COMPARISON OF CONNECTION FIT AND STRENGTHS OF STANDARD Ti-BASE AND NEW CrCo-BASE IMPLANT ABUTMENTS
Yıl 2023,
, 31 - 38, 18.01.2023
Mehmet Ali Kılıçarslan
,
Yezdan Dilan Erkcan
,
Burak Bilecenoğlu
,
Kaan Orhan
,
Mustafa Kemal Ünsal
Öz
Aim: The aim of this study is to compare biomechanical behaviors of the implant-abutment connections with loading when using Ti-Base and CrCo-Base.
Materials and Methods: Two bone level implants (3,5 and 4,8 mm) are used. The first scans of the abutments which were torqued with 30 Ncm two times were made with the Micro-CT. In the chewing simulator, four years of usage were simulated for each sample. After the second scans, the samples were subjected to Universal test device by following the standards determined by the ISO 14801; 2007. The fracture modes of the samples were recorded using the light microscope.
Results: The maximum gap was determined as 34.74 µm between the screw and the abutment in the CrCo-Base (4.8 mm), and as 39.70 µm between the abutment and the body in the CrCo-Base (4.8 mm) after chewing simulation. The maximum volumetric gap was observed as 2.24 mm3 at the 3.5 diameter CrCo-Base after chewing simulation. The specimens attached to the thick implant body and CrCo-Base samples broke at higher values.
Conclusion: Abutments manufactured from titanium exhibit a better connection compatibility compared to CrCo base, while abutments from CrCo material have a higher fracture resistance than those made of titanium.
Kaynakça
- 1. Misch CE, Screw-retained versus cement-retained implant-supported prostheses. Pract Periodontics Aesthet Dent 1995; 7: 15-8.
- 2. Kotick PG, Blumenkopf B, Abutment selection for implant restorations. Inside Dentistry 2011; 7: 30-5.
- 3. Karunagaran S, Markose S, Paprocki G, Wicks R, A systematic approach to definitive planning and designing single and multiple ünit implant abutments. J. Prosthondontics 2014; 23: 639-48.
- 4. Lewis S, Beumer J, Hornburg W, Moy P, The UCLA abutment. Int J Oral Maxillofac Implants 1988; 3: 183-9.
- 5. Prisco R, Morgano SM, D’Amato S, New abutment for a screw - retained implant supported crown. J Prosthet Dent 2001; 85: 30-3.
- 6. Ramalho I, Witek L, Coelho PG, Bergamo E, Pegoraro LF, Bonfante EA, Influence of abutment fabrication method on 3D fit at the implant-abutment connection. Int J Prosthodont 2020; 33: 641-7.
- 7. Gupta S, Gupta H, Tandan A, Technical complications of implant- causes and management: A comprehensive review. Natl J Maxillofac Surg 2015; 6: 3-8
- 8. Mascarenhas F, Yilmaz B, Mcglumphy E, Clelland N, Seidt J, Load to failure of different zirconia implant abutments with titanium components. J Prosthet Dent 2017; 117: 749-54.
- 9. McGlumphy EA, Mendel DA, Holloway JA, Implant screw mechanics. Dent Clin North Am 1998; 42: 71-89.
- 10. Moris ICM, Faria ACL, Ribeiro RF, Rodrigues RCS, Torque loss of different abutment size before and after cyclic loading. Int J Oral Maxillofac Implants 2015; 30: 1256-61.
- 11. Swain MV, Xue J, State of the Art of Micro-CT Applications in Dental Research. International Journal of Oral Science 2009; 1: 177–88.
- 12. Neldam CA, Lauridsen T, Rack A, Lefolii TT, Jørgensen NR, Feidenhans LR, Pinholt EM, Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration. Journal of Cranio-Maxillo-Facial Surgery 2015; 43: 682-7.
- 13. Scarano A, Valbonetti L, Degidi M, Pecci R, Piatelli A, Oliveira PS, Perotti V, Implant-Abutment Contact Surfaces and Microgap Measurements of Different Implant Connections Under 3-Dimensional X-Ray Microtomography. Implant Dentistry 2016; 25: 5.
- 14. ISO 14801:2007(E). Dentistry-Implants-Dynamic fatigue test for endosseous dental implants 2nd Ed. “About Us”, Erişim adresi: [https://www.iso.org/about-us.html]. Erişim tarihi: 29/04/2021.
- 15. El-Sheikh MAY, Mostafa TMN, El- Sheikh MM, Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading. International Journal of Implant Dentistry 2018; 4: 39.
- 16. He Y, Fok A, Aaparico C, Teng W, Contact analysis of gap formation at dental implant-abutment interface under oblique loading: A numerical-experimental study. Clin Implant Dent Relat Res 2019 21: 741–52.
- 17. Ahmed SE, Krishnan CS, Mohan J, Kalaignan P, Effect of Cyclic Loading on Abutment Screw Loosening in Angled Implant Abutments- An In-vitro Study. Journal of Clinical and Diagnostic Research 2019; 13: ZC01-ZC06.
- 18. Reis TA, Zancopé K, Karam FK, Domingues Das Neves F, Biomechanical behavior of extra-narrow implants after fatigue and pull-out tests. J Prosthet Dent 2019; 122: 54.e1-e6.
- 19. Alhomidhi M, Alqahtani F, Evaluation of Fracture Load of Cement-, Screw-, and Multiscrew- Retained Abutments for Implant- Supported Fixed Partial Dentures. Int J Oral Maxillofac Implants 2021; 36: 55-8.
Standart Ti-Base Ve Yeni Crco-Base İmplant Dayanaklarının Bağlantı Uyumu İle Bağlantı Dayanımlarının Karşılaştırılması
Yıl 2023,
, 31 - 38, 18.01.2023
Mehmet Ali Kılıçarslan
,
Yezdan Dilan Erkcan
,
Burak Bilecenoğlu
,
Kaan Orhan
,
Mustafa Kemal Ünsal
Öz
Amaç: Bu çalışmanın amacı Universal Ti-Base ve deneysel CrCo-Base desteklerin kullanımında implant-destek bağlantısının in-vitro yükleme karşısındaki biyomekanik davranışlarını karşılaştırmaktır.
Gereç ve Yöntem: Bu çalışmada iki farklı çapta (3,5 ve 4,8 mm) kemik seviyeli implant kullanılmıştır. Bir gün arayla iki kez 30 Ncm değerle torklanan desteklerin Mikro-CT cihazı ile ilk çekimler yapılmıştır. İlk çekimleri tamamlanan her bir örneğin, çiğneme simülatörü uygulamasında dört yıllık kullanımı simüle edilmiştir. Simülasyon sonrası uygulanan ikinci Mikro-CT çekimlerinin peşisıra örnekler TS ISO 14801;2007 nolu standarta uygun olarak üniversal test cihazı kullanılarak baskı testine tabii tutulmuştur. Örneklerin kırılma veya eğilme durumu ışık mikroskobu kullanılarak kayıt altına alınmıştır.
Bulgular: Vida-destek arasında en fazla aralık çiğneme simülasyonu sonrası 4.8 mm implant gövdesine bağlanan CrCo-Base (34.74 µm), destek-gövde arasında ise çiğneme simülasyonu sonrası 4.8 mm implant gövdesine bağlanan CrCo-Base (39.70 µm) yapıda tespit edilmiştir. Hacimsel ölçümlerde ise en fazla aralık 2.24 mm3 olarak çiğneme simülasyonu sonrası 3.5 çap CrCo-Base bağlantısında gözlenmiştir. Kalın implant gövdesine bağlanan örnekler istatistiksel olarak daha yüksek değerlerde kırılırken, tüm gruplarda CrCo-Base örnekler Ti-Base örneklere göre daha fazla kırılma mukavemeti sergilemişlerdir.
Sonuç: Titanyumdan üretilen base destekler CrCo desteklere oranla daha iyi bir bağlantı uyumu sergilerken, CrCo malzemeden üretilen base desteklerin kırılma direnci titanyumdan üretilenlerden daha fazladır.
Teşekkür
Yazarlar, malzeme desteğinden ötürü NucleOss Şanlılar Tıbbi Cihazlar Med. Kim. San. Tic. Ltd. Şti. ile BMP Biyolojik Materyal Ltd. Şti.’ne ve laboratuvar testleri aşamasında yardımlarını esirgemeyen Sayın Mustafa Yeşil’e teşekkür eder.
Kaynakça
- 1. Misch CE, Screw-retained versus cement-retained implant-supported prostheses. Pract Periodontics Aesthet Dent 1995; 7: 15-8.
- 2. Kotick PG, Blumenkopf B, Abutment selection for implant restorations. Inside Dentistry 2011; 7: 30-5.
- 3. Karunagaran S, Markose S, Paprocki G, Wicks R, A systematic approach to definitive planning and designing single and multiple ünit implant abutments. J. Prosthondontics 2014; 23: 639-48.
- 4. Lewis S, Beumer J, Hornburg W, Moy P, The UCLA abutment. Int J Oral Maxillofac Implants 1988; 3: 183-9.
- 5. Prisco R, Morgano SM, D’Amato S, New abutment for a screw - retained implant supported crown. J Prosthet Dent 2001; 85: 30-3.
- 6. Ramalho I, Witek L, Coelho PG, Bergamo E, Pegoraro LF, Bonfante EA, Influence of abutment fabrication method on 3D fit at the implant-abutment connection. Int J Prosthodont 2020; 33: 641-7.
- 7. Gupta S, Gupta H, Tandan A, Technical complications of implant- causes and management: A comprehensive review. Natl J Maxillofac Surg 2015; 6: 3-8
- 8. Mascarenhas F, Yilmaz B, Mcglumphy E, Clelland N, Seidt J, Load to failure of different zirconia implant abutments with titanium components. J Prosthet Dent 2017; 117: 749-54.
- 9. McGlumphy EA, Mendel DA, Holloway JA, Implant screw mechanics. Dent Clin North Am 1998; 42: 71-89.
- 10. Moris ICM, Faria ACL, Ribeiro RF, Rodrigues RCS, Torque loss of different abutment size before and after cyclic loading. Int J Oral Maxillofac Implants 2015; 30: 1256-61.
- 11. Swain MV, Xue J, State of the Art of Micro-CT Applications in Dental Research. International Journal of Oral Science 2009; 1: 177–88.
- 12. Neldam CA, Lauridsen T, Rack A, Lefolii TT, Jørgensen NR, Feidenhans LR, Pinholt EM, Application of high resolution synchrotron micro-CT radiation in dental implant osseointegration. Journal of Cranio-Maxillo-Facial Surgery 2015; 43: 682-7.
- 13. Scarano A, Valbonetti L, Degidi M, Pecci R, Piatelli A, Oliveira PS, Perotti V, Implant-Abutment Contact Surfaces and Microgap Measurements of Different Implant Connections Under 3-Dimensional X-Ray Microtomography. Implant Dentistry 2016; 25: 5.
- 14. ISO 14801:2007(E). Dentistry-Implants-Dynamic fatigue test for endosseous dental implants 2nd Ed. “About Us”, Erişim adresi: [https://www.iso.org/about-us.html]. Erişim tarihi: 29/04/2021.
- 15. El-Sheikh MAY, Mostafa TMN, El- Sheikh MM, Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading. International Journal of Implant Dentistry 2018; 4: 39.
- 16. He Y, Fok A, Aaparico C, Teng W, Contact analysis of gap formation at dental implant-abutment interface under oblique loading: A numerical-experimental study. Clin Implant Dent Relat Res 2019 21: 741–52.
- 17. Ahmed SE, Krishnan CS, Mohan J, Kalaignan P, Effect of Cyclic Loading on Abutment Screw Loosening in Angled Implant Abutments- An In-vitro Study. Journal of Clinical and Diagnostic Research 2019; 13: ZC01-ZC06.
- 18. Reis TA, Zancopé K, Karam FK, Domingues Das Neves F, Biomechanical behavior of extra-narrow implants after fatigue and pull-out tests. J Prosthet Dent 2019; 122: 54.e1-e6.
- 19. Alhomidhi M, Alqahtani F, Evaluation of Fracture Load of Cement-, Screw-, and Multiscrew- Retained Abutments for Implant- Supported Fixed Partial Dentures. Int J Oral Maxillofac Implants 2021; 36: 55-8.