Olasılıksal Atomik Yarıçap Tanımı: Taban Durumu Hidrojen Benzeri Atomlara Uygulanması
Yıl 2020,
, 608 - 619, 30.12.2020
Fatih Mehmet Avcu
,
Serkan Alagöz
Öz
Kimya ve Fizik alanında atomların büyüklüğünü ifade etmek için birkaç atom yarıçapı kavramı önerilmiştir. Bu çalışmada, atomik yarıçap tanımları incelenmiş, olasılık ölçüsüne dayanan ve en dıştaki elektronun hidrojen benzeri bir atomun çekirdeği ile merkezlenmiş küresel bir hacimde olma olasılığını dikkate alan olasılıksal bir atomik yarıçap kavramını sunulmuştur. Bu olasılık ölçüsüne bağlı olarak, temel durum hidrojen atomu için %99 olasılık ile atomik yarıçapı hesaplanmış ve bunun hidrojen benzeri atomik sistemler için yorumlanmıştır.
Kaynakça
- [1] Zettili, N., Quantum mechanics: concepts and applications, 2nd ed., 408 pp, Wiley, 2013.
- [2] Adamson, A.W., Advanced inorganic chemistry. By F.A. Cotton and G. Wilkinson, Inorganic Chemistry, 2 (3), 665–665, 1963.
- [3] Bragg, W.L., The arrangement of atoms in crystals, Nature, 106 (2675), 725–725, 1921. [4] Wyckoff, R.W.G., On the hypothesis of constant atomic radii, Proceedings of the
National Academy of Sciences of the United States of America, 9 (2), 33–38, 1923.
- [5] Huggins, M.L., Atomic radii I, Physical. Review, 19 (4), 346–353, 1922.
- [6] Michels, A., De Boer, J., Bijl, A., Remarks concerning molecural interaction and their influence on the polarisability, Physica, 4 (10), 981–994, 1937.
- [7] Montgomery, H.E., Sen, K.D., Electron density and its derivatives at the nucleus for spherically confined hydrogen atom, International Journal of Quantum Chemistry, 109 (4), 688– 692, 2009.
- [8] Xu, H., Qu, J., Zhang, M., Yan, Y., Sun, X., Zheng, Y., Qiu, M., Liu L., The linear relationship derived from the deposition potential of Pb–Ln alloy and atomic radius, New Journal of Chemistry, 42 (20), 16533–16541, 2018.
- [9] Szarek, P., Witkowski, M., Woźniak, A.P., Unconventional look at the diameters of quantum systems: could the characteristic atomic radius be interpreted as a reactivity measure, The Journal of Physical Chemistry C, 123 (18), 11572–11580, 2019.
- [10] French, S.J., Nature of the chemical bond. second edition, revised (Pauling, Linus), Journal of Chemical Education, 17 (11), 551, 1940.
- [11] Sommerfeld, A., Welker, H., Künstliche Grenzbedingungen beim Kepler problem, Annalen der Physik, 424 (1–2), 56–65, 1938.
- [12] Varshni, Y.P., Critical cage radii for a confined hydrogen atom, Journal of Physics B: Atomic, Molecular and Optical Physics, 31 (13), 2849–2856, 1998.
- [13] Gill, P.M.W., Johnson, B.G., Pople, J.A.A., Standard grid for density functional calculations, Chemical Physics Letters, 209 (5), 506–512, 1993.
- [14] Gill, P.M.W., Johnson, B.G., Pople, J.A., Two-electron repulsion integrals over gaussian s functions, International Journal of Quantum Chemistry, 40 (6), 1991.
[15] Slater, J.C., Atomic shielding constants, Physical Review, 36 (1), 57–64, 1930.
- [16] Tang, C.L., Fundamentals of quantum mechanics: for solid state electronics and optics, Cambridge University Press, 224 pp, 2005.
- [17] Griffiths, D.J., Schroeter, D.F., Introduction to quantum mechanics 3rd ed., Cambridge University Press, 495 pp, 2018.
- [18] Rogers, G.L.A., Visual demonstration of the simple quantum theory of the hydrogen atom, European Journal of Physics, 15 (3), 110–110, 1994.
A Probabilistic Atomic Radius Definition: Application to Ground State Hydrogen-Like Atoms
Yıl 2020,
, 608 - 619, 30.12.2020
Fatih Mehmet Avcu
,
Serkan Alagöz
Öz
Several atomic radius concepts were proposed to express size of atoms in chemistry and physics. This study briefly surveys widely used definitions of atomic radiuses and introduces a probabilistic atomic radius concept that is based on the probability measure, which considers probability of the outermost electron to be in a spherical volume that is centered by nucleus of a hydrogen-like atom. Depending on this probability measure, 99% probabilistic atomic radius is calculated for a ground state hydrogen atom and its interpretation for hydrogen-like atomic systems is discussed.
Kaynakça
- [1] Zettili, N., Quantum mechanics: concepts and applications, 2nd ed., 408 pp, Wiley, 2013.
- [2] Adamson, A.W., Advanced inorganic chemistry. By F.A. Cotton and G. Wilkinson, Inorganic Chemistry, 2 (3), 665–665, 1963.
- [3] Bragg, W.L., The arrangement of atoms in crystals, Nature, 106 (2675), 725–725, 1921. [4] Wyckoff, R.W.G., On the hypothesis of constant atomic radii, Proceedings of the
National Academy of Sciences of the United States of America, 9 (2), 33–38, 1923.
- [5] Huggins, M.L., Atomic radii I, Physical. Review, 19 (4), 346–353, 1922.
- [6] Michels, A., De Boer, J., Bijl, A., Remarks concerning molecural interaction and their influence on the polarisability, Physica, 4 (10), 981–994, 1937.
- [7] Montgomery, H.E., Sen, K.D., Electron density and its derivatives at the nucleus for spherically confined hydrogen atom, International Journal of Quantum Chemistry, 109 (4), 688– 692, 2009.
- [8] Xu, H., Qu, J., Zhang, M., Yan, Y., Sun, X., Zheng, Y., Qiu, M., Liu L., The linear relationship derived from the deposition potential of Pb–Ln alloy and atomic radius, New Journal of Chemistry, 42 (20), 16533–16541, 2018.
- [9] Szarek, P., Witkowski, M., Woźniak, A.P., Unconventional look at the diameters of quantum systems: could the characteristic atomic radius be interpreted as a reactivity measure, The Journal of Physical Chemistry C, 123 (18), 11572–11580, 2019.
- [10] French, S.J., Nature of the chemical bond. second edition, revised (Pauling, Linus), Journal of Chemical Education, 17 (11), 551, 1940.
- [11] Sommerfeld, A., Welker, H., Künstliche Grenzbedingungen beim Kepler problem, Annalen der Physik, 424 (1–2), 56–65, 1938.
- [12] Varshni, Y.P., Critical cage radii for a confined hydrogen atom, Journal of Physics B: Atomic, Molecular and Optical Physics, 31 (13), 2849–2856, 1998.
- [13] Gill, P.M.W., Johnson, B.G., Pople, J.A.A., Standard grid for density functional calculations, Chemical Physics Letters, 209 (5), 506–512, 1993.
- [14] Gill, P.M.W., Johnson, B.G., Pople, J.A., Two-electron repulsion integrals over gaussian s functions, International Journal of Quantum Chemistry, 40 (6), 1991.
[15] Slater, J.C., Atomic shielding constants, Physical Review, 36 (1), 57–64, 1930.
- [16] Tang, C.L., Fundamentals of quantum mechanics: for solid state electronics and optics, Cambridge University Press, 224 pp, 2005.
- [17] Griffiths, D.J., Schroeter, D.F., Introduction to quantum mechanics 3rd ed., Cambridge University Press, 495 pp, 2018.
- [18] Rogers, G.L.A., Visual demonstration of the simple quantum theory of the hydrogen atom, European Journal of Physics, 15 (3), 110–110, 1994.