Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 256 - 263, 25.06.2020
https://doi.org/10.37094/adyujsci.515011

Öz

Kaynakça

  • [1] Miller, K.S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley &Sons, New York, 1993.
  • [2] Kilbas, A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Elsevier, San Diego, 2006.
  • [3] Podlubny, I., Fractional Differential Equations, Academic Press,San Diego, 1999.
  • [4] Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65-70, 2014.
  • [5] Abdeljawad, T., On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279, 57-66, 2015.
  • [6] Cenesiz, Y., Kurt, A., Tasbozan, O., On the New Solutions of the Conformable Time Fractional Generalized Hirota-Satsuma Coupled KdV System, Annals of West University of Timisoara-Mathematics and Computer Science, 55(1), 37-50, 2017.
  • [7] Tasbozan, O., Senol, M., Kurt, A., Ozkan, O., New solutions of fractional Drinfeld-Sokolov-Wilson system in shallow water waves, Ocean Engineering, 161, 62-68, 2018.
  • [8] Tasbozan, O., Cenesiz, Y., Kurt, A., Baleanu, D., New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method, Open Physics, 15(1), 647-651, 2017.
  • [9] Kurt, A., Tasbozan, O., Baleanu, D., New solutions for conformable fractional Nizhnik-Novikov-Veselov system via G′/G expansion method and homotopy analysis methods, Optical and Quantum Electronics, 49(10), 333, 2017.
  • [10] Korkmaz, A., Explicit exact solutions to some one-dimensional conformable time fractional equations, Waves in Random and Complex Media, 29(1), 124-137, 2019.
  • [11] Rosales, J.J., Godnez, F.A., Banda, V., Valencia, G.H., Analysis of the Drude model in view of the conformable derivative, Optik, 178, 1010-1015, 2019.
  • [12] Srivastava, H.M., Gunerhan, H., Analytical and approximate solutions of fractional-order susceptible-infected-recovered epidemic model of childhood disease, Mathematical Methods in the Applied Sciences, 42(3), 935-941, 2019.
  • [13] Sabiu, J., Jibril, A., Gadu, A.M., New exact solution for the (3 +1)conformable space time fractional modified Kortewegde-Vries equations via Sine-Cosine Method, Journal of Taibah University for Science, 13(1), 91-95, 2019.
  • [14] Fitzhugh, R., Impulse and physiological states in models of nerve membrane, Biophys. J., 1, 445-466, 1961.
  • [15] Nagumo, J.S., Arimoto, S., Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc. IRE, 50, 2061-2070, 1962.
  • [16] Aronson, D.G., Weinberger, H.F., Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30, 33-76, 1978.
  • [17] Yan, C., A simple transformation for nonlinear waves, Physics Letters A, 224(1), 77, 1996.
  • [18] Cenesiz, Y., Kurt, A., New fractional complex transform for conformable fractional partial differential equations, Journal of Applied Mathematics, Statistics and Informatics, 12, 2, 2016.
  • [19] Rubinstein, J., Sine-Gordon Equation, Journal of Mathematical Physics, 11(1), 258-266, 1970.

The New Travelling Wave Solutions of Time Fractional Fitzhugh-Nagumo Equation with Sine-Gordon Expansion Method

Yıl 2020, , 256 - 263, 25.06.2020
https://doi.org/10.37094/adyujsci.515011

Öz

    Authors aimed to employ the sine-Gordon expansion method to acquire the new exact solutions of fractional Fitzhugh-Nagumo equation which is a stripped type of the Hodgkin-Huxley model that expresses in extensive way activation and deactivation dynamics of neuron spiking. By using the wave transformations, by the practicality of chain rule and applicability of the conformable fractional derivative, the fractional nonlinear partial differential equation (FNPDE) changes to a nonlinear ordinary differential equation. So the exact solution of the considered equation can be obtained correctly with the aid of efficient and reliable analytical techniques.

Kaynakça

  • [1] Miller, K.S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley &Sons, New York, 1993.
  • [2] Kilbas, A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Elsevier, San Diego, 2006.
  • [3] Podlubny, I., Fractional Differential Equations, Academic Press,San Diego, 1999.
  • [4] Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65-70, 2014.
  • [5] Abdeljawad, T., On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279, 57-66, 2015.
  • [6] Cenesiz, Y., Kurt, A., Tasbozan, O., On the New Solutions of the Conformable Time Fractional Generalized Hirota-Satsuma Coupled KdV System, Annals of West University of Timisoara-Mathematics and Computer Science, 55(1), 37-50, 2017.
  • [7] Tasbozan, O., Senol, M., Kurt, A., Ozkan, O., New solutions of fractional Drinfeld-Sokolov-Wilson system in shallow water waves, Ocean Engineering, 161, 62-68, 2018.
  • [8] Tasbozan, O., Cenesiz, Y., Kurt, A., Baleanu, D., New analytical solutions for conformable fractional PDEs arising in mathematical physics by exp-function method, Open Physics, 15(1), 647-651, 2017.
  • [9] Kurt, A., Tasbozan, O., Baleanu, D., New solutions for conformable fractional Nizhnik-Novikov-Veselov system via G′/G expansion method and homotopy analysis methods, Optical and Quantum Electronics, 49(10), 333, 2017.
  • [10] Korkmaz, A., Explicit exact solutions to some one-dimensional conformable time fractional equations, Waves in Random and Complex Media, 29(1), 124-137, 2019.
  • [11] Rosales, J.J., Godnez, F.A., Banda, V., Valencia, G.H., Analysis of the Drude model in view of the conformable derivative, Optik, 178, 1010-1015, 2019.
  • [12] Srivastava, H.M., Gunerhan, H., Analytical and approximate solutions of fractional-order susceptible-infected-recovered epidemic model of childhood disease, Mathematical Methods in the Applied Sciences, 42(3), 935-941, 2019.
  • [13] Sabiu, J., Jibril, A., Gadu, A.M., New exact solution for the (3 +1)conformable space time fractional modified Kortewegde-Vries equations via Sine-Cosine Method, Journal of Taibah University for Science, 13(1), 91-95, 2019.
  • [14] Fitzhugh, R., Impulse and physiological states in models of nerve membrane, Biophys. J., 1, 445-466, 1961.
  • [15] Nagumo, J.S., Arimoto, S., Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc. IRE, 50, 2061-2070, 1962.
  • [16] Aronson, D.G., Weinberger, H.F., Multidimensional nonlinear diffusion arising in population genetics, Adv. Math., 30, 33-76, 1978.
  • [17] Yan, C., A simple transformation for nonlinear waves, Physics Letters A, 224(1), 77, 1996.
  • [18] Cenesiz, Y., Kurt, A., New fractional complex transform for conformable fractional partial differential equations, Journal of Applied Mathematics, Statistics and Informatics, 12, 2, 2016.
  • [19] Rubinstein, J., Sine-Gordon Equation, Journal of Mathematical Physics, 11(1), 258-266, 1970.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

Orkun Taşbozan 0000-0001-5003-6341

Ali Kurt 0000-0002-0617-6037

Yayımlanma Tarihi 25 Haziran 2020
Gönderilme Tarihi 19 Ocak 2019
Kabul Tarihi 21 Mart 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Taşbozan, O., & Kurt, A. (2020). The New Travelling Wave Solutions of Time Fractional Fitzhugh-Nagumo Equation with Sine-Gordon Expansion Method. Adıyaman University Journal of Science, 10(1), 256-263. https://doi.org/10.37094/adyujsci.515011
AMA Taşbozan O, Kurt A. The New Travelling Wave Solutions of Time Fractional Fitzhugh-Nagumo Equation with Sine-Gordon Expansion Method. ADYU J SCI. Haziran 2020;10(1):256-263. doi:10.37094/adyujsci.515011
Chicago Taşbozan, Orkun, ve Ali Kurt. “The New Travelling Wave Solutions of Time Fractional Fitzhugh-Nagumo Equation With Sine-Gordon Expansion Method”. Adıyaman University Journal of Science 10, sy. 1 (Haziran 2020): 256-63. https://doi.org/10.37094/adyujsci.515011.
EndNote Taşbozan O, Kurt A (01 Haziran 2020) The New Travelling Wave Solutions of Time Fractional Fitzhugh-Nagumo Equation with Sine-Gordon Expansion Method. Adıyaman University Journal of Science 10 1 256–263.
IEEE O. Taşbozan ve A. Kurt, “The New Travelling Wave Solutions of Time Fractional Fitzhugh-Nagumo Equation with Sine-Gordon Expansion Method”, ADYU J SCI, c. 10, sy. 1, ss. 256–263, 2020, doi: 10.37094/adyujsci.515011.
ISNAD Taşbozan, Orkun - Kurt, Ali. “The New Travelling Wave Solutions of Time Fractional Fitzhugh-Nagumo Equation With Sine-Gordon Expansion Method”. Adıyaman University Journal of Science 10/1 (Haziran 2020), 256-263. https://doi.org/10.37094/adyujsci.515011.
JAMA Taşbozan O, Kurt A. The New Travelling Wave Solutions of Time Fractional Fitzhugh-Nagumo Equation with Sine-Gordon Expansion Method. ADYU J SCI. 2020;10:256–263.
MLA Taşbozan, Orkun ve Ali Kurt. “The New Travelling Wave Solutions of Time Fractional Fitzhugh-Nagumo Equation With Sine-Gordon Expansion Method”. Adıyaman University Journal of Science, c. 10, sy. 1, 2020, ss. 256-63, doi:10.37094/adyujsci.515011.
Vancouver Taşbozan O, Kurt A. The New Travelling Wave Solutions of Time Fractional Fitzhugh-Nagumo Equation with Sine-Gordon Expansion Method. ADYU J SCI. 2020;10(1):256-63.

...