3):702-6.
  • Guzel E, Karatas OF, Semercioz A, Ekici S, Aykan S, Yentur S, et al. Identification of microRNAs differentially expressed in prostatic secretions of patients with prostate cancer. Int J Cancer. 2015;136(4):875-9.
  • Duz MB, Karatas OF, Guzel E, Turgut NF, Yilmaz M, Creighton CJ, et al. Identification of miR-139-5p as a saliva biomarker for tongue squamous cell carcinoma: a pilot study. Cell Oncol (Dordr). 2016;39(2):187-93.
  • Maiese A, Scatena A, Costantino A, Di Paolo M, La Russa R, Turillazzi E, et al. MicroRNAs as Useful Tools to Estimate Time Since Death. A Systematic Review of Current Literature. Diagnostics (Basel). 2021;11(1).
  • Madea B, Saukko P, Oliva A, Musshoff F. Molecular pathology in forensic medicine--Introduction. Forensic Sci Int. 2010;203(1-3):3-14.
  • Juusola J, Ballantyne J. Multiplex mRNA profiling for the identification of body fluids. Forensic Sci Int. 2005;152(1):1-12.
  • Fábián TK, Fejérdy P, Nguyen MT, Soti C, Csermely P. Potential immunological functions of salivary Hsp70 in mucosal and periodontal defense mechanisms. Arch Immunol Ther Exp (Warsz). 2007;55(2):91-8.
  • Courts C, Madea B. Specific micro-RNA signatures for the detection of saliva and blood in forensic body-fluid identification. J Forensic Sci. 2011;56(6):1464-70.
  • Singh P, Ali W, Sandhu S, Mishra S, Singh US, Verma AK, et al. Post-mortem interval estimation using miRNAs of road traffic accident cases: A forensic molecular approach. Sci Justice. 2023;63(4):485-92.
  • Na JY. Estimation of the post-mortem interval using microRNA in the bones. J Forensic Leg Med. 2020;75:102049.
  • Sakurada K, Akutsu T, Watanabe K, Fujinami Y, Yoshino M. Expression of statherin mRNA and protein in nasal and vaginal secretions. Leg Med (Tokyo). 2011;13(6):309-13.
  • Kim BM, Park SU, Schmelzer L, Yang SB, Lee SD, Kim MY, et al. DNA methylation-based organ tissue identification: Marker identification, SNaPshot multiplex assay development, and interlaboratory comparison. Forensic Sci Int Genet. 2024;71:103052.
  • Lee HY, Park MJ, Choi A, An JH, Yang WI, Shin KJ. Potential forensic application of DNA methylation profiling to body fluid identification. Int J Legal Med. 2012;126(1):55-62.
  • Hess AK, Müer A, Mairinger FD, Weichert W, Stenzinger A, Hummel M, et al. MiR-200b and miR-155 as predictive biomarkers for the efficacy of chemoradiation in locally advanced head and neck squamous cell carcinoma. Eur J Cancer. 2017;77:3-12.
  • Tanoglu EG. Differential expressions of miR-223, miR-424, miR-145, miR-200c, miR-139 in experimental rat chronic pancreatitis model and their relationship between oxidative stress, endoplasmic reticulum stress, and apoptosis. Iran J Basic Med Sci. 2021;24(9):1301-6.
  • Jusoh AR, Mohan SV, Lu Ping T, Tengku Din TADA, Haron J, Romli RC, et al. Plasma Circulating Mirnas Profiling for Identification of Potential Breast Cancer Early Detection Biomarkers. Asian Pac J Cancer Prev. 2021;22(5):1375-81.
  • Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol. 2015;67(1):33-41.
  • Erdmann K, Kaulke K, Rieger C, Salomo K, Wirth MP, Fuessel S. MiR-26a and miR-138 block the G1/S transition by targeting the cell cycle regulating network in prostate cancer cells. J Cancer Res Clin Oncol. 2016;142(11):2249-61.
  • Siuta J, Dobosz A, Kawecki J, Dobosz T. DNA Content of Various Fluids and Tissues of the Human Body. Genes (Basel). 2023;15(1).
  • Zubakov D, Boersma AW, Choi Y, van Kuijk PF, Wiemer EA, Kayser M. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med. 2010;124(3):217-26.
  • Watanabe K, Taniguchi K, Toyomane K, Akutsu T. A new approach for forensic analysis of saliva-containing body fluid mixtures based on SNPs and methylation patterns of nearby CpGs. Forensic Sci Int Genet. 2022;56:102624.
  • Robles TF, Rünger D, Sumner JA, Elashoff D, Shetty V. Salivary inflammatory biomarkers as a predictor of post-traumatic stress disorder and depressive symptom severity in trauma patients: A prospective study. Brain Behav Immun. 2024;119:792-800.
  • Gaytán-Pacheco N, Ibáñez-Salazar A, Herrera-Van Oostdam AS, Oropeza-Valdez JJ, Magaña-Aquino M, Adrián López J, et al. miR-146a, miR-221, and miR-155 are Involved in Inflammatory Immune Response in Severe COVID-19 Patients. Diagnostics (Basel). 2022;13(1).
  • Johnson JJ, Loeffert AC, Stokes J, Olympia RP, Bramley H, Hicks SD. Association of Salivary MicroRNA Changes With Prolonged Concussion Symptoms. JAMA Pediatr. 2018;172(1):65-73.
  • Rocchi A, Chiti E, Maiese A, Turillazzi E, Spinetti I. MicroRNAs: An Update of Applications in Forensic Science. Diagnostics (Basel). 2020;11(1).
  • Sullivan R, Montgomery A, Scipioni A, Jhaveri P, Schmidt AT, Hicks SD. Confounding Factors Impacting microRNA Expression in Human Saliva: Methodological and Biological Considerations. Genes (Basel). 2022;13(10).
  • Kopcho S, McDew-White M, Naushad W, Mohan M, Okeoma CM. Alterations in Abundance and Compartmentalization of miRNAs in Blood Plasma Extracellular Vesicles and Extracellular Condensates during HIV/SIV Infection and Its Modulation by Antiretroviral Therapy (ART) and Delta-9-Tetrahydrocannabinol (Δ. Viruses. 2023;15(3).
  • Ahmad MA, Ghaleb SS, Zaki AR, Kamel AO, Eid A. The role of miRNA-21 and hypoxia inducible factor-1 in predicting post mortem interval in cardiac muscles of aluminum phosphide deaths. J Forensic Leg Med. 2024;106:102726.
  • Rosato AJ, Chen X, Tanaka Y, Farrer LA, Kranzler HR, Nunez YZ, et al. Salivary microRNAs identified by small RNA sequencing and machine learning as potential biomarkers of alcohol dependence. Epigenomics. 2019;11(7):739-49.
  • Murray BS, Choe SE, Woods M, Ryan TE, Liu W. An in siliko analysis of microRNAs: mining the miRNAome. Mol Biosyst. 2010;6(10):1853-62.
  • Atalay R EB, Holumen N, et al. Determination of blood and saliva in mixture samples with miRNA. Med Science. 2024;2024;13(2):455-60.
  • Wang Z, Zhou D, Cao Y, Hu Z, Zhang S, Bian Y, et al. Characterization of microRNA expression profiles in blood and saliva using the Ion Personal Genome Machine(®) System (Ion PGM™ System). Forensic Sci Int Genet. 2016;20:140-6.
  • Sirker M, Fimmers R, Schneider PM, Gomes I. Evaluating the forensic application of 19 target microRNAs as biomarkers in body fluid and tissue identification. Forensic Sci Int Genet. 2017;27:41-9.
  • Chen X, Xu H, Zhu B. Forensic validation of a combined analysis of mRNA and miRNA markers for precise tissue origin inferences of five kinds of body fluids by RT-qPCR. Electrophoresis. 2023;44(21-22):1714-24.
  • Sauer E, Reinke AK, Courts C. Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR. Forensic Sci Int Genet. 2016;22:89-99.
  • Fujimoto S, Manabe S, Morimoto C, Ozeki M, Hamano Y, Hirai E, et al. Distinct spectrum of microRNA expression in forensically relevant body fluids and probabilistic discriminant approach. Sci Rep. 2019;9(1):14332.
  • He H, Han N, Ji C, Zhao Y, Hu S, Kong Q, et al. Identification of five types of forensic body fluids based on stepwise discriminant analysis. Forensic Sci Int Genet. 2020;48:102337.
  • Altmeyer L, Baumer K, Hall D. Differentiation of five forensically relevant body fluids using a small set of microRNA markers. Electrophoresis. 2024;45(19-20):1785-95.
  • Iroanya OO, Olutunde OT, Egwuatu TF, Igbokwe C. Stability of selected microRNAs in human blood, semen and saliva samples exposed to different environmental conditions. Forensic Sci Int. 2022;336:111338.
  • Omelia EJ, Uchimoto ML, Williams G. Quantitative PCR analysis of blood- and saliva-specific microRNA markers following solid-phase DNA extraction. Anal Biochem. 2013;435(2):120-2.
  • O Leary KR, Glynn CL. Investigating the Isolation and Amplification of microRNAs for Forensic Body Fluid Identification. Microrna. 2018;7(3):187-94.
  • Mayes C, Seashols-Williams S, Hughes-Stamm S. A capillary electrophoresis method for identifying forensically relevant body fluids using miRNAs. Leg Med (Tokyo). 2018;30:1-4.
  • Graham Williams MLU, Natalie Coult, Damian World, Emma Beasley. Body fluid mixtures: Resolution using forensic microRNA analysis. Forensic Science International: Genetics Supplement Series; 2013.
  • Peng Bai WD, Li Wang , Bing Long , Kuanlin Liu , Weibo Liang , Lin Zhang. Micro RNA profiling for the detection and differentiation of body fluids in forensic stain analysis. 2023.
  • Li S, Liu J, Xu W, Zhang S, Zhao M, Miao L, et al. A multi-class support vector machine classification model based on 14 microRNAs for forensic body fluid identification. Forensic Sci Int Genet. 2025;75:103180.
  • Seashols-Williams S, Lewis C, Calloway C, Peace N, Harrison A, Hayes-Nash C, et al. High-throughput miRNA sequencing and identification of biomarkers for forensically relevant biological fluids. Electrophoresis. 2016;37(21):2780-8.
  • Chen H, Hu S, Yang R, Yao Q, Zhao Y, Lian J, et al. The screening and validation process of miR-223-3p for saliva identification. Leg Med (Tokyo). 2023;65:102312.
  • Lewis CA, Layne TR, Seashols-Williams SJ. Detection of microRNAs in DNA Extractions for Forensic Biological Source Identification. J Forensic Sci. 2019;64(6):1823-30.
  • Wang Z, Zhang J, Luo H, Ye Y, Yan J, Hou Y. Screening and confirmation of microRNA markers for forensic body fluid identification. Forensic Sci Int Genet. 2013;7(1):116-23.
  • Park JL, Park SM, Kwon OH, Lee HC, Kim JY, Seok HH, et al. Microarray screening and qRT-PCR evaluation of microRNA markers for forensic body fluid identification. Electrophoresis. 2014;35(21-22):3062-8.

Adli Genetikte Tükürük Sıvılarındaki MikroRNA’ların In Siliko Analizi

Yıl 2025, Cilt: 39 Sayı: 1, 86 - 92, 30.04.2025
https://doi.org/10.61970/adlitip.1655120

Öz

Amaç: Bu çalışmanın amacı, adli genetikte önemli biyolojik sıvılardan olan tükürükteki miRNA’ların referans/hedef belirteçler olarak kullanımında aday olarak sunulan hedef genlerin ve bu genlerin etkin yolaklardaki etkilerinin in siliko yöntemler ile araştırılmasıdır.
Yöntem: Çalışmamız kapsamında adli tıp alanında deregülasyonu bildirilen mikroRNA’larla ilgili araştırmalardan dahil etme kriterlerine uyan 26 tam metin makale PubMed Central’dan ve Google Scholar’dan taranarak derinlemesine incelendi. Bu araştırma makalelerinde tükürükte 36 miRNA’nın farklı ifadesinin olduğu bulundu. İn siliko analizlerde TAM 2.0 software kullanıldı.
Bulgular: Çalışmamıza dahil edilen adli tıp pratiğinde yapılan araştırma makaleleri incelendiğinde tükürükte 36 miRNA’nın farklı ifadesinin olduğu bulundu. Bunlardan; mir-205, miR-203, mir-203a-3p, mir-223-3p, mir-658 gibi belirteçlerin sadece tükürükte yüksek düzeyde bulunması, tükürüğü kan, semen, idrar ve vajinal sıvı gibi diğer vücut sıvılarından ayırt edebileceği gösterildi. İn siliko analizler neticesinde tespit edilen miRNA’ların hedefledikleri genlerin TP53, STAT3, KLF2, NKFB1, MYC, TGFB1, ZEB1 gibi hücrelerde önem arz eden genleri hedeflediği bulundu. Bu genlerin pankreas, kolorektal, prostat kanserlerde ilaveten epitelyal-mezenkimal geçiş, tiroid hormon sinyal yolağı TGF-beta sinyal yolaklarında rol oynadığı tespit edildi.
Sonuç: Tükürüğe özgü miRNA profillerinin belirlenmesi, olay yerinde bulunan vücut sıvısının hangi kaynaktan geldiğini ayırt etmede önemli bir avantaj sunmaktadır. Bu çalışmamızdaki bulgularımız tükürükteki miRNA’ların ve hedef genlerinin adli genetik uygulamalarda vücut sıvılarının tanımlanması, travma tespiti, ölüm zamanı tahmini ve bireysel tanımlama gibi birçok alanda önemli bir biyobelirteç olma potansiyelini vurgulamaktadır.

Etik Beyan

Çalışmaya dair bulgular bilgisayar programlarında gerçekleştirilmiş olup, etik kurul onayı gerektirmemektedir.

Kaynakça

  • Glynn CL. Potential applications of microRNA profiling to forensic investigations. RNA. 2020;26(1):1-9.
  • Virkler K, Lednev IK. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int. 2009;188(1-3):1-17.
  • An JH, Shin KJ, Yang WI, Lee HY. Body fluid identification in forensics. BMB Rep. 2012;45(10):545-53.
  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-9.
  • Hanson EK, Lubenow H, Ballantyne J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal Biochem. 2009;387(2):303-14.
  • Wang Z, Zhang J, Wei W, Zhou D, Luo H, Chen X, et al. Identification of Saliva Using MicroRNA Biomarkers for Forensic Purpose. J Forensic Sci. 2015;60(3):702-6.
  • Guzel E, Karatas OF, Semercioz A, Ekici S, Aykan S, Yentur S, et al. Identification of microRNAs differentially expressed in prostatic secretions of patients with prostate cancer. Int J Cancer. 2015;136(4):875-9.
  • Duz MB, Karatas OF, Guzel E, Turgut NF, Yilmaz M, Creighton CJ, et al. Identification of miR-139-5p as a saliva biomarker for tongue squamous cell carcinoma: a pilot study. Cell Oncol (Dordr). 2016;39(2):187-93.
  • Maiese A, Scatena A, Costantino A, Di Paolo M, La Russa R, Turillazzi E, et al. MicroRNAs as Useful Tools to Estimate Time Since Death. A Systematic Review of Current Literature. Diagnostics (Basel). 2021;11(1).
  • Madea B, Saukko P, Oliva A, Musshoff F. Molecular pathology in forensic medicine--Introduction. Forensic Sci Int. 2010;203(1-3):3-14.
  • Juusola J, Ballantyne J. Multiplex mRNA profiling for the identification of body fluids. Forensic Sci Int. 2005;152(1):1-12.
  • Fábián TK, Fejérdy P, Nguyen MT, Soti C, Csermely P. Potential immunological functions of salivary Hsp70 in mucosal and periodontal defense mechanisms. Arch Immunol Ther Exp (Warsz). 2007;55(2):91-8.
  • Courts C, Madea B. Specific micro-RNA signatures for the detection of saliva and blood in forensic body-fluid identification. J Forensic Sci. 2011;56(6):1464-70.
  • Singh P, Ali W, Sandhu S, Mishra S, Singh US, Verma AK, et al. Post-mortem interval estimation using miRNAs of road traffic accident cases: A forensic molecular approach. Sci Justice. 2023;63(4):485-92.
  • Na JY. Estimation of the post-mortem interval using microRNA in the bones. J Forensic Leg Med. 2020;75:102049.
  • Sakurada K, Akutsu T, Watanabe K, Fujinami Y, Yoshino M. Expression of statherin mRNA and protein in nasal and vaginal secretions. Leg Med (Tokyo). 2011;13(6):309-13.
  • Kim BM, Park SU, Schmelzer L, Yang SB, Lee SD, Kim MY, et al. DNA methylation-based organ tissue identification: Marker identification, SNaPshot multiplex assay development, and interlaboratory comparison. Forensic Sci Int Genet. 2024;71:103052.
  • Lee HY, Park MJ, Choi A, An JH, Yang WI, Shin KJ. Potential forensic application of DNA methylation profiling to body fluid identification. Int J Legal Med. 2012;126(1):55-62.
  • Hess AK, Müer A, Mairinger FD, Weichert W, Stenzinger A, Hummel M, et al. MiR-200b and miR-155 as predictive biomarkers for the efficacy of chemoradiation in locally advanced head and neck squamous cell carcinoma. Eur J Cancer. 2017;77:3-12.
  • Tanoglu EG. Differential expressions of miR-223, miR-424, miR-145, miR-200c, miR-139 in experimental rat chronic pancreatitis model and their relationship between oxidative stress, endoplasmic reticulum stress, and apoptosis. Iran J Basic Med Sci. 2021;24(9):1301-6.
  • Jusoh AR, Mohan SV, Lu Ping T, Tengku Din TADA, Haron J, Romli RC, et al. Plasma Circulating Mirnas Profiling for Identification of Potential Breast Cancer Early Detection Biomarkers. Asian Pac J Cancer Prev. 2021;22(5):1375-81.
  • Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol. 2015;67(1):33-41.
  • Erdmann K, Kaulke K, Rieger C, Salomo K, Wirth MP, Fuessel S. MiR-26a and miR-138 block the G1/S transition by targeting the cell cycle regulating network in prostate cancer cells. J Cancer Res Clin Oncol. 2016;142(11):2249-61.
  • Siuta J, Dobosz A, Kawecki J, Dobosz T. DNA Content of Various Fluids and Tissues of the Human Body. Genes (Basel). 2023;15(1).
  • Zubakov D, Boersma AW, Choi Y, van Kuijk PF, Wiemer EA, Kayser M. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Legal Med. 2010;124(3):217-26.
  • Watanabe K, Taniguchi K, Toyomane K, Akutsu T. A new approach for forensic analysis of saliva-containing body fluid mixtures based on SNPs and methylation patterns of nearby CpGs. Forensic Sci Int Genet. 2022;56:102624.
  • Robles TF, Rünger D, Sumner JA, Elashoff D, Shetty V. Salivary inflammatory biomarkers as a predictor of post-traumatic stress disorder and depressive symptom severity in trauma patients: A prospective study. Brain Behav Immun. 2024;119:792-800.
  • Gaytán-Pacheco N, Ibáñez-Salazar A, Herrera-Van Oostdam AS, Oropeza-Valdez JJ, Magaña-Aquino M, Adrián López J, et al. miR-146a, miR-221, and miR-155 are Involved in Inflammatory Immune Response in Severe COVID-19 Patients. Diagnostics (Basel). 2022;13(1).
  • Johnson JJ, Loeffert AC, Stokes J, Olympia RP, Bramley H, Hicks SD. Association of Salivary MicroRNA Changes With Prolonged Concussion Symptoms. JAMA Pediatr. 2018;172(1):65-73.
  • Rocchi A, Chiti E, Maiese A, Turillazzi E, Spinetti I. MicroRNAs: An Update of Applications in Forensic Science. Diagnostics (Basel). 2020;11(1).
  • Sullivan R, Montgomery A, Scipioni A, Jhaveri P, Schmidt AT, Hicks SD. Confounding Factors Impacting microRNA Expression in Human Saliva: Methodological and Biological Considerations. Genes (Basel). 2022;13(10).
  • Kopcho S, McDew-White M, Naushad W, Mohan M, Okeoma CM. Alterations in Abundance and Compartmentalization of miRNAs in Blood Plasma Extracellular Vesicles and Extracellular Condensates during HIV/SIV Infection and Its Modulation by Antiretroviral Therapy (ART) and Delta-9-Tetrahydrocannabinol (Δ. Viruses. 2023;15(3).
  • Ahmad MA, Ghaleb SS, Zaki AR, Kamel AO, Eid A. The role of miRNA-21 and hypoxia inducible factor-1 in predicting post mortem interval in cardiac muscles of aluminum phosphide deaths. J Forensic Leg Med. 2024;106:102726.
  • Rosato AJ, Chen X, Tanaka Y, Farrer LA, Kranzler HR, Nunez YZ, et al. Salivary microRNAs identified by small RNA sequencing and machine learning as potential biomarkers of alcohol dependence. Epigenomics. 2019;11(7):739-49.
  • Murray BS, Choe SE, Woods M, Ryan TE, Liu W. An in siliko analysis of microRNAs: mining the miRNAome. Mol Biosyst. 2010;6(10):1853-62.
  • Atalay R EB, Holumen N, et al. Determination of blood and saliva in mixture samples with miRNA. Med Science. 2024;2024;13(2):455-60.
  • Wang Z, Zhou D, Cao Y, Hu Z, Zhang S, Bian Y, et al. Characterization of microRNA expression profiles in blood and saliva using the Ion Personal Genome Machine(®) System (Ion PGM™ System). Forensic Sci Int Genet. 2016;20:140-6.
  • Sirker M, Fimmers R, Schneider PM, Gomes I. Evaluating the forensic application of 19 target microRNAs as biomarkers in body fluid and tissue identification. Forensic Sci Int Genet. 2017;27:41-9.
  • Chen X, Xu H, Zhu B. Forensic validation of a combined analysis of mRNA and miRNA markers for precise tissue origin inferences of five kinds of body fluids by RT-qPCR. Electrophoresis. 2023;44(21-22):1714-24.
  • Sauer E, Reinke AK, Courts C. Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR. Forensic Sci Int Genet. 2016;22:89-99.
  • Fujimoto S, Manabe S, Morimoto C, Ozeki M, Hamano Y, Hirai E, et al. Distinct spectrum of microRNA expression in forensically relevant body fluids and probabilistic discriminant approach. Sci Rep. 2019;9(1):14332.
  • He H, Han N, Ji C, Zhao Y, Hu S, Kong Q, et al. Identification of five types of forensic body fluids based on stepwise discriminant analysis. Forensic Sci Int Genet. 2020;48:102337.
  • Altmeyer L, Baumer K, Hall D. Differentiation of five forensically relevant body fluids using a small set of microRNA markers. Electrophoresis. 2024;45(19-20):1785-95.
  • Iroanya OO, Olutunde OT, Egwuatu TF, Igbokwe C. Stability of selected microRNAs in human blood, semen and saliva samples exposed to different environmental conditions. Forensic Sci Int. 2022;336:111338.
  • Omelia EJ, Uchimoto ML, Williams G. Quantitative PCR analysis of blood- and saliva-specific microRNA markers following solid-phase DNA extraction. Anal Biochem. 2013;435(2):120-2.
  • O Leary KR, Glynn CL. Investigating the Isolation and Amplification of microRNAs for Forensic Body Fluid Identification. Microrna. 2018;7(3):187-94.
  • Mayes C, Seashols-Williams S, Hughes-Stamm S. A capillary electrophoresis method for identifying forensically relevant body fluids using miRNAs. Leg Med (Tokyo). 2018;30:1-4.
  • Graham Williams MLU, Natalie Coult, Damian World, Emma Beasley. Body fluid mixtures: Resolution using forensic microRNA analysis. Forensic Science International: Genetics Supplement Series; 2013.
  • Peng Bai WD, Li Wang , Bing Long , Kuanlin Liu , Weibo Liang , Lin Zhang. Micro RNA profiling for the detection and differentiation of body fluids in forensic stain analysis. 2023.
  • Li S, Liu J, Xu W, Zhang S, Zhao M, Miao L, et al. A multi-class support vector machine classification model based on 14 microRNAs for forensic body fluid identification. Forensic Sci Int Genet. 2025;75:103180.
  • Seashols-Williams S, Lewis C, Calloway C, Peace N, Harrison A, Hayes-Nash C, et al. High-throughput miRNA sequencing and identification of biomarkers for forensically relevant biological fluids. Electrophoresis. 2016;37(21):2780-8.
  • Chen H, Hu S, Yang R, Yao Q, Zhao Y, Lian J, et al. The screening and validation process of miR-223-3p for saliva identification. Leg Med (Tokyo). 2023;65:102312.
  • Lewis CA, Layne TR, Seashols-Williams SJ. Detection of microRNAs in DNA Extractions for Forensic Biological Source Identification. J Forensic Sci. 2019;64(6):1823-30.
  • Wang Z, Zhang J, Luo H, Ye Y, Yan J, Hou Y. Screening and confirmation of microRNA markers for forensic body fluid identification. Forensic Sci Int Genet. 2013;7(1):116-23.
  • Park JL, Park SM, Kwon OH, Lee HC, Kim JY, Seok HH, et al. Microarray screening and qRT-PCR evaluation of microRNA markers for forensic body fluid identification. Electrophoresis. 2014;35(21-22):3062-8.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Adli Biyoloji, Genetik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Filiz Ekim Çevik 0000-0002-1262-6452

Esra Güzel Tanoğlu 0000-0002-0909-8935

Yayımlanma Tarihi 30 Nisan 2025
Gönderilme Tarihi 11 Mart 2025
Kabul Tarihi 24 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 39 Sayı: 1

Kaynak Göster

Vancouver Çevik FE, Güzel Tanoğlu E. Adli Genetikte Tükürük Sıvılarındaki MikroRNA’ların In Siliko Analizi. ATD. 2025;39(1):86-92.

Creative Commons Lisansı
Adli Tıp Dergis Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Dergimiz Açık Erişim Politikasını benimsemiş olup, gönderilen makaleler için yayının hiçbir aşamasında yazarlardan ücret talep edilmeyecektir.