Derleme
BibTex RIS Kaynak Göster

Yapay Zekâ ve Endüstri 4.0 İlişkisinin Siber Güvenlik Perspektifinden Analizi

Yıl 2021, Cilt: 8 Sayı: 1, 123 - 143, 30.06.2021
https://doi.org/10.30803/adusobed.936426

Öz

Günümüzde, iş performansının etkinliği ve verimliliği, dijital rekabet faktörlerine ve akıllı yönetim bilişim sistemleriyle (YBS) dijitalleşme ışığında kurumsal kabiliyetleri dönüştürme yeteneğine ve endüstri 4.0'da yapay zekâ (YZ) kullanımına bağlı hale gelmiştir. Nesnelerin İnterneti üzerinden siber-fiziksel sistemler, değer zincirinin katılımcıları tarafından hem dahili olarak hem de kurumsal hizmetler genelinde gerçek zamanlı olarak etkileşimde bulunmak ve iş birliği yapmak durumundadır. Bunu sağlayan Endüstri 4.0'ın tasarım ilkeleri olan “birlikte çalışabilirlik”, “bilgi şeffaflığı”, “teknik yardım” ve “YZ yardımıyla merkezi olmayan kararlar” dır. Bu tasarım ilkelerinin her biri, çevik YZ uygulamalarından faydalanan kötü niyetli saldırganlar tarafından kullanılabilecek yeni saldırı alanları oluşturma potansiyeli sunmaktadır. Bu zafiyetlerden çıkan zorluklar, kolayca azaltılabilen veya göz ardı edilebilen basit tehditlerden, tüm sistemi kullanılamaz hale getirebilecek APT tehditlerine kadar değişen bir yelpazededir. Bu çalışmada, Endüstri 4.0 çağında küresel iş operasyonları için otomatikleştirilmiş sistemlerin gelişen rolü, YZ ve siber güvenlik perspektiflerinden değerlendirilmektedir. İddiamız, Endüstri 4.0'da kullanılan YZ modellerinin, bilgisayar korsanı makine öğrenimiyle mücadele etmek, gizliliği korumak ve derin öğrenme sürecini güvenli hale getirmek gibi amaçlar için belirli IoT siber güvenlik savunma ve koruma teknolojilerine ihtiyaç duyacağı noktasındadır.

Kaynakça

  • ABELE, E., CHRYSSOLOURİS, G., SİHN, W., METTERNİCH, J., ELMARAGHY, H., SELİGER, G., SİVARD, G., ELMARAGHY, W., HUMMEL, V., TİSCH, M., SEİFERMANN, S. (2017). Learning factories for future oriented research and education in manufacturing, CIRP Annals, 66(2) 803–826.
  • ANTON A, EİROLA E, BJORK K, MİCHE Y, JOHNSON H, and LENDASSE A (2017) Brute-force Missing Data Extreme Learning Machine for Predicting Huntington’s Disease, PETRA’17 (Proceedings of the 10th International Conference on Pervasive Technologies Related to Assistive Environments), Pages 189-192.
  • ARESOVA P., SOUKAL I., SVOBODOVA L., HEDVİCAKOVA M., JAVANMARDİ E., SELAMAT A., KREJCAR O., (2018) Consequences of Industry 4.0 in business and economics, Economics, 6, 46, 1–4, doi: 10.3390/
  • ATEŞ E. C., BOSTANCİ E., GUZEL M. S. (2020) Security Evaluation of Industry 4.0: Understanding Industry 4.0 on the Basis of Crime, Big Data, Internet of Thing (IoT) and Cyber Physical Systems, Güvenlik Bilimleri Dergisi 9 (Special Issue) : 29-50 https://www.researchgate.net/publication/ 339642922
  • CHİNA Daily. (2018) AI seen as driving force in industry 4.0. Retrieved from http://www.chinadaily.com.cn/a/201804/27/WS5ae29547a3105cdcf651ae80.html
  • COX, C. (2018) Autonomous exchanges: Human-machine autonomy in the automated media economy (Doctoral dissertation). Department of Moving Image Studies, Georgia State University, Atlanta, GA, USA.
  • DAWEİ, Liu, HU Anzi, and Lİ Gen (2018) Big Data Technology: Application and Cases. In Handbook of Blockchain, Digital Finance, and Inclusion. Amsterdam: Elsevier Inc., pp. 65–82.
  • DOİNEA M. and POCATİLU P., (2014) Security of Heterogeneous Content in Cloud Based Library Information Systems Using an Ontology Based Approach, Informatica Economică, vol. 18, no. 4. 101-110.
  • DONALDSON, L. (1976). Woodward, technology, organizational structure and performance - A critique of the universal generalization. Journal of Management Studies, 13(3), 255-273. https://doi.org/10.1111/j.1467-6486.1976.tb00902.x
  • ECKERMAN, M., (2018) Robots Replacıng Humans – These 6 Industrıes Started Already, GFL, https://www.globalfemaleleaders.com/blog/robots-replacing-humans/
  • ELBESTAWİ, M., CENTEA D., SİNGH, I., WANYAMA, T. (2018). SEPT Learning Factory for Industry 4.0 Education and Applied Research, Procedia Manufacturing, 23, 249–254
  • ENİSA, (2018) Good Practices for Security of Internet of Things in the context of Smart Manufacturing, https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot/at_download/fullReport
  • ENİSA, (2021) ENISA Good practices for IoT and Smart Infrastructures Tool, https://www.enisa.europa.eu/iot-tool
  • ETSI, (2020) Cyber Security for Consumer Internet of Things, ETSI EN 303 645 V2.1.1 (2020-06), https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.01.01_60/en_303645v020101p.pdf
  • FRALİCK, C., (2019) Artificial Intelligence in Cybersecurity Is Vulnerable, SC Media, https://www.scmagazine.com/home/opinion/artifical-intelligence-in-cybersecurity-is-vulnerable/
  • FREY, C. B., & OSBORNE, M. A. (2016) Technology at work v2.0: The future is not what it used to be. City GPS: Global Perspective & Solutions.
  • GİLCHRİST, A. (2016). Industry 4.0: The Industrial Internet of Things; Apress: Berkeley, CA, USA.
  • HANCOCK, P.A., Jagacinski, R.J., Parasuraman, R., Wickens, C.D., Wilson, G.F., Kaber, D.B. (2013). Human-automation interaction research: Past, present, and future. Ergon. Des., 21, 9–14.
  • HAYES, B., (2021) How Gamification, Artificial Intelligence, and Reinforcement Learning Will Revolutionize Cyber Skill Acquisition, Circadence Webinar, https://marketing.circadence.com/acton/media/36273/webinar-how-gamification-ai-will-revolutionize-cyber-skill-acquisition
  • HELMOLD M. (2019) Industry 4.0 and Artificial Intelligence (AI) in PM. In: Progress in Performance Management. Management for Professionals. Springer, Cham. https://doi.org/10.1007/978-3-030-20534-8_13
  • HERMANN, M., PENTEK, T., & OTTO, B. (2016). Design principles for industry 4.0 scenarios. Proceedings of the Hawaii International Conference on System Sciences, IEEE, Koloa, HI, USA, 49. https://doi.org/10.1109/HICSS.2016.488
  • HUİMİN, M., WU, X., YAN, L., HUANG, H., WU, H., XİONG, J., ZHANG, J. (2018). Strategic Plan of “Made in China 2025” and Its Implementation. In Analyzing the Impacts of Industry 4.0 in Modern Business Environments; IGI Global: Derry Township, PA, USA, Volume 23, pp. 1–23.
  • ISC2, (2020), Cybersecurity Professionals Stand Up to a Pandemic, Cybersecurıty Workforce Study, https://t.ly/PFoS
  • IUNO, (2021) IT security in Industry 4.0, https://iuno-projekt.de/
  • KAGERMANN H., (2014) Chancen von Industry 4.0 nutzen, [in:] Industry 4.0 in Produktion, Automatisierung und Logistik. Wiesbaden: Springer, pp. 603–14,.
  • KAUR A., CHOUDHARY D. (2017) Cyber Awareness Improvement Using Artificial Intelligence, International Journal For Technological Research In Engineering Volume 4, Issue 9
  • KUMAR S., SUHAİB M., ASJAD (2020) Industry 4.0: Complex, Disruptive, But Inevitable Management and Production Engineering Review Volume 11 • Number 1 • March • pp. 43–51 DOI: 10.24425/mper.2020.132942
  • LANZA, G., NYHUİS, P,; ANSARİ, S.M., KUPRAT, T., LİEBRECHT, C. (2016). Befähigungs-und Einführungsstrategien für Industrie 4.0. ZWF Zeitschrift Wirtschaftlichen Fabrikbetrieb, 111, 76–79.
  • LEE, J., DAVARİ, H., SİNGH, J., & PANDHARE, V. (2018). Industrial artificial intelligence for industry 4.0-based manufacturing systems. Manufacturing Letters, 18, 20-23. https://doi.org/10.1016/j.mfglet.2018.09.002
  • LEVİN, Richard B., PETER Waltz, and HOLLY LaCount (2018) Betting Blockchain Will Change Everything-SEC and CFTC Regulation of Blockchain Technology. In Handbook of Blockchain, Digital Finance, and Inclusion. Amsterdam: Elsevier Inc., pp. 187–212
  • LİAO, Y., DESCHAMPS, F., de Freitas Rocha LOURES, E., RAMOS, L.F.P. (2017). Past, present and future of Industry 4.0—A systematic literature review and research agenda proposal. Int. J. Prod. Res., 55, 3609–3629.
  • LİCHTBLAU, K., STİCH, V., BERTENRATH, R., BLUM, M., BLEİDER, M., MİLLACK, A., SCHMİTT, K., SCHMİTZ, E., SCHROTER, M. (2015). Industrie 4.0 Readiness. Impuls-Stiftung des VDMA Aachen-Köln, 52, 1–77.
  • LOEBBECKE, C., & PİCOT, A. (2015). Reflections on societal and business model transformation arising from digitization and big data analytics: A research agenda. Journal of Strategic Information Systems, 24(3), 149-157. https://doi.org/10.1016/j.jsis.2015.08.002
  • LYNCH, S. (2017). Andrew Ng: Why AI is the new electricity. Retrieved from https://www.gsb.stanford.edu/insights/andrew-ng-why-ai-new-electricity
  • MCCORDUCK, P. (2009). Machines who think: A personal inquiry into the history and prospects of artificial intelligence. Wellesley, MA, USA: AK Peters/CRC Press.
  • MOLOİ, David MHLANGAAND Tankiso. (2020) COVID-19 and the Digital Transformation of Education: What we are learning in South Africa. Preprints
  • MORGAN, S., (2019) Cybersecurity Talent Crunch To Create 3.5 Million Unfilled Jobs Globally By 2021, Cybercrime Magazine, https://cybersecurityventures.com/jobs/
  • MOSUMBUKA M., GROBLER M., WATSON B., (2018) Towards an Artificial Intelligence Framework to Actively Defend Cyberspace, 17th European Conference on Cyber Warfare and Security (ECCWS), Aslo, Norway
  • MUNİR, S., STANKOVİC, J.A., LİANG, C.J.M., LİN, S. (2013). Cyber Physical System Challenges for Human-in-the-Loop Control. In Proceedings of the Presented as part of the 8th International Workshop on Feedback Computing, USENIX, San Jose, CA, USA, 24–28 June 2013; Volume 4, pp. 1–4.
  • NAGY J., OL´AH J., ERDEİ E., M´AT´E D., POPP J., (2018) The role and impact of Industry 4.0 and the Internet of Things on the business strategy of the value chain – the case of Hungary, Sustainability, 10, 3491, doi: 10.3390/su10103491.
  • NEE, A.Y., ONG, S.K. (2013). Virtual and Augmented Reality Applications in Manufacturing. IFAC Proc. Vol. 2013, 46, 15–26.
  • NELSON Blaine, CHRİSTOS Dimitrakakis, and ELAİNE Shi (2013) Summary/Overview for Artificial Intelligence and Security, AISec ’13 (Proceedings of the 2013 ACM SIGSAC conference on computer and communications security), Pages 1483- 1484.
  • NIST, (2019) Considerations for Managing Internet of Things (IoT) Cybersecurity and Privacy Risks, https://nvlpubs.nist.gov/nistpubs/ir/2018/NIST.IR.8228-draft.pdf
  • OBİTKO, M., Jirkovský, V. (2015) Big Data Semantics in Industry 4.0. In Industrial Applications of Holonic and Multi-Agent Systems; Springer International Publishing: New York, NY, USA, pp. 217–229.
  • OZİLİ, Peterson K. (2018) Impact of digital finance on financial inclusion and stability. Borsa Istanbul Review 18: 329–40.
  • PATEL Kayur (2010) Lowering the Barrier to Applying Machine Learning, CHI EA’10 (CHI’10 Extended Abstracts on Human Factors in Computing Systems), Pages 2907-2910.
  • PEREİRA, A., ROMERO, F. (2017). A review of the meanings and the implications of the Industry 4.0 concept. Procedia Manuf., 13, 1206–1214
  • ROİTBERG, A., PERZYLO, A., SOMANİ, N., GİULİANİ, M., RİCKERT, M., KNOLL, A. (2014). Human activity recognition in the context of industrial human-robot interaction. In Proceedings of the Signal and Information Processing Association Annual Summit and Conference (APSIPA), Siem Reap, Cambodia, 9–12 December 2014; Volume 10, pp. 1–10.
  • SAPOVADİA, Vrajlal. (2018) Financial Inclusion, Digital Currency, and Mobile Technology. In Handbook of Blockchain, Digital Finance, and Inclusion. Amsterdam: Elsevier Inc., pp. 361–85.
  • SCHMİDT, R., MÖHRİNG, M., HÄRTİNG, R.C., REİCHSTEİN, C., NEUMAİER, P., JOZİNOVİ´c, P. (2015). Industry 4.0-potentials for creating smart products: Empirical research results. In International Conference on Business Information Systems; Springer: Cham, Germany, Volume 12, pp. 16–27.
  • SCHUMACHER, A., EROL, S., SİHN, W. (2016). A maturity model for assessing industry 4.0 readiness and maturity of manufacturing enterprises. Procedia CIRP, 52, 161–166.
  • SCHWAB, K. (2015). The fourth industrial revolution: What it means and what to respond. Foreign Affairs. Retrieved from https://www.foreignaffairs.com/articles/2015-12-12/fourth-industrial-revolution
  • SCHWAB, Klaus. (2019). Davos Manifesto 2020: The Universal Purpose of a Company in the Fourth Industrial Revolution, World Economic Forum. Available online: http://www.worldacademy.org/files/global_leadership/papers/Davos_Manifesto_2020.pdf
  • SHUBİN, T., ZHİ, P. (2018). “Made in China 2025” and “Industrie 4.0”—In Motion Together. In The Internet of Things; Springer: New York, NY, USA, pp. 87–113.
  • SİMON, H. A. (1995). Artificial intelligence: An empirical science. Artificial Intelligence, 77(1), 95-127. https://doi.org/10.1016/0004-3702(95)00039-h
  • STONE, P., BROOKS, R., BRYNJOLFSSON, E., CALO, R., ETZİONİ, O., HAGER, G., et al. (2016). Artificial intelligence and life in 2030. Retrieved from https://ai100.stanford.edu/sites/default/files/ai_100_report_0831fnl.pdf
  • SÜZEN, A.A. (2020). A Risk-Assessment of Cyber Attacks and Defense Strategies in Industry 4.0 Ecosystem. International Journal of Computer Network and Information Security, 12, 1-12.
  • SWEENEY, L. (2003). That's AI? A history and critique of the field (Technical Report CMU-CS-03-106). Carnegie Mellon University, School of Computer Science, Pittsburgh, PA, USA. Retrieved from https://dataprivacylab.org/projects/thatsai/paper.pdf
  • TİSCH, M., METTERNİCH, J. (2017). Potentials and limits of learning factories in research, innovation transfer, education, and training, Procedia Manufacturing, 9, 89–96.
  • TOWNSEND, M., SURANE, J., ORR, E., & CANNON, C. (2017). America's "retail apocalypse" is really just beginning. Retrieved from https://www.bloomberg.com/graphics/2017-retail-debt/
  • TRENDMİCRO, (2021). Turning The Tide, TrendMicro Security Predictions for 2021, TrendMicro Reports, https://www.trendmicro.com/vinfo/us/security/research-and-analysis/predictions/2021
  • TRİEU, Khoa and YANG, Yi, (2018). Artificial Intelligence-Based Password Brute Force Attacks, MWAIS 2018 Proceedings. 39. http://aisel.aisnet.org/mwais2018/39
  • TROTTA D., GARENGO P., (2018) Industry 4.0 key research topics: A bibliometric review, 7th International Conference on Industrial Technology and Management, pp. 113–117.
  • UPWORK, (2021) Hire the best Natural Language Processing specialists, https://www.upwork.com/hire/natural-language-processing-freelancers/
  • WANG, S., WAN, J., ZHANG, D., Lİ, D., ZHANG, C. (2016). Towards smart factory for industry 4.0: A self-organized multi-agent system with big data based feedback and coordination. Comput. Netw., 101, 158–168.
  • WOODWARD, J. (1965). Industrial organization: Theory and practice. London, UK: Oxford University Press.
  • XU, L.D., XU, E.L., Lİ, L. (2018). Industry 4.0: State of the art and future trends. Int. J. Prod. Res., 56, 2941–2962.
  • ZHOU, J., LEPPANEN, T., HARJULA, E., YLİANTTİLA, M., OJALA, T., YU, C., JİN, H., YANG, L.T. (2014). Cloudthings: A common architecture for integrating the internet of things with cloud computing. In Proceedings of the Computer Supported Cooperative Work in Design (CSCWD), Hsinchu, Taiwan, 21–23 May 2014; pp. 651–657.
  • ZOTA R. D., PETRE I. A., (2014) An Overview of the Most Important Reference Architectures for Cloud Computing, Informatica Economică, vol. 18, no. 4, 26-39.
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Ahmet Efe 0000-0002-2691-7517

Yayımlanma Tarihi 30 Haziran 2021
Kabul Tarihi 15 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 1

Kaynak Göster

APA Efe, A. (2021). Yapay Zekâ ve Endüstri 4.0 İlişkisinin Siber Güvenlik Perspektifinden Analizi. Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 8(1), 123-143. https://doi.org/10.30803/adusobed.936426
AMA Efe A. Yapay Zekâ ve Endüstri 4.0 İlişkisinin Siber Güvenlik Perspektifinden Analizi. ADUSOBIED. Haziran 2021;8(1):123-143. doi:10.30803/adusobed.936426
Chicago Efe, Ahmet. “Yapay Zekâ Ve Endüstri 4.0 İlişkisinin Siber Güvenlik Perspektifinden Analizi”. Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 8, sy. 1 (Haziran 2021): 123-43. https://doi.org/10.30803/adusobed.936426.
EndNote Efe A (01 Haziran 2021) Yapay Zekâ ve Endüstri 4.0 İlişkisinin Siber Güvenlik Perspektifinden Analizi. Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 8 1 123–143.
IEEE A. Efe, “Yapay Zekâ ve Endüstri 4.0 İlişkisinin Siber Güvenlik Perspektifinden Analizi”, ADUSOBIED, c. 8, sy. 1, ss. 123–143, 2021, doi: 10.30803/adusobed.936426.
ISNAD Efe, Ahmet. “Yapay Zekâ Ve Endüstri 4.0 İlişkisinin Siber Güvenlik Perspektifinden Analizi”. Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 8/1 (Haziran 2021), 123-143. https://doi.org/10.30803/adusobed.936426.
JAMA Efe A. Yapay Zekâ ve Endüstri 4.0 İlişkisinin Siber Güvenlik Perspektifinden Analizi. ADUSOBIED. 2021;8:123–143.
MLA Efe, Ahmet. “Yapay Zekâ Ve Endüstri 4.0 İlişkisinin Siber Güvenlik Perspektifinden Analizi”. Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, c. 8, sy. 1, 2021, ss. 123-4, doi:10.30803/adusobed.936426.
Vancouver Efe A. Yapay Zekâ ve Endüstri 4.0 İlişkisinin Siber Güvenlik Perspektifinden Analizi. ADUSOBIED. 2021;8(1):123-4.

Adnan Menderes University Institute of Social Sciences Journal’s main purpose is to contribute to the social sciences at national and international level, to create a respected academic ground where scientists working in dis field can share the unique and remarkable works.