Araştırma Makalesi
BibTex RIS Kaynak Göster

Mineral Composition Changes in Leaves of ‘Ankara’ and ‘Deveci’ Pears Grafted onto Different Rootstocks Under NaCl Stress

Yıl 2025, Cilt: 22 Sayı: 2, 191 - 202, 31.12.2025
https://doi.org/10.25308/aduziraat.1693306

Öz

The salt stress resulting from salinization in the soil or irrigation water is one of the most significant abiotic stress factors on a global scale and its importance is increasing day by day due to climate change. One of the most critical negative effects of salt stress on plants is the disruption of nutrient balance, which affects vital processes. In this study, the changes in some macro and micro nutrient elements in the leaves of ‘Ankara’ and ‘Deveci’ pear varieties grafted onto BA 29, Fox 11, OH×F 97, and OH×F 333 rootstocks, which were exposed to NaCl stress, were examined. Accordingly, it was determined that, although there were some changes in the macro elements such as N, P, and Mg and all the micro elements studied over the years, NaCl stress had a negative effect on all of them. Additionally, it was found that plants subjected to heavy stress (80 mM) were more affected. All elements, except for P and Cu, showed significant variability according to the rootstocks. The lowest N, K, and Fe content in the leaves was observed in the BA 29 rootstock, the lowest Ca and B content in the Fox rootstock, and the lowest Mg content in the OH×F 333 rootstock grafted varieties. On the other hand, varieties grafted onto the OH×F 97 rootstock showed higher levels of nutrients, both significantly and relatively, in their leaves. In terms of the varieties, the results showed variability over the years, but the Ca content, which is highly important for tolerance to salt stress, was found to be higher in the leaves of the ‘Deveci’ variety in both years. Based on the results obtained, a general evaluation suggests that varieties grafted onto the OH×F 97 rootstock, which have a higher tolerance level to NaCl stress, and the ‘Deveci’ variety, regardless of rootstock, had higher levels of nutrients in their leaves, contributing to their tolerance levels.

Kaynakça

  • Abdelrady WA, Ma Z, Elshawy EE, Wang L, Askri SMH, Ibrahim Z, Dennis E, Kanwal F, Zeng F, Shamsi IH (2024) Physiological and Biochemical Mechanisms of Salt Tolerance in Barley under Salinity Stress. Plant Stress 11:100403.
  • AbuQamar SF, El-Saadony MT, Saad AM, Desoky SM, Elrys AS, El-Mageed TAA, Semida WM, Abdelkhalik A, Mosa WFA, Kafaas SSA, Naser S, Ibrahim EH, Alshamsi FMK, Mathew BT, El-Tarabily KA (2004) Halotolerant Plant Growth-Promoting Rhizobacteria İmprove Soil Fertility and Plant Salinity Tolerance for Sustainable Agriculture—A Review. Plant Stress 12:100482.
  • Ahmad R, Anjum MA (2023) Physiological and Molecular Bbasis of Salinity Tolerance in Fruit Crops. In: Srivastava AK, Hu C (eds.), Fruit Crops Amsterdam, Elsevier, 445–464.
  • Ahmed IM, Dai H, Zheng W, Cao F, Zhang G, Sun D, Wu F (2013) Genotypic Differences in Physiological Characteristics in the Tolerance to Drought and Salinity Combined Stress Between Tibetan Wild and Cultivated Barley. Plant Physiology and Biochemistry 63:49–60.
  • Ashraf M, Shahzad S, Imtiaz M, Rizwan M (2018) Salinity Effects on Nitrogen Metabolism In Plants – Focusing on the Activities of Nitrogen Metabolizing Enzymes: A Review. Journal of Plant Nutrition 41(8):1065–1081.
  • Aydınlı M, Kaçal E, Gür İ, Yıldırım F, Önder S, Altındal M, Karakurt Y (2024a) Physiological and Enzymatic Antioxidant Responses of Several Local Pyrus communis L. cv on Different Rootstocks under NaCl Stress. Russian Journal of Plant Physiology 71(4):118.
  • Aydınlı M, Yıldırım F, Kaçal E, Altındal M, Yıldız H (2024b) Morphological and Physiological Changes under NaCl Stress in Some Pyrus and Quince Rootstocks. Yuzuncu Yıl University Journal of Agricultural Sciences 34(2):299-313.
  • Aydınlı M, Yıldırım F (2023). Armut Islahında Güncel Gelişmeler. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 33(2):296–309.
  • Aydınlı M, Yıldırım F, Türkeli B (2022) NaCl Stresinin Bazı Armut ve Ayva Anaçlarının Yaprak Bakır, Bor, Çinko, Demir ve Mangan İçeriklerine Etkisi. Ziraat Fakültesi Dergisi 17(1):1–9.
  • Aydin A (2024) Effects of Grafting with Wild Tomato (Solanum pimpinellifolium and Solanum habrochaites) Rootstocks on Growth and Leaf Mineral Accumulation in Salt Stress. Horticulture, Environment, and Biotechnology, 65(5):785–801.
  • Barea JM (2015) Future Challenges and Perspectives for Applying Microbial Biotechnology In Sustainable Agriculture Based on a Better Understanding of Plantmicrobiome Interactions. Journal of Soil Science and Plant Nutrition 15:261–282.
  • Barker AV, Bryson GM (2007) Nitrogen. In: Barker AV, Pilbeam DJ (eds.), Handbook of Plant Nutrition. CRC Press, Florida, 21–50.
  • Bell RL, Quamme HA, Layne REC, Skirvin RM (1996) Pears. In: Janick J, Moore JN (eds.), Fruit Breeding Tree and Tropical Fruits, Wiley, West Lafayette, 441–514.
  • Borghesi E, Carmassi G, Uguccioni MC, Vernieri P, Malorgio F (2013) Effects of Calcium and Salinity Stress on Quality of Lettuce in Soilless Culture. Journal of plant nutrition, 36(5):677–690.
  • Chen X, Smith SM, Shabala S, Yu M (2023) Phytohormones in Plant Responses to Boron Deficiency and Toxicity. Journal of Experimental Botany 74(3):743–754.
  • Fu Q, Tan Y, Zhai H, Du Y (2019) Evaluation of Salt Resistance Mechanisms of Grapevine Hybrid Rootstocks. Scientia Horticulturae 243:148–158.
  • Ghorbani S, Etminan A, Rashidi V, Pour-Aboughadareh A, Shooshtari L (2023). Delineation of Physiological and Transcriptional Responses of Different Barley Genotypes to Salt Stress. Cereal Research Communications 51(2):367–377.
  • Grattan SR, Grieve CM (1992) Mineral Element Acquisition and Growth Response of Plants Grown In Saline Environments. Agriculture, Ecosystems and Environment 38(4):275–300.
  • Grattan SR, Grieve CM (1999) Salinity-Nutrient Relations in Horticultural Crops. Scientia Horticulturae 78(1–4):127–157.
  • Kaçar B (1984) Plant Nutrition Practice Guide. Ankara University, Agricultural Faculty Publications. Ankara.
  • Kaçar B, İnal A (2008) Bitki Analizleri. Ankara, Nobel Yayın.
  • Karimi HR, Nasrolahpour-Moghadam S (2016) Male Pistachio Seedlings Exhibit More Efficient Protective Mechanisms than Females under Salinity Stress. Scientia Horticulturae 211:118–125.
  • Khalil HA, El-Ansary DO, Ahmed ZF (2022) Mitigation of Salinity Stress on Pomegranate (Punica granatum L. Cv. Wonderful) Plant using Salicylic Acid Foliar Spray. Horticulturae 8(5):375.
  • Kohli SK, Kaur H, Khanna K, Handa N, Bhardwaj R, Rinklebe J, Ahmad P (2023) Boron in Plants: Uptake, Deficiency and Biological Potential. Plant Growth Regulation 100(2):267–282.
  • Lombardi L, Sebastiani L, Vitagliano C (2003) Physiological, Biochemical, and Molecular Effects of In Vitro Induced Iron Deficiency In Peach Rootstock. Journal of Plant Nutrition 26:2149–2163.
  • Maathuis FJM, Amtmann A (1999) K+ Nutrition and Na+ Toxicity: The Basis of Cellular K+/Na+ Ratios. Annals of Botany 84(2):123–133.
  • Munir N, Hasnain M, Roessner U, Abideen Z (2022) Strategies in Improving Plant Salinity Resistance and use of Salinity Resistant Plants for Economic Sustainability. Critical Reviews in Environmental Science and Technology 52(12):2150–2196.
  • Musacchi S, Quartieri M, Tagliavini M (2006) Pear (Pyrus communis) and Quince (Cydonia oblonga) Roots Exhibit Different Ability to Prevent Sodium and Chloride Uptake when Irrigated with Saline Water. European Journal of Agronomy 24(3) 268–275.
  • Myers BA, West DW (1989) Effects of Saline Irrigation on Mature Pear Trees. Acta Horticulturae 240:279–282.
  • Navarro JM, Garrido C, Carvajal M, Martinez V (2002) Yield and Fruit Quality of Pepper Plants under Sulphate and Chloride Salinity. The Journal of Horticultural Science and Biotechnology 77(1):52–57.
  • Okubo M, Furukawa Y, Sakuratani T (2000) Growth, Fowering and Leaf Properties of Pear Cultivars Grafted on Two Asian Pear Rootstock Seedlings under NaCl Irrigation. Scientia Horticulturae 85(1–2):91–101.
  • Othman YA, Hani MB, Ayad JY, St Hilaire R (2023) Salinity Level Influenced Morpho-Physiology and Nutrient Uptake of Young Citrus Rootstocks. Heliyon 9(2):e13336.
  • Papadakis IE, Veneti G, Chatzissavvidis C, Sotiropoulos TE, Dimassi KN, Therios IN (2007) Growth, Mineral Composition, Leaf Chlorophyll and Water Relationships of Two Cherry Varieties under NaCl-Induced Salinity Stress. Soil Science and Plant Nutrition 53(3):252–258.
  • Qu M, Huang X, García‐Caparrós P, Shabala L, Fuglsang AT, Yu M, Shabala S (2024) Understanding the Role of Boron in Plant Adaptation to Soil Salinity. Physiologia Plantarum 176(3):e14358.
  • Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, Martinez V (2014) The Combined Effect of Salinity and Heat Reveals a Specific Physiological, Biochemical and Molecular Response in Tomato Plants. Plant, Cell and Environment 37(5):1059–1073.
  • Robin AHK, Matthew C, Uddin MJ, Bayazid KN (2016) Salinity Induced Reduction in Root Surface Area and Changes in Major Root and Shoot Traits at the Phytomer Level In Wheat. Journal of Experimental and Botany 67(12):3719–3729.
  • Santa-Cruz A, Martinez-Rodrigez MM, Perez-Alfocea F, Romero-Aranda R, Bolarin MC (2002) The Rootstock Effect on the Tomato Salinity Response Depends on the Shoot Genotype. Plant Science 162(5):825–831.
  • Sarwat M, Ahmad P, Nabi G, Hu X (2013) Ca2+ Signals: The Versatile Decoders of Environmental Cues. Critical Reviews in Biotechnology 33(1):97–109.
  • Shahzad S, Ali S, Ahmad R, Ercisli S, Anjum MA (2021) Foliar Application of Silicon Enhances Growth, Flower Yield, Quality and Postharvest Life of Tuberose (Polianthes tuberosa L.) under Saline Conditions by İmproving Antioxidant Defense Mechanism. Silicon 14:1511–1518.
  • Sogoni A, Jimoh MO, Kambizi L, Laubscher CP (2021) The Impact of Salt Stress on Plant Growth, Mineral Composition, and Antioxidant Activity in Tetragonia decumbens Mill.: an Underutilized Edible Halophyte in South Africa. Horticulturae 7(6):140.
  • Sotiropoulos TE, Therios I., Tsirakoglou V, Dimassi KN (2007) Response of The Quince Genotypes BA 29 and EMA Used as Pear Rootstocks to Boron and Salinity. International Journal of Fruit Science 6(4):93–101.
  • Ünlükara A, Kurunç A, Kesmez GD, Yurtseven E, Suarez DL (2010) Effects of salinity on eggplant (Solanum melongena L.) growth and evapotranspiration. Journal of Irrigation and Drainage 59:203-214.
  • Van Zelm E, Zhang Y, Testerink C, (2020) Salt tolerance mechanisms of plants. Annual Review of Plant Biology 71:403–433.
  • Vennam RR, Bheemanahalli R, Reddy KR, Dhillon J, Zhang X, Adeli A (2024) Early-Season Maize Responses to Salt Stress: Morpho-Physiological, Leaf Reflectance, and Mineral Composition. Journal of Agriculture and Food Research 15:100994.
  • Wu H, Li Z (2019) The Importance of Cl– Exclusion and Vacuolar Cl– Sequestration: Revisiting the Role of Cl– Transport in Plant Salt Tolerance. Frontier Plant Science 10:482468.
  • Xie W, Wu L, Wang J, Zhang Y, Ouyang Z (2017) Effect of Salinity on the Transformation of Wheat Straw and Microbial Communities in a Saline Soil.
  • Yildirim E, Karlidag H, Turan M (2009) Mitigation of Salt Stress in Strawberry by Foliar K, Ca and Mg Nutrient Supply. Plant, Soil and E
  • Communications in Soil Science and Plant Analysis 48(12):1455–1461.

Farklı Anaçlar Üzerine Aşılı “Ankara” ve “Deveci” Armutlarının NaCl Stresi Altında Yapraklarındaki Mineral Madde Değişimi

Yıl 2025, Cilt: 22 Sayı: 2, 191 - 202, 31.12.2025
https://doi.org/10.25308/aduziraat.1693306

Öz

Toprakta veya sulama suyundaki tuzlulaşma neticesinde ortaya çıkan tuz stresi, küresel ölçekte en önemli abiyotik stres faktörü konumundadır ve iklim değişikliğine bağlı olarak önemi gün geçtikçe artmaktadır. Tuz stresinin bitkiler üzerindeki en önemli olumsuz etkilerinden biri besin dengesini bozarak hayati süreçleri etkilemesidir. Bu çalışmada NaCl stresine maruz kalan BA 29, Fox 11, OH×F 97 ve OH×F 333 anaçları üzerine aşılı ‘Ankara’ ve ‘Deveci’ armut çeşitlerinin yapraklarındaki bazı makro ve mikro besin element değişimi incelenmiştir. Buna göre makro elementlerden N, P ve Mg ile çalışmada incelenen tüm mikro elementlerin yıllara göre kısmen değişim gösterse de NaCl stresinden olumsuz etkilendiği belirlenmiştir. İlaveten özellikle ağır strese (80 mM) maruz kalan bitkilerin daha çok etkilendiği saptanmıştır. P ve Cu haricindeki tüm elementler anaçlara göre önemli değişkenlik göstermiştir. Yapraklardaki en düşük N, K ve Fe içeriği BA 29 anacı, Ca ve B içeriği Fox 11 anacı, Mg içeriği ise OH×F 333 anacı üzerine aşılı çeşitlerde tespit edilmiştir. OH×F 97 anacı üzerine aşılı çeşitlerin yapraklarında ise önemli veya göreceli olarak daha yüksek miktarlarda besin maddesi belirlenmiştir. Çeşitlerde ise yıllara göre değişken sonuçlar ortaya çıkmış ancak tuz stresine toleransta oldukça önemli olan Ca miktarı her iki yılda da ‘Deveci’ çeşidinin yapraklarında daha yüksek miktarda bulunmuştur. Elde edilen sonuçlara bakılarak genel bir değerlendirme yapıldığında, NaCl stresine tolerans seviyesi daha yüksek olan OH×F 97 anacı üzerine aşılı çeşitlerin ve anaç gözetilmeksizin ‘Deveci’ çeşidinin yapraklarında daha yüksek miktarlarda besin maddesi bulunduğu ve bu durumun tolerans düzeylerine katkı sağladığı söylenebilir.

Teşekkür

Çalışmanın gerçekleşmesi adına 116O721 numaralı proje ile destek sağlayan Türkiye Bilimsel ve Teknolojik Araştırma Kurumu’na (TÜBİTAK) teşekkürlerimizi sunarız. Ayrıca araştırmanın yürütülmesi için fiziki altyapısını kullanıma sunan Meyvecilik Araştırma Enstitüsü Müdürlüğü’ne (MAREM) teşekkür ederiz.

Kaynakça

  • Abdelrady WA, Ma Z, Elshawy EE, Wang L, Askri SMH, Ibrahim Z, Dennis E, Kanwal F, Zeng F, Shamsi IH (2024) Physiological and Biochemical Mechanisms of Salt Tolerance in Barley under Salinity Stress. Plant Stress 11:100403.
  • AbuQamar SF, El-Saadony MT, Saad AM, Desoky SM, Elrys AS, El-Mageed TAA, Semida WM, Abdelkhalik A, Mosa WFA, Kafaas SSA, Naser S, Ibrahim EH, Alshamsi FMK, Mathew BT, El-Tarabily KA (2004) Halotolerant Plant Growth-Promoting Rhizobacteria İmprove Soil Fertility and Plant Salinity Tolerance for Sustainable Agriculture—A Review. Plant Stress 12:100482.
  • Ahmad R, Anjum MA (2023) Physiological and Molecular Bbasis of Salinity Tolerance in Fruit Crops. In: Srivastava AK, Hu C (eds.), Fruit Crops Amsterdam, Elsevier, 445–464.
  • Ahmed IM, Dai H, Zheng W, Cao F, Zhang G, Sun D, Wu F (2013) Genotypic Differences in Physiological Characteristics in the Tolerance to Drought and Salinity Combined Stress Between Tibetan Wild and Cultivated Barley. Plant Physiology and Biochemistry 63:49–60.
  • Ashraf M, Shahzad S, Imtiaz M, Rizwan M (2018) Salinity Effects on Nitrogen Metabolism In Plants – Focusing on the Activities of Nitrogen Metabolizing Enzymes: A Review. Journal of Plant Nutrition 41(8):1065–1081.
  • Aydınlı M, Kaçal E, Gür İ, Yıldırım F, Önder S, Altındal M, Karakurt Y (2024a) Physiological and Enzymatic Antioxidant Responses of Several Local Pyrus communis L. cv on Different Rootstocks under NaCl Stress. Russian Journal of Plant Physiology 71(4):118.
  • Aydınlı M, Yıldırım F, Kaçal E, Altındal M, Yıldız H (2024b) Morphological and Physiological Changes under NaCl Stress in Some Pyrus and Quince Rootstocks. Yuzuncu Yıl University Journal of Agricultural Sciences 34(2):299-313.
  • Aydınlı M, Yıldırım F (2023). Armut Islahında Güncel Gelişmeler. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 33(2):296–309.
  • Aydınlı M, Yıldırım F, Türkeli B (2022) NaCl Stresinin Bazı Armut ve Ayva Anaçlarının Yaprak Bakır, Bor, Çinko, Demir ve Mangan İçeriklerine Etkisi. Ziraat Fakültesi Dergisi 17(1):1–9.
  • Aydin A (2024) Effects of Grafting with Wild Tomato (Solanum pimpinellifolium and Solanum habrochaites) Rootstocks on Growth and Leaf Mineral Accumulation in Salt Stress. Horticulture, Environment, and Biotechnology, 65(5):785–801.
  • Barea JM (2015) Future Challenges and Perspectives for Applying Microbial Biotechnology In Sustainable Agriculture Based on a Better Understanding of Plantmicrobiome Interactions. Journal of Soil Science and Plant Nutrition 15:261–282.
  • Barker AV, Bryson GM (2007) Nitrogen. In: Barker AV, Pilbeam DJ (eds.), Handbook of Plant Nutrition. CRC Press, Florida, 21–50.
  • Bell RL, Quamme HA, Layne REC, Skirvin RM (1996) Pears. In: Janick J, Moore JN (eds.), Fruit Breeding Tree and Tropical Fruits, Wiley, West Lafayette, 441–514.
  • Borghesi E, Carmassi G, Uguccioni MC, Vernieri P, Malorgio F (2013) Effects of Calcium and Salinity Stress on Quality of Lettuce in Soilless Culture. Journal of plant nutrition, 36(5):677–690.
  • Chen X, Smith SM, Shabala S, Yu M (2023) Phytohormones in Plant Responses to Boron Deficiency and Toxicity. Journal of Experimental Botany 74(3):743–754.
  • Fu Q, Tan Y, Zhai H, Du Y (2019) Evaluation of Salt Resistance Mechanisms of Grapevine Hybrid Rootstocks. Scientia Horticulturae 243:148–158.
  • Ghorbani S, Etminan A, Rashidi V, Pour-Aboughadareh A, Shooshtari L (2023). Delineation of Physiological and Transcriptional Responses of Different Barley Genotypes to Salt Stress. Cereal Research Communications 51(2):367–377.
  • Grattan SR, Grieve CM (1992) Mineral Element Acquisition and Growth Response of Plants Grown In Saline Environments. Agriculture, Ecosystems and Environment 38(4):275–300.
  • Grattan SR, Grieve CM (1999) Salinity-Nutrient Relations in Horticultural Crops. Scientia Horticulturae 78(1–4):127–157.
  • Kaçar B (1984) Plant Nutrition Practice Guide. Ankara University, Agricultural Faculty Publications. Ankara.
  • Kaçar B, İnal A (2008) Bitki Analizleri. Ankara, Nobel Yayın.
  • Karimi HR, Nasrolahpour-Moghadam S (2016) Male Pistachio Seedlings Exhibit More Efficient Protective Mechanisms than Females under Salinity Stress. Scientia Horticulturae 211:118–125.
  • Khalil HA, El-Ansary DO, Ahmed ZF (2022) Mitigation of Salinity Stress on Pomegranate (Punica granatum L. Cv. Wonderful) Plant using Salicylic Acid Foliar Spray. Horticulturae 8(5):375.
  • Kohli SK, Kaur H, Khanna K, Handa N, Bhardwaj R, Rinklebe J, Ahmad P (2023) Boron in Plants: Uptake, Deficiency and Biological Potential. Plant Growth Regulation 100(2):267–282.
  • Lombardi L, Sebastiani L, Vitagliano C (2003) Physiological, Biochemical, and Molecular Effects of In Vitro Induced Iron Deficiency In Peach Rootstock. Journal of Plant Nutrition 26:2149–2163.
  • Maathuis FJM, Amtmann A (1999) K+ Nutrition and Na+ Toxicity: The Basis of Cellular K+/Na+ Ratios. Annals of Botany 84(2):123–133.
  • Munir N, Hasnain M, Roessner U, Abideen Z (2022) Strategies in Improving Plant Salinity Resistance and use of Salinity Resistant Plants for Economic Sustainability. Critical Reviews in Environmental Science and Technology 52(12):2150–2196.
  • Musacchi S, Quartieri M, Tagliavini M (2006) Pear (Pyrus communis) and Quince (Cydonia oblonga) Roots Exhibit Different Ability to Prevent Sodium and Chloride Uptake when Irrigated with Saline Water. European Journal of Agronomy 24(3) 268–275.
  • Myers BA, West DW (1989) Effects of Saline Irrigation on Mature Pear Trees. Acta Horticulturae 240:279–282.
  • Navarro JM, Garrido C, Carvajal M, Martinez V (2002) Yield and Fruit Quality of Pepper Plants under Sulphate and Chloride Salinity. The Journal of Horticultural Science and Biotechnology 77(1):52–57.
  • Okubo M, Furukawa Y, Sakuratani T (2000) Growth, Fowering and Leaf Properties of Pear Cultivars Grafted on Two Asian Pear Rootstock Seedlings under NaCl Irrigation. Scientia Horticulturae 85(1–2):91–101.
  • Othman YA, Hani MB, Ayad JY, St Hilaire R (2023) Salinity Level Influenced Morpho-Physiology and Nutrient Uptake of Young Citrus Rootstocks. Heliyon 9(2):e13336.
  • Papadakis IE, Veneti G, Chatzissavvidis C, Sotiropoulos TE, Dimassi KN, Therios IN (2007) Growth, Mineral Composition, Leaf Chlorophyll and Water Relationships of Two Cherry Varieties under NaCl-Induced Salinity Stress. Soil Science and Plant Nutrition 53(3):252–258.
  • Qu M, Huang X, García‐Caparrós P, Shabala L, Fuglsang AT, Yu M, Shabala S (2024) Understanding the Role of Boron in Plant Adaptation to Soil Salinity. Physiologia Plantarum 176(3):e14358.
  • Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, Martinez V (2014) The Combined Effect of Salinity and Heat Reveals a Specific Physiological, Biochemical and Molecular Response in Tomato Plants. Plant, Cell and Environment 37(5):1059–1073.
  • Robin AHK, Matthew C, Uddin MJ, Bayazid KN (2016) Salinity Induced Reduction in Root Surface Area and Changes in Major Root and Shoot Traits at the Phytomer Level In Wheat. Journal of Experimental and Botany 67(12):3719–3729.
  • Santa-Cruz A, Martinez-Rodrigez MM, Perez-Alfocea F, Romero-Aranda R, Bolarin MC (2002) The Rootstock Effect on the Tomato Salinity Response Depends on the Shoot Genotype. Plant Science 162(5):825–831.
  • Sarwat M, Ahmad P, Nabi G, Hu X (2013) Ca2+ Signals: The Versatile Decoders of Environmental Cues. Critical Reviews in Biotechnology 33(1):97–109.
  • Shahzad S, Ali S, Ahmad R, Ercisli S, Anjum MA (2021) Foliar Application of Silicon Enhances Growth, Flower Yield, Quality and Postharvest Life of Tuberose (Polianthes tuberosa L.) under Saline Conditions by İmproving Antioxidant Defense Mechanism. Silicon 14:1511–1518.
  • Sogoni A, Jimoh MO, Kambizi L, Laubscher CP (2021) The Impact of Salt Stress on Plant Growth, Mineral Composition, and Antioxidant Activity in Tetragonia decumbens Mill.: an Underutilized Edible Halophyte in South Africa. Horticulturae 7(6):140.
  • Sotiropoulos TE, Therios I., Tsirakoglou V, Dimassi KN (2007) Response of The Quince Genotypes BA 29 and EMA Used as Pear Rootstocks to Boron and Salinity. International Journal of Fruit Science 6(4):93–101.
  • Ünlükara A, Kurunç A, Kesmez GD, Yurtseven E, Suarez DL (2010) Effects of salinity on eggplant (Solanum melongena L.) growth and evapotranspiration. Journal of Irrigation and Drainage 59:203-214.
  • Van Zelm E, Zhang Y, Testerink C, (2020) Salt tolerance mechanisms of plants. Annual Review of Plant Biology 71:403–433.
  • Vennam RR, Bheemanahalli R, Reddy KR, Dhillon J, Zhang X, Adeli A (2024) Early-Season Maize Responses to Salt Stress: Morpho-Physiological, Leaf Reflectance, and Mineral Composition. Journal of Agriculture and Food Research 15:100994.
  • Wu H, Li Z (2019) The Importance of Cl– Exclusion and Vacuolar Cl– Sequestration: Revisiting the Role of Cl– Transport in Plant Salt Tolerance. Frontier Plant Science 10:482468.
  • Xie W, Wu L, Wang J, Zhang Y, Ouyang Z (2017) Effect of Salinity on the Transformation of Wheat Straw and Microbial Communities in a Saline Soil.
  • Yildirim E, Karlidag H, Turan M (2009) Mitigation of Salt Stress in Strawberry by Foliar K, Ca and Mg Nutrient Supply. Plant, Soil and E
  • Communications in Soil Science and Plant Analysis 48(12):1455–1461.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hayvansal Üretim (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Melih Aydınlı 0000-0002-1166-5791

Fatma Yıldırım 0000-0001-7304-9647

Mesut Altındal 0000-0002-0332-6677

Abdullah Arın 0000-0003-1545-5449

Gönderilme Tarihi 7 Mayıs 2025
Kabul Tarihi 1 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 22 Sayı: 2

Kaynak Göster

APA Aydınlı, M., Yıldırım, F., Altındal, M., Arın, A. (2025). Farklı Anaçlar Üzerine Aşılı “Ankara” ve “Deveci” Armutlarının NaCl Stresi Altında Yapraklarındaki Mineral Madde Değişimi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 22(2), 191-202. https://doi.org/10.25308/aduziraat.1693306
AMA Aydınlı M, Yıldırım F, Altındal M, Arın A. Farklı Anaçlar Üzerine Aşılı “Ankara” ve “Deveci” Armutlarının NaCl Stresi Altında Yapraklarındaki Mineral Madde Değişimi. ADÜ ZİRAAT DERG. Aralık 2025;22(2):191-202. doi:10.25308/aduziraat.1693306
Chicago Aydınlı, Melih, Fatma Yıldırım, Mesut Altındal, ve Abdullah Arın. “Farklı Anaçlar Üzerine Aşılı “Ankara” ve ‘Deveci’ Armutlarının NaCl Stresi Altında Yapraklarındaki Mineral Madde Değişimi”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 22, sy. 2 (Aralık 2025): 191-202. https://doi.org/10.25308/aduziraat.1693306.
EndNote Aydınlı M, Yıldırım F, Altındal M, Arın A (01 Aralık 2025) Farklı Anaçlar Üzerine Aşılı “Ankara” ve “Deveci” Armutlarının NaCl Stresi Altında Yapraklarındaki Mineral Madde Değişimi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 22 2 191–202.
IEEE M. Aydınlı, F. Yıldırım, M. Altındal, ve A. Arın, “Farklı Anaçlar Üzerine Aşılı “Ankara” ve ‘Deveci’ Armutlarının NaCl Stresi Altında Yapraklarındaki Mineral Madde Değişimi”, ADÜ ZİRAAT DERG, c. 22, sy. 2, ss. 191–202, 2025, doi: 10.25308/aduziraat.1693306.
ISNAD Aydınlı, Melih vd. “Farklı Anaçlar Üzerine Aşılı “Ankara” ve ‘Deveci’ Armutlarının NaCl Stresi Altında Yapraklarındaki Mineral Madde Değişimi”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 22/2 (Aralık2025), 191-202. https://doi.org/10.25308/aduziraat.1693306.
JAMA Aydınlı M, Yıldırım F, Altındal M, Arın A. Farklı Anaçlar Üzerine Aşılı “Ankara” ve “Deveci” Armutlarının NaCl Stresi Altında Yapraklarındaki Mineral Madde Değişimi. ADÜ ZİRAAT DERG. 2025;22:191–202.
MLA Aydınlı, Melih vd. “Farklı Anaçlar Üzerine Aşılı “Ankara” ve ‘Deveci’ Armutlarının NaCl Stresi Altında Yapraklarındaki Mineral Madde Değişimi”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, c. 22, sy. 2, 2025, ss. 191-02, doi:10.25308/aduziraat.1693306.
Vancouver Aydınlı M, Yıldırım F, Altındal M, Arın A. Farklı Anaçlar Üzerine Aşılı “Ankara” ve “Deveci” Armutlarının NaCl Stresi Altında Yapraklarındaki Mineral Madde Değişimi. ADÜ ZİRAAT DERG. 2025;22(2):191-202.