Araştırma Makalesi
BibTex RIS Kaynak Göster

The Relationship Land Surface Temperature and Blue-Green Infrastructure: The Case of Karsiyaka

Yıl 2023, , 91 - 98, 30.06.2023
https://doi.org/10.25308/aduziraat.1214763

Öz

Blue green infrastructure (BGI) reduces the high temperatures associated with climate change and the urban heat island effects. This study aimed to determine the effect of BGI on land surface temperature (LST) in Karsiyaka district, İzmir. The surface temperatures of the study area for the summer months of 2022 (June, July, and August) were calculated with the LST index using Landsat 8 satellite images. The associated heat island effect was obtained with the heat field intensity index (HFI). The cooling effects of the 100, 200 and 300 meters buffer zones of sample BGI areas that have different characteristics were calculated using the park cooling intensity. Results determined that high-temperature areas are predominant throughout the city. The maximum average surface temperature is calculated at 46.66 °C, and minimum average surface temperature is calculated at 29.59 °C in Karsiyaka for summer months in Karsiyaka . The highest cooling effect was calculated as 1.16 °C, 1.42 °C, 2.17 °C in the 100 m, 200 m, and 300 m buffer zones, respectively, with the lowest values 0.23 °C, 0.14 °C and 0.17 °C. Blue green infrastructure units with dense canopy cover created high cooling effects. It was determined that among the sample units open spaces with little or no vegetation (sample 2 and 7) did not have cooling.

Kaynakça

  • Akyürek Ö (2020) Termal Uzaktan Algılama Görüntüleri ile Yüzey Sıcaklıklarının Belirlenmesi: Kocaeli Örneği. Doğal Afetler ve Çevre Dergisi 90:262 377-390.
  • Berberoğlu S, Çilek A, Ünlükaplan Y (2019) İklim Değişikliğine Dirençli Kentler için Bir Çerçeve: Yeşil Odaklı Uyarlama Kılavuzu. H. Alphan ve Ç. Coşkun Hepcan (Der.) PARDUS Ankara 168.
  • Blachowski J, Hajnrych M (2021) Assessing the Cooling Effect of Four Urban Parks of Different Sizes in a Temperate Continental Climate Zone: Wroclaw, Forests 12:8.
  • Dai Z, Guldmann J. M, Hu Y (2018). Spatial Regression Models of Park And Land-Use Impacts on the UHI in Central Beijing. Sci. Total Environ , 626: 1136-1147.
  • Dong J, Lin M, Zuo J, Lin T, Liu J, Sun C, Luo (2020) Quantitative Study on the Cooling Effect of Green Roofs in A High-Density Urban Area-A Case Study of Xiamen, China. Journal of Cleaner Production 255.
  • Du H, Cai W, Xu Y, Wang Z, Wang Y, Cai Y (2017) Quantifying the Cool Island Effects of Urban Green Spaces Using RS Data. Urban Forestry and Urban Greening, 27: 24-31.
  • Feyisa G L, Dons K, Meilby H (2014) Efficiency of Parks in Mitigating Urban Heat Island Effect: An Example from Addis Ababa. LAUP, 123: 87-95.
  • Gao G, Chang M, Zhao Z (2019) Research on Temporal and Spatial Variation of Heat Island Effect in Xi’an, China. Appl. Ecol. Environ. Res. 17:1, 231-244.
  • Hanif A, Nasar-U-Minallah M, Zia S, Ashraf I (2022) Mapping and Analyzing the Park Cooling Intensity in Mitigation of Urban Heat Island Effect in Lahore, Pakistan. Korean Journal of Remote Sensing 38:1 127-137.
  • H-García D, A-Díaz J (2022) Modeling The Surface Urban Heat Island (SUHI) to Study of Its Relationship with Variations in the Thermal Field and with The Indices of Land Use in the Metropolitan Area of Granada (Spain). Sustainable Cities and Society, 87.
  • Howe D A, Hathaway J M, Ellis K N, Mason L R (2017) Spatial and Temporal Variability of Air Temperature Across Urban Neighborhoods with Varying Amounts of Tree Canopy. Urban Forestry & Urban Greening, 27: 109-116.
  • IPCC (2022) Climate Change 2022 Mitigation of Climate Change, Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Geneva: IPCC.
  • Kumar B P, Babu K R, Anusha B N, Rajasekhar M (2022) Geo-Environmental Monitoring and Assessment of Land Degradation and Desertification in the Semi-Arid Regions Using Landsat 8 OLI/TIRS, LST, and NDVI Approach. Environmental Challenges 8.
  • Li H, Wang G, Tian G, Jombach S (2020) Mapping and Analyzing the Park Cooling Effect on UHI in an Expanding City: A Case Study in Zhengzhou City, China. Land 9:2.
  • Li Y, Xia M, Ma Q, Zhou R, Liu D, Huang L (2022) Identifying the Influencing Factors of Cooling Effect of Urban BI Using The Geodetector Model. Remote Sensing 14:21.
  • Lin W, Yu T, Chang X, Wu W, Zhang Y (2015) Calculating Cooling Extents of Green Parks Using Remote Sensing: Method and Test. LAUP 134: 66-75.
  • Liu Y, Peng J, Wang Y (2018) Efficiency of Landscape Metrics Characterizing Urban Land Surface Temperature. Landscape and Urban Planning 180: 36-53.
  • MacLachlan A, Biggs E, Roberts G, Boruff B (2021) Sustainable City Planning: A Data-Driven Approach for Mitigating Urban Heat. Front. Built Environ. 6:519599.
  • Marando F, Heris M P, Zulian G, Udías A, Mentaschi L, Chrysoulakis N, Parastatidis D, Maes J (2022) Urban Heat Island Mitigation by Green Infrastructure in European Functional Urban Areas. Sustainable Cities and Society 77.
  • MGM (2022) Meteoroloji Genel Müdürlüğü istatistikleri. https://www.mgm.gov.tr/ veridegerlendirme/ il-ve-ilceler-istatistik.aspx? m=IZMIR (Erişim tarihi 10/11/2022).
  • O’Malley C, Piroozfar P, Farr E R P, Pomponi F (2015) Urban Heat Island Mitigating Strategies: A Case-Based Comparative Analysis. Sustain. Cities Soc. 19: 222-235.
  • Piracha A, Chaudhary M T (2022) Urban Air Pollution, Urban Heat Island and Human Health: A Review of The Literature. Sustainability (Switzerland) 14:15.
  • Pramanik S, Punia M (2019) Assessment of Green Space Cooling Effects in Dense Urban Landscape: A Case Study Delhi, India. Modeling Earth Systems and Environment 5:3, 867-884.
  • Şentürk Y, Mert K (2022) Kentsel Soğuk Alan Soğutma Kapasitesinin Araştırılması, İzmir Örneği. Çevre Şehir ve İklim Dergisi 1:1 106-126.
  • Sun Y, Gao C, Li J, Gao M, Ma R (2021a). Assessing the Cooling Efficiency of Urban Parks Using Data Envelopment Analysis and Remote Sensing Data. Theoretical and Applied Climatology 145:3-4 903-916.
  • Sun Y, Gao C, Li J, Gao M, Ma R (2021b) Assessing the Cooling Efficiency of Urban Parks Using Data Envelopment Analysis and Remote Sensing Data. Theoretical and Applied Climatology 145:3-4 903-916.
  • Syahira N, Harmay M, Kim D, Choi M (2021) Urban Heat Island Associated with Land Use/Land Cover and Climate Variations in Melbourne, Australia. Sustain. Cities Soc. 69.
  • Ünal M (2022), Kentsel Yüzey Isı Adalarının Belirlenmesinde Yer Yüzey Sıcaklık Verilerinin Kullanımı. European Journal of Science and Technology 33: 213-222.
  • Wang C, Ren Z, Dong Y, Zhang P, Guo Y, Wang W, Bao G (2022) Efficient Cooling of Cities at Global Scale Using Urban Green Space to Mitigate Urban Heat Island Effects in Different Climatic Regions. Urban Forestry and Urban Greening, 74.
  • WHO (2022) Heatwaves. https://www.who.int/healthtopics/heatwaves#tab=tab_WHO (Erişim tarihi: 15.10.2022).
  • WMO (2022) World Meteorological Organization Provisional State of The Global Climate 2022. https://library.wmo.int/index.php?lvl=notice_display&id=22156#.Y3dta XZBw2x (Erişim tarihi: 15.10.2022).
  • Yang G, Yu Z, Jørgensen G, Vejre H (2020) How Can Urban Blue-Green Space Be Planned For Climate Adaption in High-Latitude Cities? A Seasonal Perspective. Sustain. Cities Soc., 53.
  • Yao L, Li T, Xu M, Xu Y (2020) How The Landscape Features of Urban Green Space Impact Seasonal Land Surface Temperatures at A City-Block-Scale: An Urban Heat Island Study in Beijing, China. Urban Forestry and Urban Greening 52.
  • Yao X, Yu K, Zeng X, Lin Y, Ye B, Shen X, Liu J (2022) How Can Urban Parks Be Planned to Mitigate Urban Heat Island Effect in “Furnace Cities”? An Accumulation Perspective. Journal of Cleaner Production 330.
  • Yüksel A T (2022) Kentsel Yeşil Alanlarda Ekosistem Servislerinin Hesaplanması: Karşıyaka Örneği. Yüksek lisans tezi, Ege Üniversitesi, İzmir.
  • Zhang Y, Liu Y, Zhang Y, Liu Y, Zhang G, Chen Y (2018) On The Spatial Relationship Between Ecosystem Services and Urbanization: A Case Study in Wuhan, China. Science of The Total Environment 637:638 780-790

Kentsel Yüzey Sıcaklığı ve Mavi-Yeşil Altyapı İlişkisi: Karşıyaka Örneği

Yıl 2023, , 91 - 98, 30.06.2023
https://doi.org/10.25308/aduziraat.1214763

Öz

Mavi-yeşil altyapı (MYA) iklim değişikliğine bağlı yüksek sıcaklıkları ve bu sıcaklıkların neden olduğu kentsel ısı adası etkilerini azaltmaktadır. Bu araştırmada İzmir kenti Karşıyaka ilçesindeki MYA’ nın arazi yüzey sıcaklığı (AYS) üzerindeki etkisinin belirlenmesi amaçlanmıştır. Bu kapsamda Landsat 8 uydu görüntüleri kullanılarak çalışma alanının 2022 yaz aylarına ait (Haziran, Temmuz, Ağustos) yüzey sıcaklıkları AYS indeksi ve buna bağlı ısı adası etkisi ise ısı alanı yoğunluk indeksi (HFI) kullanılarak hesaplanmıştır. Karşıyaka MYA birimleri arasından belirlenen farklı özelliklere sahip örnek alanların 100, 200 ve 300 metre uzaklıktaki tampon bölgelerindeki soğutma etkileri park cooling intensity (PCI) indeksi kullanılarak hesaplanmıştır. Bulgular Karşıyaka’daki yaz aylarına ait ortalama yüzey sıcaklıklarının maksimum 46,66 °C, minimum 29,59 °C ve kent genelinde yüksek ısı alanı yoğunluk indeksinin fazla olduğunu göstermektedir. Örnek MYA birimleri arasında en yüksek soğutma etkisi 100, 200 ve 300 metre tampon bölgelerde sırayla 1,16 °C, 1,42 °C, 2,17 °C en düşük değerler 0,23 °C, 0,14 °C ve 0,17 °C olarak hesaplanmıştır. Yüksek soğutma etkilerini yoğun taç örtüsüne sahip MYA birimleri oluşturmuştur. Örnek birimler arasında bitki örtüsü zayıf olan 2 ve 7 nolu açık alanların soğutma etkisi olmadığı belirlenmiştir.

Kaynakça

  • Akyürek Ö (2020) Termal Uzaktan Algılama Görüntüleri ile Yüzey Sıcaklıklarının Belirlenmesi: Kocaeli Örneği. Doğal Afetler ve Çevre Dergisi 90:262 377-390.
  • Berberoğlu S, Çilek A, Ünlükaplan Y (2019) İklim Değişikliğine Dirençli Kentler için Bir Çerçeve: Yeşil Odaklı Uyarlama Kılavuzu. H. Alphan ve Ç. Coşkun Hepcan (Der.) PARDUS Ankara 168.
  • Blachowski J, Hajnrych M (2021) Assessing the Cooling Effect of Four Urban Parks of Different Sizes in a Temperate Continental Climate Zone: Wroclaw, Forests 12:8.
  • Dai Z, Guldmann J. M, Hu Y (2018). Spatial Regression Models of Park And Land-Use Impacts on the UHI in Central Beijing. Sci. Total Environ , 626: 1136-1147.
  • Dong J, Lin M, Zuo J, Lin T, Liu J, Sun C, Luo (2020) Quantitative Study on the Cooling Effect of Green Roofs in A High-Density Urban Area-A Case Study of Xiamen, China. Journal of Cleaner Production 255.
  • Du H, Cai W, Xu Y, Wang Z, Wang Y, Cai Y (2017) Quantifying the Cool Island Effects of Urban Green Spaces Using RS Data. Urban Forestry and Urban Greening, 27: 24-31.
  • Feyisa G L, Dons K, Meilby H (2014) Efficiency of Parks in Mitigating Urban Heat Island Effect: An Example from Addis Ababa. LAUP, 123: 87-95.
  • Gao G, Chang M, Zhao Z (2019) Research on Temporal and Spatial Variation of Heat Island Effect in Xi’an, China. Appl. Ecol. Environ. Res. 17:1, 231-244.
  • Hanif A, Nasar-U-Minallah M, Zia S, Ashraf I (2022) Mapping and Analyzing the Park Cooling Intensity in Mitigation of Urban Heat Island Effect in Lahore, Pakistan. Korean Journal of Remote Sensing 38:1 127-137.
  • H-García D, A-Díaz J (2022) Modeling The Surface Urban Heat Island (SUHI) to Study of Its Relationship with Variations in the Thermal Field and with The Indices of Land Use in the Metropolitan Area of Granada (Spain). Sustainable Cities and Society, 87.
  • Howe D A, Hathaway J M, Ellis K N, Mason L R (2017) Spatial and Temporal Variability of Air Temperature Across Urban Neighborhoods with Varying Amounts of Tree Canopy. Urban Forestry & Urban Greening, 27: 109-116.
  • IPCC (2022) Climate Change 2022 Mitigation of Climate Change, Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Geneva: IPCC.
  • Kumar B P, Babu K R, Anusha B N, Rajasekhar M (2022) Geo-Environmental Monitoring and Assessment of Land Degradation and Desertification in the Semi-Arid Regions Using Landsat 8 OLI/TIRS, LST, and NDVI Approach. Environmental Challenges 8.
  • Li H, Wang G, Tian G, Jombach S (2020) Mapping and Analyzing the Park Cooling Effect on UHI in an Expanding City: A Case Study in Zhengzhou City, China. Land 9:2.
  • Li Y, Xia M, Ma Q, Zhou R, Liu D, Huang L (2022) Identifying the Influencing Factors of Cooling Effect of Urban BI Using The Geodetector Model. Remote Sensing 14:21.
  • Lin W, Yu T, Chang X, Wu W, Zhang Y (2015) Calculating Cooling Extents of Green Parks Using Remote Sensing: Method and Test. LAUP 134: 66-75.
  • Liu Y, Peng J, Wang Y (2018) Efficiency of Landscape Metrics Characterizing Urban Land Surface Temperature. Landscape and Urban Planning 180: 36-53.
  • MacLachlan A, Biggs E, Roberts G, Boruff B (2021) Sustainable City Planning: A Data-Driven Approach for Mitigating Urban Heat. Front. Built Environ. 6:519599.
  • Marando F, Heris M P, Zulian G, Udías A, Mentaschi L, Chrysoulakis N, Parastatidis D, Maes J (2022) Urban Heat Island Mitigation by Green Infrastructure in European Functional Urban Areas. Sustainable Cities and Society 77.
  • MGM (2022) Meteoroloji Genel Müdürlüğü istatistikleri. https://www.mgm.gov.tr/ veridegerlendirme/ il-ve-ilceler-istatistik.aspx? m=IZMIR (Erişim tarihi 10/11/2022).
  • O’Malley C, Piroozfar P, Farr E R P, Pomponi F (2015) Urban Heat Island Mitigating Strategies: A Case-Based Comparative Analysis. Sustain. Cities Soc. 19: 222-235.
  • Piracha A, Chaudhary M T (2022) Urban Air Pollution, Urban Heat Island and Human Health: A Review of The Literature. Sustainability (Switzerland) 14:15.
  • Pramanik S, Punia M (2019) Assessment of Green Space Cooling Effects in Dense Urban Landscape: A Case Study Delhi, India. Modeling Earth Systems and Environment 5:3, 867-884.
  • Şentürk Y, Mert K (2022) Kentsel Soğuk Alan Soğutma Kapasitesinin Araştırılması, İzmir Örneği. Çevre Şehir ve İklim Dergisi 1:1 106-126.
  • Sun Y, Gao C, Li J, Gao M, Ma R (2021a). Assessing the Cooling Efficiency of Urban Parks Using Data Envelopment Analysis and Remote Sensing Data. Theoretical and Applied Climatology 145:3-4 903-916.
  • Sun Y, Gao C, Li J, Gao M, Ma R (2021b) Assessing the Cooling Efficiency of Urban Parks Using Data Envelopment Analysis and Remote Sensing Data. Theoretical and Applied Climatology 145:3-4 903-916.
  • Syahira N, Harmay M, Kim D, Choi M (2021) Urban Heat Island Associated with Land Use/Land Cover and Climate Variations in Melbourne, Australia. Sustain. Cities Soc. 69.
  • Ünal M (2022), Kentsel Yüzey Isı Adalarının Belirlenmesinde Yer Yüzey Sıcaklık Verilerinin Kullanımı. European Journal of Science and Technology 33: 213-222.
  • Wang C, Ren Z, Dong Y, Zhang P, Guo Y, Wang W, Bao G (2022) Efficient Cooling of Cities at Global Scale Using Urban Green Space to Mitigate Urban Heat Island Effects in Different Climatic Regions. Urban Forestry and Urban Greening, 74.
  • WHO (2022) Heatwaves. https://www.who.int/healthtopics/heatwaves#tab=tab_WHO (Erişim tarihi: 15.10.2022).
  • WMO (2022) World Meteorological Organization Provisional State of The Global Climate 2022. https://library.wmo.int/index.php?lvl=notice_display&id=22156#.Y3dta XZBw2x (Erişim tarihi: 15.10.2022).
  • Yang G, Yu Z, Jørgensen G, Vejre H (2020) How Can Urban Blue-Green Space Be Planned For Climate Adaption in High-Latitude Cities? A Seasonal Perspective. Sustain. Cities Soc., 53.
  • Yao L, Li T, Xu M, Xu Y (2020) How The Landscape Features of Urban Green Space Impact Seasonal Land Surface Temperatures at A City-Block-Scale: An Urban Heat Island Study in Beijing, China. Urban Forestry and Urban Greening 52.
  • Yao X, Yu K, Zeng X, Lin Y, Ye B, Shen X, Liu J (2022) How Can Urban Parks Be Planned to Mitigate Urban Heat Island Effect in “Furnace Cities”? An Accumulation Perspective. Journal of Cleaner Production 330.
  • Yüksel A T (2022) Kentsel Yeşil Alanlarda Ekosistem Servislerinin Hesaplanması: Karşıyaka Örneği. Yüksek lisans tezi, Ege Üniversitesi, İzmir.
  • Zhang Y, Liu Y, Zhang Y, Liu Y, Zhang G, Chen Y (2018) On The Spatial Relationship Between Ecosystem Services and Urbanization: A Case Study in Wuhan, China. Science of The Total Environment 637:638 780-790
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği (Diğer)
Bölüm Araştırma
Yazarlar

Ahsen Tuğçe Yüksel 0000-0002-5816-9162

Çiğdem Coskun Hepcan 0000-0002-8287-0506

Yayımlanma Tarihi 30 Haziran 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Yüksel, A. T., & Coskun Hepcan, Ç. (2023). Kentsel Yüzey Sıcaklığı ve Mavi-Yeşil Altyapı İlişkisi: Karşıyaka Örneği. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 20(1), 91-98. https://doi.org/10.25308/aduziraat.1214763
AMA Yüksel AT, Coskun Hepcan Ç. Kentsel Yüzey Sıcaklığı ve Mavi-Yeşil Altyapı İlişkisi: Karşıyaka Örneği. ADÜ ZİRAAT DERG. Haziran 2023;20(1):91-98. doi:10.25308/aduziraat.1214763
Chicago Yüksel, Ahsen Tuğçe, ve Çiğdem Coskun Hepcan. “Kentsel Yüzey Sıcaklığı Ve Mavi-Yeşil Altyapı İlişkisi: Karşıyaka Örneği”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 20, sy. 1 (Haziran 2023): 91-98. https://doi.org/10.25308/aduziraat.1214763.
EndNote Yüksel AT, Coskun Hepcan Ç (01 Haziran 2023) Kentsel Yüzey Sıcaklığı ve Mavi-Yeşil Altyapı İlişkisi: Karşıyaka Örneği. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 20 1 91–98.
IEEE A. T. Yüksel ve Ç. Coskun Hepcan, “Kentsel Yüzey Sıcaklığı ve Mavi-Yeşil Altyapı İlişkisi: Karşıyaka Örneği”, ADÜ ZİRAAT DERG, c. 20, sy. 1, ss. 91–98, 2023, doi: 10.25308/aduziraat.1214763.
ISNAD Yüksel, Ahsen Tuğçe - Coskun Hepcan, Çiğdem. “Kentsel Yüzey Sıcaklığı Ve Mavi-Yeşil Altyapı İlişkisi: Karşıyaka Örneği”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 20/1 (Haziran 2023), 91-98. https://doi.org/10.25308/aduziraat.1214763.
JAMA Yüksel AT, Coskun Hepcan Ç. Kentsel Yüzey Sıcaklığı ve Mavi-Yeşil Altyapı İlişkisi: Karşıyaka Örneği. ADÜ ZİRAAT DERG. 2023;20:91–98.
MLA Yüksel, Ahsen Tuğçe ve Çiğdem Coskun Hepcan. “Kentsel Yüzey Sıcaklığı Ve Mavi-Yeşil Altyapı İlişkisi: Karşıyaka Örneği”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, c. 20, sy. 1, 2023, ss. 91-98, doi:10.25308/aduziraat.1214763.
Vancouver Yüksel AT, Coskun Hepcan Ç. Kentsel Yüzey Sıcaklığı ve Mavi-Yeşil Altyapı İlişkisi: Karşıyaka Örneği. ADÜ ZİRAAT DERG. 2023;20(1):91-8.