Araştırma Makalesi
BibTex RIS Kaynak Göster

Application of Linear Polyacrylamide (LPA) Matrix in Cotton Chromatin Immunoprecipitation to Increase Sheared DNA Isolation Efficiency

Yıl 2023, , 99 - 107, 30.06.2023
https://doi.org/10.25308/aduziraat.1217507

Öz

Linear Polyacrylamide (LPA) is one of the polymers used as a yield-enhancing agent in DNA isolation of short and small molecular weight DNA molecules. The Chromatin immunoprecipitation (ChIP) method is widely used to elucidate DNA-Protein interactions. In ChIP, which consists of many successive steps, it is an important problem to experience losses due to the small size of the DNA fragments during the re-isolation of the sheared DNA fragments. In this study, the effect of using LPA matrix on the isolation of small molecular weight DNA fragments with higher efficiency in the ChIP method applied to cotton plant, which is a eukaryotic organism with high commercial value in our country and in the world, was investigated. Here, the ChIP method was adapted and applied till the DNA fragmentation process by ultrasonication and the isolation of the fragmented DNA molecules. In statistical analyzes, the concentrations of DNA isolates used at the beginning of the ChIP experiment and the DNA molecules mechanically fragmented by ultrasonication, measured by the Nanodrop, were compared in ng/µl. Experimental and statistical analyzes showed that LPA application increased DNA isolation efficiency by 0.59 times. Based on these data, it has been proven that using LPA in ChIP method with cotton will directly affect the success of the experiment and contribute to get much more efficient results. This study is unique in that it focuses on improving the yield of sheared DNA isolation in direct cotton plant-specific ChIP application.

Destekleyen Kurum

Aydın Adnan Menderes Üniversitesi

Proje Numarası

ADÜ-BAP-ZRF-16007

Teşekkür

This study was supported by Aydın Adnan Menderes University Scientific Research Projects Unit within the scope of the project coded ZRF-16007.

Kaynakça

  • Aparicio O, Geisberg J V, Sekinger E, Yang A, Moqtaderi Z., Struhl K (2005) Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Current protocols in molecular biology, Chapter 21 unit 3, 1-23.
  • Avcı M K (2015) Bacillus subtilis’e ait YvfI transkripsiyon faktörünün doğrudan kontrolü altında olan genlerin EMSA ve ChIP yöntemleri ile belirlenmesi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 200 s., İstanbul.
  • Ayaz M, Emiroğlu Ş H (2016) Bazı pamuk (Gossypium hirsutum L.) çeşitlerinde değişik koza olgunluğu dönemlerinde yapılan defoliant uygulamalarının etkileri üzerine araştırmalar . Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 13 (2).
  • Barrett C L, Cho B K, Palsson B O (2011) Sensitive and accurate identification of protein–DNA binding events in ChIP-chip assays using higher order derivative analysis. Nucleic acids research, 39(5): 1656-1665. Bartram A, Poon C, Neufeld J (2009) Nucleic acid contamination of glycogen used in nucleic acid precipitation and assessment of linear polyacrylamide as an alternative co-precipitant. BioTechniques, 47(6): 1019–1022.
  • Bovin N V (1998) Polyacrylamide-based glycoconjugates as tools in glycobiology. Glycoconjugate Journal, 15: 431–446.
  • Collas P (2010) The current state of chromatin immunoprecipitation. Molecular biotechnology, 45(1): 87–100.
  • Das P M, Ramachandran K, vanWert J, Singal R (2004) Chromatin immunoprecipitation assay. BioTechniques, 37(6): 961–969.
  • de Jonge W J, Brok M, Kemmeren P, Holstege F C (2020) An optimized chromatin immunoprecipitation protocol for quantification of protein-DNA interactions. Star Protocols, 1(1): 100020.
  • Dey B, Thukral S, Krishnan S, Chakrobarty M, Gupta S, Manghani C, Rani V (2012) DNA-protein interactions: methods for detection and analysis. Molecular and cellular biochemistry, 365(1-2): 279–299.
  • Doyle J J, Doyle J L (1990) Isolation of Plant DNA from Fresh Tissue. Focus, 12(1): 13-15.
  • Erarslan Z B, Koçyiğit M (2019) The Important Taxonomic Characteristics of the Family Malvaceae and the Herbarium Specimens in ISTE . Turkish Journal of Bioscience and Collections, 3 (1): 1-7.
  • Erkekoglu P, Baydar T (2014) Acrylamide neurotoxicity. Nutritional neuroscience, 17(2): 49-57.
  • Euskirchen G M, Rozowsky J S, Wei C L., Lee W H, Zhang Z D, Hartman S., ... Snyder M (2007) Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array-and sequencing-based technologies. Genome research, 17(6): 898-909.
  • Fawcett P, Eichenberger P, Losick R, Youngman P (2000) The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A. 2000;97: 8063–8068.
  • Fidan M S, Ertaş M (2020) Optimization of Liquefaction Parameters of Cotton Burrs (Gossypium hirsutum L.) for Polyurethane-Type Isolation Foams . Kastamonu University Journal of Forestry Faculty , 20 (1): 15-24 .
  • Gaillard C, Strauss F (1990) Ethanol precipitation of DNA with linear polyacrylamide as carrier. Nucleic acids research, 18(2): 378.
  • Greulich F, Mechtidou A, Horn T, Uhlenhaut N H (2021) Protocol for using heterologous spike-ins to normalize for technical variation in chromatin immunoprecipitation. STAR Protocols, 2(3):100609.
  • Güvercin R Ş, Sunulu S (2010) BazıPamuk (Gossypium hirsutum L.x Gossypium barbadense L.) Melezlerinin Lif Özelliklerinde Heterosis ve Korelasyon Katsayıları. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi , 20 (2): 68-74.
  • Haliloğlu H, Cevheri C İ, Beyyavaş V (2020) The effect of defoliant application on yield and yield components of some cotton (Gossypium hirsutum L.) cultivars at timely and late sowing . International Journal of Agriculture Environment and Food Sciences, 4 (2):157-164 .
  • Harada A, Kimura H, Ohkawa Y (2021) Recent advance in single-cell epigenomics, Current Opinion in Structural Biology, 71: 116-122.
  • Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant methods, 3(1): 1-16.
  • He L., Yu W, Zhang W, Zhang L (2021) An optimized two-step chromatin immunoprecipitation protocol to quantify the associations of two separate proteins and their common target DNA. STAR Protocols, 2 (2): 100504.
  • Ho J W, Bishop E, Karchenko P V, Nègre N, White K P, Park P J (2011) ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis. BMC genomics, 12: 134.
  • Holliday H, Khoury A, Swarbrick A (2021) Chromatin immunoprecipitation of transcription factors and histone modifications in Comma-Dβ mammary epithelial cells. STAR protocols, 2(2):100514.
  • Hoshino A, Fujii H (2009) Insertional chromatin immunoprecipitation: a methodfor isolating specific genomic regions. Journal of bioscience and bioengineering, 108(5):446–449.
  • Köken İ, İlker E (2020) Ege Bölgesine Uygun Pamuk (Gossypium hirsutum L.) Çeşitlerinde Verim ve Kalite Özelliklerinin Belirlenmesi Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi , 17 (1): 15-20 .
  • Kuo M H, Allis C D (1999) In vivo cross-linking and immunoprecipitation for studying dynamic protein: DNA associations in a chromatin environment. Methods, 19(3): 425-433.
  • Liu S S, Zheng H X, Jiang H D, He J, Yu Y, Qu Y P, ..., Li Y (2012) Identification and characterization of a novel gene, c1orf109, encoding a CK2 substrate that is involved in cancer cell proliferation. Journal of biomedical science, 19(1): 1-11.
  • Lukoseviciute M, Ling I, Senanayake U, Candido-Ferreira I, Taylor G, Williams R M, Sauka-Spengler T (2020) Tissue-Specific In Vivo Biotin Chromatin Immunoprecipitation with Sequencing in Zebrafish and Chicken. STAR protocols, 1(2):100066.
  • Martin E M, On D M, Bowers E C, McCullough S D (2019) Chapter 5-1 - Chromatin Immunoprecipitation: An Introduction, Overview, and Protocol. Ss 313-346. McCullough, S.D., Dolinoy, D. C. 2019. Toxicoepigenetics, Academic Press.
  • Molle V, Nakaura Y, Shivers R P, Yamaguchi H, Losick R, Fujita Y, Sonenshein A L (2003) Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. Journal of bacteriology, 185(6): 1911–1922.
  • Oshino A, Fujii H (2009) Insertional chromatin immunoprecipitation: a method for isolating specific genomic regions. Journal of bioscience and bioengineering, 108(5): 446–449.
  • Peláez-andérıca E, Rey F, López M, Gil J (2018) Genetic diversity and phylogenetic relationships of a potential cotton collection for European breeding research . Turkish Journal of Botany, 42 (2): 172-182.
  • Pillai S, Chellappan S P (2009) ChIP on chip assays: genome-wide analysis of transcription factor binding and histone modifications. Methods in molecular biology (Clifton, N.J.), 523: 341–366.
  • Posé D, Yant L (2016) DNA-Binding Factor Target Identification by Chromatin Immunoprecipitation (ChIP) in Plants. Methods in molecular biology (Clifton, N.J.), 1363: 25–35.
  • Ranawaka B, Tanurdzic M, Waterhouse P, Naim F (2020) An optimised chromatin immunoprecipitation (ChIP) method for starchy leaves of Nicotiana benthamiana to study histone modifications of an allotetraploid plant. Mol Biol Rep, 47: 9499–9509.
  • Samancı B, Özkaynak E (2000) Antalya koşullarında pamuk (Gossypium hirsutum L.) çeşit ve hatlarında bazı tarımsal özelliklerin belirlenmesi. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 13(2): 113 - 122.
  • Sauvé S, Tremblay L, Lavigne P (2004) The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors. Journal of molecular biology, 342(3): 813–832.
  • Schmidt D, Wilson M D, Spyrou C, Brown G D, Hadfield J, Odom D T (2009) ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. Methods (San Diego, Calif.), 48(3): 240–248.
  • Schoppee Bortz P D, Wamhoff B R (2011) Chromatin Immunoprecipitation (ChIP): Revisiting the Efficacy of Sample Preparation, Sonication, Quantification of Sheared DNA, and Analysis via PCR. PLoS ONE 6(10).
  • Sırma-Ekmekçi S, Abacı N, Güleç Ç, Üstek D (2014) Kromozom İmmunopresipitasyon Metodu (ChIP Dizileme) ile Transkripsiyon Faktörü Bağlanma Bölgelerinin Saptanması. Deneysel Tıp Araştırma Enstitüsü Dergisi, 3 (6).
  • Singh P, Szabó P E (2012) Chromatin immunoprecipitation to characterize the epigenetic profiles of imprinted domains. Methods in molecular biology (Clifton, N.J.), 925: 159–172.
  • Spencer V A, Sun J M, Li L., Davie J R (2003) Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods (San Diego, Calif.), 31(1): 67–75.
  • Sullivan A E, Santos S D M (2020) An Optimized Protocol for ChIP-Seq from Human Embryonic Stem Cell Cultures. STAR Protocols, 1 (2): 100062.
  • Tian Y, Zhang T (2021) MIXTAs and phytohormones orchestrate cotton fiber development. Current opinion in plant biology, 59:101975.
  • Tokel D (2021) Dünya pamuk tarımı ve ekonomiye katkısı. Manas Sosyal Araştırmalar Dergisi, 10(2): 1022-1037.
  • Wang J, Lu J, Gu G, Liu Y (2011) In vitro DNA-binding profile of transcription factors: methods and new insights. Journal of endocrinology, 210(1):15.
  • Wang L, Wang G, Long L, Altunok S, Feng Z, Wang D, Khawar K M, Mujtaba M (2020) Understanding the role of phytohormones in cotton fiber development through omic approaches; recent advances and future directions. International journal of biological macromolecules, 163: 1301–1313.
  • Weinmann A S, Farnham P J (2002) Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods, 26 (1): 37-47

Pamukta Kromatin İmmünopresipitasyon Yönteminde Kırpılmış DNA İzolasyon Verimini Arttırmak için Lineer Poliakrilamid (LPA) Matriksinin Uygulanması

Yıl 2023, , 99 - 107, 30.06.2023
https://doi.org/10.25308/aduziraat.1217507

Öz

Lineer Poliakrilamid (LPA), kısa ve küçük moleküler ağırlıklı DNA moleküllerinin DNA izolasyonunda verimi arttırıcı ajan olarak kullanılan polimerlerden biridir. Kromatin imminopresipitasyon yöntemi DNA-Protein etkileşimlerinin aydınlatılmasında yaygın olarak kullanılan etkili ve verimli bir yöntemdir. Ardışık birçok aşamadan oluşan ChIP yönteminde kırpılmış DNA parçalarının tekrar izole edilmesi aşamasında DNA parçalarının boyutlarının küçük olmasına bağlı olarak kayıplar yaşanması önemli bir problem oluşturmaktadır. Bu çalışmada ülkemizde ve dünyada ticari değeri çok yüksek bir ökaryot organizma olan pamuk bitkisine yönelik uygulanan ChIP yönteminde kırpılmış küçük moleküler ağırlıklı DNA parçalarının daha yüksek verimle izole edilebilmesinde LPA matriksi kullanılmasının etkisi araştırılmıştır. Burada deneysel olarak ChIP yöntemi uyarlanarak ultrasonikasyon yöntemiyle DNA parçalama işlemi ve ardından parçalanmış DNA moleküllerinin izolasyonu aşamalarına kadar uygulanmıştır. İstatistiksel analizlerde ChIP deneyinin başlangıcında kullanılan DNA izolatlarının ve ultrasonikasyonla mekanik olarak parçalanmış DNA moleküllerinin Nanodrop cihazıyla ng/µl cinsinden konsantrasyonları karşılaştırılmıştır. Deneysel ve istatistiksel analizler, LPA uygulamasının DNA izolasyon etkinliğini 0,59 kat arttırdığını göstermiştir. Bu verilere dayanarak, pamuk bitkisine yönelik ChIP yönteminde LPA kullanılmasının deney başarısını doğrudan etkileyeceği ve çok daha verimli sonuçlar alınmasına katkı sağlayacağı ispatlanmıştır. Bu çalışma doğrudan pamuk bitkisine özel ChIP uygulamasında kırpılmış DNA izolasyonundaki verimi arttırmaya odaklanılması açısından özgündür.

Proje Numarası

ADÜ-BAP-ZRF-16007

Kaynakça

  • Aparicio O, Geisberg J V, Sekinger E, Yang A, Moqtaderi Z., Struhl K (2005) Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Current protocols in molecular biology, Chapter 21 unit 3, 1-23.
  • Avcı M K (2015) Bacillus subtilis’e ait YvfI transkripsiyon faktörünün doğrudan kontrolü altında olan genlerin EMSA ve ChIP yöntemleri ile belirlenmesi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 200 s., İstanbul.
  • Ayaz M, Emiroğlu Ş H (2016) Bazı pamuk (Gossypium hirsutum L.) çeşitlerinde değişik koza olgunluğu dönemlerinde yapılan defoliant uygulamalarının etkileri üzerine araştırmalar . Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 13 (2).
  • Barrett C L, Cho B K, Palsson B O (2011) Sensitive and accurate identification of protein–DNA binding events in ChIP-chip assays using higher order derivative analysis. Nucleic acids research, 39(5): 1656-1665. Bartram A, Poon C, Neufeld J (2009) Nucleic acid contamination of glycogen used in nucleic acid precipitation and assessment of linear polyacrylamide as an alternative co-precipitant. BioTechniques, 47(6): 1019–1022.
  • Bovin N V (1998) Polyacrylamide-based glycoconjugates as tools in glycobiology. Glycoconjugate Journal, 15: 431–446.
  • Collas P (2010) The current state of chromatin immunoprecipitation. Molecular biotechnology, 45(1): 87–100.
  • Das P M, Ramachandran K, vanWert J, Singal R (2004) Chromatin immunoprecipitation assay. BioTechniques, 37(6): 961–969.
  • de Jonge W J, Brok M, Kemmeren P, Holstege F C (2020) An optimized chromatin immunoprecipitation protocol for quantification of protein-DNA interactions. Star Protocols, 1(1): 100020.
  • Dey B, Thukral S, Krishnan S, Chakrobarty M, Gupta S, Manghani C, Rani V (2012) DNA-protein interactions: methods for detection and analysis. Molecular and cellular biochemistry, 365(1-2): 279–299.
  • Doyle J J, Doyle J L (1990) Isolation of Plant DNA from Fresh Tissue. Focus, 12(1): 13-15.
  • Erarslan Z B, Koçyiğit M (2019) The Important Taxonomic Characteristics of the Family Malvaceae and the Herbarium Specimens in ISTE . Turkish Journal of Bioscience and Collections, 3 (1): 1-7.
  • Erkekoglu P, Baydar T (2014) Acrylamide neurotoxicity. Nutritional neuroscience, 17(2): 49-57.
  • Euskirchen G M, Rozowsky J S, Wei C L., Lee W H, Zhang Z D, Hartman S., ... Snyder M (2007) Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array-and sequencing-based technologies. Genome research, 17(6): 898-909.
  • Fawcett P, Eichenberger P, Losick R, Youngman P (2000) The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A. 2000;97: 8063–8068.
  • Fidan M S, Ertaş M (2020) Optimization of Liquefaction Parameters of Cotton Burrs (Gossypium hirsutum L.) for Polyurethane-Type Isolation Foams . Kastamonu University Journal of Forestry Faculty , 20 (1): 15-24 .
  • Gaillard C, Strauss F (1990) Ethanol precipitation of DNA with linear polyacrylamide as carrier. Nucleic acids research, 18(2): 378.
  • Greulich F, Mechtidou A, Horn T, Uhlenhaut N H (2021) Protocol for using heterologous spike-ins to normalize for technical variation in chromatin immunoprecipitation. STAR Protocols, 2(3):100609.
  • Güvercin R Ş, Sunulu S (2010) BazıPamuk (Gossypium hirsutum L.x Gossypium barbadense L.) Melezlerinin Lif Özelliklerinde Heterosis ve Korelasyon Katsayıları. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi , 20 (2): 68-74.
  • Haliloğlu H, Cevheri C İ, Beyyavaş V (2020) The effect of defoliant application on yield and yield components of some cotton (Gossypium hirsutum L.) cultivars at timely and late sowing . International Journal of Agriculture Environment and Food Sciences, 4 (2):157-164 .
  • Harada A, Kimura H, Ohkawa Y (2021) Recent advance in single-cell epigenomics, Current Opinion in Structural Biology, 71: 116-122.
  • Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant methods, 3(1): 1-16.
  • He L., Yu W, Zhang W, Zhang L (2021) An optimized two-step chromatin immunoprecipitation protocol to quantify the associations of two separate proteins and their common target DNA. STAR Protocols, 2 (2): 100504.
  • Ho J W, Bishop E, Karchenko P V, Nègre N, White K P, Park P J (2011) ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis. BMC genomics, 12: 134.
  • Holliday H, Khoury A, Swarbrick A (2021) Chromatin immunoprecipitation of transcription factors and histone modifications in Comma-Dβ mammary epithelial cells. STAR protocols, 2(2):100514.
  • Hoshino A, Fujii H (2009) Insertional chromatin immunoprecipitation: a methodfor isolating specific genomic regions. Journal of bioscience and bioengineering, 108(5):446–449.
  • Köken İ, İlker E (2020) Ege Bölgesine Uygun Pamuk (Gossypium hirsutum L.) Çeşitlerinde Verim ve Kalite Özelliklerinin Belirlenmesi Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi , 17 (1): 15-20 .
  • Kuo M H, Allis C D (1999) In vivo cross-linking and immunoprecipitation for studying dynamic protein: DNA associations in a chromatin environment. Methods, 19(3): 425-433.
  • Liu S S, Zheng H X, Jiang H D, He J, Yu Y, Qu Y P, ..., Li Y (2012) Identification and characterization of a novel gene, c1orf109, encoding a CK2 substrate that is involved in cancer cell proliferation. Journal of biomedical science, 19(1): 1-11.
  • Lukoseviciute M, Ling I, Senanayake U, Candido-Ferreira I, Taylor G, Williams R M, Sauka-Spengler T (2020) Tissue-Specific In Vivo Biotin Chromatin Immunoprecipitation with Sequencing in Zebrafish and Chicken. STAR protocols, 1(2):100066.
  • Martin E M, On D M, Bowers E C, McCullough S D (2019) Chapter 5-1 - Chromatin Immunoprecipitation: An Introduction, Overview, and Protocol. Ss 313-346. McCullough, S.D., Dolinoy, D. C. 2019. Toxicoepigenetics, Academic Press.
  • Molle V, Nakaura Y, Shivers R P, Yamaguchi H, Losick R, Fujita Y, Sonenshein A L (2003) Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. Journal of bacteriology, 185(6): 1911–1922.
  • Oshino A, Fujii H (2009) Insertional chromatin immunoprecipitation: a method for isolating specific genomic regions. Journal of bioscience and bioengineering, 108(5): 446–449.
  • Peláez-andérıca E, Rey F, López M, Gil J (2018) Genetic diversity and phylogenetic relationships of a potential cotton collection for European breeding research . Turkish Journal of Botany, 42 (2): 172-182.
  • Pillai S, Chellappan S P (2009) ChIP on chip assays: genome-wide analysis of transcription factor binding and histone modifications. Methods in molecular biology (Clifton, N.J.), 523: 341–366.
  • Posé D, Yant L (2016) DNA-Binding Factor Target Identification by Chromatin Immunoprecipitation (ChIP) in Plants. Methods in molecular biology (Clifton, N.J.), 1363: 25–35.
  • Ranawaka B, Tanurdzic M, Waterhouse P, Naim F (2020) An optimised chromatin immunoprecipitation (ChIP) method for starchy leaves of Nicotiana benthamiana to study histone modifications of an allotetraploid plant. Mol Biol Rep, 47: 9499–9509.
  • Samancı B, Özkaynak E (2000) Antalya koşullarında pamuk (Gossypium hirsutum L.) çeşit ve hatlarında bazı tarımsal özelliklerin belirlenmesi. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 13(2): 113 - 122.
  • Sauvé S, Tremblay L, Lavigne P (2004) The NMR solution structure of a mutant of the Max b/HLH/LZ free of DNA: insights into the specific and reversible DNA binding mechanism of dimeric transcription factors. Journal of molecular biology, 342(3): 813–832.
  • Schmidt D, Wilson M D, Spyrou C, Brown G D, Hadfield J, Odom D T (2009) ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. Methods (San Diego, Calif.), 48(3): 240–248.
  • Schoppee Bortz P D, Wamhoff B R (2011) Chromatin Immunoprecipitation (ChIP): Revisiting the Efficacy of Sample Preparation, Sonication, Quantification of Sheared DNA, and Analysis via PCR. PLoS ONE 6(10).
  • Sırma-Ekmekçi S, Abacı N, Güleç Ç, Üstek D (2014) Kromozom İmmunopresipitasyon Metodu (ChIP Dizileme) ile Transkripsiyon Faktörü Bağlanma Bölgelerinin Saptanması. Deneysel Tıp Araştırma Enstitüsü Dergisi, 3 (6).
  • Singh P, Szabó P E (2012) Chromatin immunoprecipitation to characterize the epigenetic profiles of imprinted domains. Methods in molecular biology (Clifton, N.J.), 925: 159–172.
  • Spencer V A, Sun J M, Li L., Davie J R (2003) Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods (San Diego, Calif.), 31(1): 67–75.
  • Sullivan A E, Santos S D M (2020) An Optimized Protocol for ChIP-Seq from Human Embryonic Stem Cell Cultures. STAR Protocols, 1 (2): 100062.
  • Tian Y, Zhang T (2021) MIXTAs and phytohormones orchestrate cotton fiber development. Current opinion in plant biology, 59:101975.
  • Tokel D (2021) Dünya pamuk tarımı ve ekonomiye katkısı. Manas Sosyal Araştırmalar Dergisi, 10(2): 1022-1037.
  • Wang J, Lu J, Gu G, Liu Y (2011) In vitro DNA-binding profile of transcription factors: methods and new insights. Journal of endocrinology, 210(1):15.
  • Wang L, Wang G, Long L, Altunok S, Feng Z, Wang D, Khawar K M, Mujtaba M (2020) Understanding the role of phytohormones in cotton fiber development through omic approaches; recent advances and future directions. International journal of biological macromolecules, 163: 1301–1313.
  • Weinmann A S, Farnham P J (2002) Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods, 26 (1): 37-47
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Endüstriyel Biyoteknoloji
Bölüm Araştırma
Yazarlar

Murat Kemal Avcı 0000-0001-5211-2352

Erdem Tezcan 0000-0001-7379-9931

Safiye Avcı 0000-0002-8283-8055

Haluk Camcı 0000-0003-4763-8696

Proje Numarası ADÜ-BAP-ZRF-16007
Yayımlanma Tarihi 30 Haziran 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Avcı, M. K., Tezcan, E., Avcı, S., Camcı, H. (2023). Application of Linear Polyacrylamide (LPA) Matrix in Cotton Chromatin Immunoprecipitation to Increase Sheared DNA Isolation Efficiency. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 20(1), 99-107. https://doi.org/10.25308/aduziraat.1217507
AMA Avcı MK, Tezcan E, Avcı S, Camcı H. Application of Linear Polyacrylamide (LPA) Matrix in Cotton Chromatin Immunoprecipitation to Increase Sheared DNA Isolation Efficiency. ADÜ ZİRAAT DERG. Haziran 2023;20(1):99-107. doi:10.25308/aduziraat.1217507
Chicago Avcı, Murat Kemal, Erdem Tezcan, Safiye Avcı, ve Haluk Camcı. “Application of Linear Polyacrylamide (LPA) Matrix in Cotton Chromatin Immunoprecipitation to Increase Sheared DNA Isolation Efficiency”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 20, sy. 1 (Haziran 2023): 99-107. https://doi.org/10.25308/aduziraat.1217507.
EndNote Avcı MK, Tezcan E, Avcı S, Camcı H (01 Haziran 2023) Application of Linear Polyacrylamide (LPA) Matrix in Cotton Chromatin Immunoprecipitation to Increase Sheared DNA Isolation Efficiency. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 20 1 99–107.
IEEE M. K. Avcı, E. Tezcan, S. Avcı, ve H. Camcı, “Application of Linear Polyacrylamide (LPA) Matrix in Cotton Chromatin Immunoprecipitation to Increase Sheared DNA Isolation Efficiency”, ADÜ ZİRAAT DERG, c. 20, sy. 1, ss. 99–107, 2023, doi: 10.25308/aduziraat.1217507.
ISNAD Avcı, Murat Kemal vd. “Application of Linear Polyacrylamide (LPA) Matrix in Cotton Chromatin Immunoprecipitation to Increase Sheared DNA Isolation Efficiency”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 20/1 (Haziran 2023), 99-107. https://doi.org/10.25308/aduziraat.1217507.
JAMA Avcı MK, Tezcan E, Avcı S, Camcı H. Application of Linear Polyacrylamide (LPA) Matrix in Cotton Chromatin Immunoprecipitation to Increase Sheared DNA Isolation Efficiency. ADÜ ZİRAAT DERG. 2023;20:99–107.
MLA Avcı, Murat Kemal vd. “Application of Linear Polyacrylamide (LPA) Matrix in Cotton Chromatin Immunoprecipitation to Increase Sheared DNA Isolation Efficiency”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, c. 20, sy. 1, 2023, ss. 99-107, doi:10.25308/aduziraat.1217507.
Vancouver Avcı MK, Tezcan E, Avcı S, Camcı H. Application of Linear Polyacrylamide (LPA) Matrix in Cotton Chromatin Immunoprecipitation to Increase Sheared DNA Isolation Efficiency. ADÜ ZİRAAT DERG. 2023;20(1):99-107.