Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Dentin Replasman Materyallerinin Mekanik Özellikleri: Çift Eksenli Eğilme Dayanımı ve Mikrosertlik Üzerine Karşılaştırmalı Bir Çalışma

Yıl 2025, Cilt: 14 Sayı: 3, 206 - 214, 29.09.2025
https://doi.org/10.54617/adoklinikbilimler.1702852

Öz

Amaç: Endodontik olarak tedavi edilen dişler (ETT), kaybedilen dentinin yerini etkili bir şekilde alabilecek ve oklüzal kuvvetlere dayanabilecek restoratif materyallere ihtiyaç duyar. Bu çalışmanın amacı dört farklı dentin replasman materyalinin [yüksek viskoziteli rezin modifiye cam iyonomer siman (RIVA light cure HV), bulk-fill akışkan kompozit rezin (SDR flow+), akışkan kısa fiberle güçlendirilmiş kompozit (everX Flow) ve kısa fiberle güçlendirilmiş kompozit (everX Posterior)] çift eksenli eğilme dayanımı (BFS) ve Vickers mikrosertliğini (VHN) karşılaştırmaktır:
Gereç ve Yöntem: Her materyalden 24 adet olacak şekilde toplamda 96 adet disk şeklinde örnek hazırlandı. Örneklerin yarısı BFS testine tabi tutulurken (n=12), kalan örneklere mikrosertlik testi uygulandı (n=12). İstatistiksel analiz tek yönlü ANOVA ve Welch's ANOVA kullanılarak gerçekleştirilmiştir.
Bulgular: everX Flow en yüksek BFS'yi (169,95 ± 10,3 MPa) gösterirken, bunu everX Posterior (141,42 ± 5,41 MPa), SDR flow+ (135,17 ± 4,17 MPa) ve RIVA light cure HV (35,13 ± 6,14 MPa) izlemiştir. everX Posterior ve SDR flow+ gruplarının BFS değerleri arasında anlamlı bir fark bulunmazken (p>0,05), diğer grupların BFS değerleri arasında fark vardır (p<0,05). VHN açısından, everX Posterior grubu en yüksek sertlik değerlerini (54.81 ± 4.06) gösterirken, bunu everX Flow (44.89 ± 1.89), RIVA light cure HV (41.19 ± 2.08) ve SDR flow+ (22.99 ± 1.61) grupları izlemiştir (p < 0.05).
Sonuç: Kısa fiber takviyeli kompozitler, dentin replasman materyalleri olarak uygun mikrosertlik ve eğilme dayanımına sahiptir.

Kaynakça

  • 1. Cecchin D, de Almeida JF, Gomes BP, Zaia AA, Ferraz CC. Effect of chlorhexidine and ethanol on the durability of the adhesion of the fiber post relined with resin composite to the root canal. J Endod 2011;37:678-83.
  • 2. Dietschi D, Duc O, Krejci I, Sadan A. Biomechanical considerations for the restoration of endodontically treated teeth: a systematic review of the literature--Part 1. Composition and micro- and macrostructure alterations. Quintessence Int.2007;38:733-43.
  • 3. Molnár J, Fráter M, Sáry T, Braunitzer G, Vallittu PK, Lassila L, et al. Fatigue performance of endodontically treated molars restored with different dentin replacement materials. Dent Mater.2022;38:e83-e93.
  • 4. Hazar E, Hazar A. Fracture Resistance of Glass-Fiber- Reinforced Direct Restorations on Endodontically Treated Molar Teeth with Furcal Perforation. Polymers (Basel) 2025;17:370.
  • 5. Garoushi S, Sungur S, Boz Y, Ozkan P, Vallittu PK, Uctasli S, et al. Influence of short-fiber composite base on fracture behavior of direct and indirect restorations. Clin Oral Investig 2021;25:4543- 52.
  • 6. Rakić M, Ivanišević A, Baraba A, Agović SČ, Šošić A, Klarić E. Blue Laser for Polymerization of Bulk Fill Composites: Influence on dentin bond strength and temperature rise during curing and co-curing method. Lasers Med Sci 2024;39:93.
  • 7. Choudhury WR, Sridhar N. Mechanical properties of SDR™ and biodentine™ as dentin replacement materials: An in vitro study. J Contemp Dent Prac. 2022;23:43-8.
  • 8. Sidhu SK, Nicholson JW. A Review of Glass-Ionomer Cements for Clinical Dentistry. J Funct Biomater 2016;7:16.
  • 9. de Kuijper MCFM, Gresnigt MMM. De coronale afsluiting: een directe of indirecte restauratie? [Post-endodontic restoration: a direct or indirect restoration?]. Ned Tijdschr Tandheelkd 2024;131:67-74.
  • 10. Arora V, Nikhil V, Sharma N, Arora P. Bioactive dentin replacement. J Dent Med Sci 2013;12:51-7.
  • 11. Wang L, D’Alpino PH, Lopes LG, Pereira JC. Mechanical properties of dental restorative materials: relative contribution of laboratory tests. J Appl Oral Sci 2003;11:162-7.
  • 12. Sadek HMA, El-Banna A. Biaxial flexural strength of different provisional restorative materials under chemo-mechanical aging: An in vitro study. J Prosthodont 2024;33:149-56.
  • 13. Ludovichetti FS, Guariso A, Parcianello RG, Pezzato L, Bertolini R, Lucchi P, et al. Depth of Cure, Surface Characteristics, Hardness, and Brushing Wear of 4 Direct Restorative Materials in Paediatric Dentistry. Appl Sci 2024;14:8783.
  • 14. Dulger K, Kosar T. Comparison of three dentine replacement materials in terms of different characteristics. Aust Endod J.2025;51:81-89.
  • 15. Torno V, Soares P, Martin JM, Mazur RF, Souza EM, Vieira S. Effects of irradiance, wavelength, and thermal emission of different light curing units on the Knoop and Vickers hardness of a composite resin. J Biomed Mater Res B Appl Biomater 2008;85:166-71.
  • 16. No YM, Shin BS, Kim JS, Yoo SH. Evaluation of microhardness of bulk-base composite resins according to the depth of cure. J Korean Acad Pediatr Dent 2017;44:335-40.
  • 17. Wang R, Habib E, Zhu XX. Evaluation of the filler packing structures in dental resin composites: From theory to practice. Dent Mater 2018;34:1014-23.
  • 18. Fronza BM, Rueggeberg FA, Braga RR, Mogilevych B, Soares LE, Martin AA, et al. Monomer conversion, microhardness internal marginal adaptation, and shrinkage stress of bulk-fill resin composites. Dent Mater 2015;31:1542-51.
  • 19. Kelić K, Matić S, Marović D, et al. Microhardness of bulk-fill composite materials. Acta Clin Croat 2016;55:607-14.
  • 20. Degirmenci A, Can DB. Pre-heating effect on the microhardness and depth of cure of bulk-fill composite resins. Odovtos Int J Dent S 2022;24:99-112.
  • 21. Kim KH, Ong JL, Okuno O. The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent 2002;87:642-9.
  • 22. Khairy NM, Elkholany NR, Elembaby AE. Evaluation of surface microhardness and gingival marginal adaptation of three different bulk-fill flowable resin composites: A comparative study. J Esthet Restor Dent 2024;36:920-9.
  • 23. Cirano FR, Romito GA, Todescan JH. Determination of enamel and coronal dentin microhardness. Braz J Oral Sci 2003;2:258-63.
  • 24. Gutiérrez-Salazar, MDP, Reyes-Gasga J. Microhardness and chemical composition of human tooth. Mat Res 2003;6:367-73.
  • 25. Kaup M, Schäfer E, Dammaschke T. An in vitro study of different material properties of Biodentine compared to ProRoot MTA. Head Face Med 2015;11:16.
  • 26. Ryou H, Amin N, Ross A, Eidelman N, Wang DH, Romberg E, Arola D. Contributions of microstructure and chemical composition to the mechanical properties of dentin. J Mater Sci Mater Med 2011;22:1127-35.
  • 27. Sawyer AN, Nikonov SY, Pancio AK, Niu LN, Agee KA, Loushine RJ, Weller RN, Pashley DH, Tay FR. Effects of calcium silicate-based materials on the flexural properties of dentin. J Endod 2012;38:680-3.
  • 28. Arola DD, Reprogel RK. Tubule orientation and the fatigue strength of human dentin. Biomaterials. 2006;27(9):2131-40.
  • 29. Aram A, Hong H, Song C, Bass M, Platt JA, Chutinan S. Physical Properties and Clinical Performance of Short Fiber Reinforced Resin-based Composite in Posterior Dentition: Systematic Review and Meta-analysis. Oper Dent 2023;48:E119-E136.
  • 30. Alshabib A, Silikas N, Algamaiah H, Alayad AS, Alawaji R, Almogbel S, Aldosari A, Alhotan A. Effect of Fibres on Physico- Mechanical Properties of Bulk-Fill Resin Composites. Polymers (Basel) 2023;15:3452.
  • 31. Hazar A, Hazar E. Effect of composite resins with and without fiber-reinforcement on the fracture resistance of teeth with non-carious cervical lesions. J Appl Biomater Funct Mater 2024;22:22808000241303327.
  • 32. Lohbauer U, Frankenberger R, Krämer N, Petschelt A. Strength and fatigue performance versus filler fraction of different types of direct dental restoratives. J Biomed Mater Res B Appl Biomater 2006;76:114–20.
  • 33. Garoushi S, Säilynoja E, Frater M, Keulemans F, Vallittu PK, Lassila L. A comparative evaluation of commercially available short fiber-reinforced composites BMC Oral Health. 2024;24:1573.
  • 34. Kamourieh N, Faigenblum M, Blizard R, Leung A, Fine P. Fracture Toughness of Short Fibre-Reinforced Composites-In Vitro Study. Materials (Basel) 2024;17:5368.
  • 35. Ong J, Yap AU, Abdul Aziz A, Yahya NA. Flexural Properties of Contemporary Bioactive Restorative Materials: Effect of Environmental pH. Oper Dent 2023;48:90-7.
  • 36. Ramos NBP, Felizardo KR, Berger SB, Guiraldo RD, Lopes MB. Comparative study of physical-chemical properties of bioactive glass ionomer cement. Braz Dent J 2024;35:e245728.
  • 37. Maaly T, El Sayed S. Evaluation of Flexural and Compressive Strength for A Bioactive Restorative Material, Nanocomposite and Resin Modified Glass Ionomer: A Comparative Study. Egypt Dent J 2019;65:3637-41.
  • 38. ISO 4049:2019. Dentistry-Polymer-based restorative materials. International Organization for Standardization, Geneva, Switzerland

Mechanical Properties of Different Dentin Replacement Materials: A Comparative Study of Biaxial Flexural Strength and Microhardness

Yıl 2025, Cilt: 14 Sayı: 3, 206 - 214, 29.09.2025
https://doi.org/10.54617/adoklinikbilimler.1702852

Öz

Aim: Endodontically treated teeth (ETT) require restorative materials that can effectively replace lost dentin and withstand occlusal forces. This study aimed to compare the biaxial flexural strength (BFS) and Vickers microhardness (VHN) of four different dentin replacement materials: a high-viscosity resin-modified glass ionomer cement (RIVA light cure HV), a bulk-fill flowable composite resin (SDR flow+), a flowable short fiber-reinforced composite (everX Flow), and a short fiber-reinforced composite (everX Posterior).
Material and Method: A total of 96 disk-shaped samples were prepared, 24 from each material. Half of the samples were subjected to BFS testing (n=12), while the remaining samples were subjected to microhardness testing (n=12). Statistical analysis was performed using one-way ANOVA and Welch’s ANOVA.
Results: everX Flow showed the highest BFS (169.95 ± 10.3 MPa), followed by everX Posterior (141.42 ± 5.41 MPa), SDR flow+ (135.17 ± 4.17 MPa), and RIVA light cure HV (35.13 ± 6.14 MPa). While there was no significant difference between the BFS values of the everX Posterior and SDR flow+ groups (p>0.05), there was a difference among the BFS values of the other groups (p<0.05). Regarding VHN, everX Posterior group demonstrated the highest hardness values (54.81 ± 4.06), followed by everX Flow (44.89 ± 1.89), RIVA light cure HV (41.19 ± 2.08), and SDR flow+ (22.99 ± 1.61) groups (p < 0.05).
Conclusion: Short fiber reinforced composites have favorable microhardness and flexural strength as dentin replacement materials.

Kaynakça

  • 1. Cecchin D, de Almeida JF, Gomes BP, Zaia AA, Ferraz CC. Effect of chlorhexidine and ethanol on the durability of the adhesion of the fiber post relined with resin composite to the root canal. J Endod 2011;37:678-83.
  • 2. Dietschi D, Duc O, Krejci I, Sadan A. Biomechanical considerations for the restoration of endodontically treated teeth: a systematic review of the literature--Part 1. Composition and micro- and macrostructure alterations. Quintessence Int.2007;38:733-43.
  • 3. Molnár J, Fráter M, Sáry T, Braunitzer G, Vallittu PK, Lassila L, et al. Fatigue performance of endodontically treated molars restored with different dentin replacement materials. Dent Mater.2022;38:e83-e93.
  • 4. Hazar E, Hazar A. Fracture Resistance of Glass-Fiber- Reinforced Direct Restorations on Endodontically Treated Molar Teeth with Furcal Perforation. Polymers (Basel) 2025;17:370.
  • 5. Garoushi S, Sungur S, Boz Y, Ozkan P, Vallittu PK, Uctasli S, et al. Influence of short-fiber composite base on fracture behavior of direct and indirect restorations. Clin Oral Investig 2021;25:4543- 52.
  • 6. Rakić M, Ivanišević A, Baraba A, Agović SČ, Šošić A, Klarić E. Blue Laser for Polymerization of Bulk Fill Composites: Influence on dentin bond strength and temperature rise during curing and co-curing method. Lasers Med Sci 2024;39:93.
  • 7. Choudhury WR, Sridhar N. Mechanical properties of SDR™ and biodentine™ as dentin replacement materials: An in vitro study. J Contemp Dent Prac. 2022;23:43-8.
  • 8. Sidhu SK, Nicholson JW. A Review of Glass-Ionomer Cements for Clinical Dentistry. J Funct Biomater 2016;7:16.
  • 9. de Kuijper MCFM, Gresnigt MMM. De coronale afsluiting: een directe of indirecte restauratie? [Post-endodontic restoration: a direct or indirect restoration?]. Ned Tijdschr Tandheelkd 2024;131:67-74.
  • 10. Arora V, Nikhil V, Sharma N, Arora P. Bioactive dentin replacement. J Dent Med Sci 2013;12:51-7.
  • 11. Wang L, D’Alpino PH, Lopes LG, Pereira JC. Mechanical properties of dental restorative materials: relative contribution of laboratory tests. J Appl Oral Sci 2003;11:162-7.
  • 12. Sadek HMA, El-Banna A. Biaxial flexural strength of different provisional restorative materials under chemo-mechanical aging: An in vitro study. J Prosthodont 2024;33:149-56.
  • 13. Ludovichetti FS, Guariso A, Parcianello RG, Pezzato L, Bertolini R, Lucchi P, et al. Depth of Cure, Surface Characteristics, Hardness, and Brushing Wear of 4 Direct Restorative Materials in Paediatric Dentistry. Appl Sci 2024;14:8783.
  • 14. Dulger K, Kosar T. Comparison of three dentine replacement materials in terms of different characteristics. Aust Endod J.2025;51:81-89.
  • 15. Torno V, Soares P, Martin JM, Mazur RF, Souza EM, Vieira S. Effects of irradiance, wavelength, and thermal emission of different light curing units on the Knoop and Vickers hardness of a composite resin. J Biomed Mater Res B Appl Biomater 2008;85:166-71.
  • 16. No YM, Shin BS, Kim JS, Yoo SH. Evaluation of microhardness of bulk-base composite resins according to the depth of cure. J Korean Acad Pediatr Dent 2017;44:335-40.
  • 17. Wang R, Habib E, Zhu XX. Evaluation of the filler packing structures in dental resin composites: From theory to practice. Dent Mater 2018;34:1014-23.
  • 18. Fronza BM, Rueggeberg FA, Braga RR, Mogilevych B, Soares LE, Martin AA, et al. Monomer conversion, microhardness internal marginal adaptation, and shrinkage stress of bulk-fill resin composites. Dent Mater 2015;31:1542-51.
  • 19. Kelić K, Matić S, Marović D, et al. Microhardness of bulk-fill composite materials. Acta Clin Croat 2016;55:607-14.
  • 20. Degirmenci A, Can DB. Pre-heating effect on the microhardness and depth of cure of bulk-fill composite resins. Odovtos Int J Dent S 2022;24:99-112.
  • 21. Kim KH, Ong JL, Okuno O. The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent 2002;87:642-9.
  • 22. Khairy NM, Elkholany NR, Elembaby AE. Evaluation of surface microhardness and gingival marginal adaptation of three different bulk-fill flowable resin composites: A comparative study. J Esthet Restor Dent 2024;36:920-9.
  • 23. Cirano FR, Romito GA, Todescan JH. Determination of enamel and coronal dentin microhardness. Braz J Oral Sci 2003;2:258-63.
  • 24. Gutiérrez-Salazar, MDP, Reyes-Gasga J. Microhardness and chemical composition of human tooth. Mat Res 2003;6:367-73.
  • 25. Kaup M, Schäfer E, Dammaschke T. An in vitro study of different material properties of Biodentine compared to ProRoot MTA. Head Face Med 2015;11:16.
  • 26. Ryou H, Amin N, Ross A, Eidelman N, Wang DH, Romberg E, Arola D. Contributions of microstructure and chemical composition to the mechanical properties of dentin. J Mater Sci Mater Med 2011;22:1127-35.
  • 27. Sawyer AN, Nikonov SY, Pancio AK, Niu LN, Agee KA, Loushine RJ, Weller RN, Pashley DH, Tay FR. Effects of calcium silicate-based materials on the flexural properties of dentin. J Endod 2012;38:680-3.
  • 28. Arola DD, Reprogel RK. Tubule orientation and the fatigue strength of human dentin. Biomaterials. 2006;27(9):2131-40.
  • 29. Aram A, Hong H, Song C, Bass M, Platt JA, Chutinan S. Physical Properties and Clinical Performance of Short Fiber Reinforced Resin-based Composite in Posterior Dentition: Systematic Review and Meta-analysis. Oper Dent 2023;48:E119-E136.
  • 30. Alshabib A, Silikas N, Algamaiah H, Alayad AS, Alawaji R, Almogbel S, Aldosari A, Alhotan A. Effect of Fibres on Physico- Mechanical Properties of Bulk-Fill Resin Composites. Polymers (Basel) 2023;15:3452.
  • 31. Hazar A, Hazar E. Effect of composite resins with and without fiber-reinforcement on the fracture resistance of teeth with non-carious cervical lesions. J Appl Biomater Funct Mater 2024;22:22808000241303327.
  • 32. Lohbauer U, Frankenberger R, Krämer N, Petschelt A. Strength and fatigue performance versus filler fraction of different types of direct dental restoratives. J Biomed Mater Res B Appl Biomater 2006;76:114–20.
  • 33. Garoushi S, Säilynoja E, Frater M, Keulemans F, Vallittu PK, Lassila L. A comparative evaluation of commercially available short fiber-reinforced composites BMC Oral Health. 2024;24:1573.
  • 34. Kamourieh N, Faigenblum M, Blizard R, Leung A, Fine P. Fracture Toughness of Short Fibre-Reinforced Composites-In Vitro Study. Materials (Basel) 2024;17:5368.
  • 35. Ong J, Yap AU, Abdul Aziz A, Yahya NA. Flexural Properties of Contemporary Bioactive Restorative Materials: Effect of Environmental pH. Oper Dent 2023;48:90-7.
  • 36. Ramos NBP, Felizardo KR, Berger SB, Guiraldo RD, Lopes MB. Comparative study of physical-chemical properties of bioactive glass ionomer cement. Braz Dent J 2024;35:e245728.
  • 37. Maaly T, El Sayed S. Evaluation of Flexural and Compressive Strength for A Bioactive Restorative Material, Nanocomposite and Resin Modified Glass Ionomer: A Comparative Study. Egypt Dent J 2019;65:3637-41.
  • 38. ISO 4049:2019. Dentistry-Polymer-based restorative materials. International Organization for Standardization, Geneva, Switzerland
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Diş Malzemeleri ve Ekipmanı, Endodonti, Restoratif Diş Tedavisi
Bölüm Research Article
Yazarlar

Ecehan Hazar 0000-0002-7610-9622

Yayımlanma Tarihi 29 Eylül 2025
Gönderilme Tarihi 20 Mayıs 2025
Kabul Tarihi 22 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 3

Kaynak Göster

Vancouver Hazar E. Mechanical Properties of Different Dentin Replacement Materials: A Comparative Study of Biaxial Flexural Strength and Microhardness. ADO Klinik Bilimler Dergisi. 2025;14(3):206-14.