Araştırma Makalesi
BibTex RIS Kaynak Göster

Some Properties of $\oplus -$ Cofinitely $\delta -$s Supplemented Modules

Yıl 2019, Cilt: 9 Sayı: 2, 303 - 313, 30.12.2019
https://doi.org/10.37094/adyujsci.476813

Öz

In
this paper, we study the properties generalized $\oplus -$ cofinitely $\delta
-$ supplemented modules or briefly  $\oplus -gcof_{\delta
}-$ supplemented modules. We show that any direct sum of $\oplus
-gcof_{\delta}- $ supplemented modules is a  $\oplus -gcof_{\delta }-$ supplemented
module. If $M$ is a $\oplus -gcof_{\delta }-$ supplemented module with
SSP, then every direct summand of $M$ is $\oplus -gcof_{\delta }-$ supplemented.

Kaynakça

  • [1] Zhou, Y., Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloqium, 7(3), 305-318, 2000.
  • [2] Mohamed, S.H., Müller, B.J., Continuous and Discrete Modules, London Mathematical Society, Cambridge University Press, Cambridge, 1990.
  • [3] Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.
  • [4] Koşan, M.T., \delta-lifting and \delta-supplemented modules, Algebra Colloqium, 14(1), 53-60, 2007.
  • [5] Wang, Y., \delta-small submodules and \delta-supplemented Modules, International Journal of Mathematics and Mathematical Sciences, Article ID 58132, 8 pages, 2007.
  • [6] Ungor, B., Halıcıoğlu, S., Harmancı, A., On a class of \delta-supplemented Modules, Bulletin of the Malaysian Mathematical Sciences Society (2), 37(3), 703-717, 2014.
  • [7] Alizade, R., Bilhan, G., Smith, P.F., Modules whose maximal submodules have supplements, Communications in Algebra, 29, 2389-2405, 2001.
  • [8] Harmancı, A., Keskin, D., Smith, P.F., On \oplus-supplemented modules, Acta Mathematica Hungarica, 83, 161-169, 1999.
  • [9] Çalışıcı, H., Pancar, A., \oplus-cofinitely supplemented modules, Czechoslovak Mathematical Journal, 54 (129), 1083-1088, 2004.
  • [10] Wang, Y., Sun, Q., A note on \oplus-cofinitely supplemented modules, International Journal of Mathematics and Mathematical Sciences, Article ID 10836, 5 pages, 2007.
  • [11] Zeng, Q., \oplus-cofinitely supplemented modules, Southeast Asian Bulletin of Mathematics, 33, 805-819, 2009.
  • [12] Nişancı, B., Pancar, A., On generalization of \oplus-cofinitely supplemented modules, Ukrainian Mathematical Journal, 62(2), 203-209, 2010.
  • [13] Thuyet, L.V., Koşan, M.T., Quynh, T.C., On \delta-cofinitely semiperfect modules, Acta Mathematica Vietnamica, 33(2), 197-207, 2008.
  • [14] Alattass, A.Ö., Cofinitely \delta_M-supplemented and cofinitely \delta_M-semiperfect modules, International Journal of Algebra, 5(32), 1575-1588, 2011.
  • [15] Al-Takhman, K., Cofinitely \delta-supplemented and cofinitely \delta-semiperfect modules, International Journal of Algebra, 1(12), 601-613, 2007.
  • [16] Talebi, Y., Talaee, B., On generalized \delta-supplemented modules, Vietnam Journal of Mathematics, 37(4), 515-525, 2009.
  • [17] Yüzbaşı, F., Eren, Ş., Generalized cofinitely \delta-semiperfect modules, Analele Ştiinţ. University of Alexandru Ioan Cuza Iaşi Secţ. I. Mathematics, 59(2), 269-280, 2013.
  • [18] Özcan, A.Ç., Harmancı, A., Smith, P.F., Duo modules, Glasgow Mathematical Journal, Trust, 48, 533-545, 2006.
  • [19] Büyükaşık, E., Demirci, Y.M., Weakly distributive modules, applications to supplement submodules, Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 120 (5), 525-534, 2010.

Dual Sonlu Tümlenmiş Modüllerin Bazı Özellikleri

Yıl 2019, Cilt: 9 Sayı: 2, 303 - 313, 30.12.2019
https://doi.org/10.37094/adyujsci.476813

Öz

Bu çalışmada, genelleştirilmiş dual sonlu tümlenmiş modüllerin özellikleri çalışıldı. Bu modüller kısaca  ile gösterildi. Genelleştirilmiş dual sonlu tümlenmiş modüllerin keyfi toplamının da genelleştirilmiş dual sonlu tümlenmiş modül olduğu gösterildi.  modülünün direkt toplam terimlerinin toplama özelliğine sahip (DDT) genelleştirilmiş dual sonlu tümlenmiş bir modül olması durumunda  modülünün her bir direkt toplam teriminin de genelleştirilmiş dual sonlu tümlenmiş modül olduğu ispatlandı.

Kaynakça

  • [1] Zhou, Y., Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloqium, 7(3), 305-318, 2000.
  • [2] Mohamed, S.H., Müller, B.J., Continuous and Discrete Modules, London Mathematical Society, Cambridge University Press, Cambridge, 1990.
  • [3] Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.
  • [4] Koşan, M.T., \delta-lifting and \delta-supplemented modules, Algebra Colloqium, 14(1), 53-60, 2007.
  • [5] Wang, Y., \delta-small submodules and \delta-supplemented Modules, International Journal of Mathematics and Mathematical Sciences, Article ID 58132, 8 pages, 2007.
  • [6] Ungor, B., Halıcıoğlu, S., Harmancı, A., On a class of \delta-supplemented Modules, Bulletin of the Malaysian Mathematical Sciences Society (2), 37(3), 703-717, 2014.
  • [7] Alizade, R., Bilhan, G., Smith, P.F., Modules whose maximal submodules have supplements, Communications in Algebra, 29, 2389-2405, 2001.
  • [8] Harmancı, A., Keskin, D., Smith, P.F., On \oplus-supplemented modules, Acta Mathematica Hungarica, 83, 161-169, 1999.
  • [9] Çalışıcı, H., Pancar, A., \oplus-cofinitely supplemented modules, Czechoslovak Mathematical Journal, 54 (129), 1083-1088, 2004.
  • [10] Wang, Y., Sun, Q., A note on \oplus-cofinitely supplemented modules, International Journal of Mathematics and Mathematical Sciences, Article ID 10836, 5 pages, 2007.
  • [11] Zeng, Q., \oplus-cofinitely supplemented modules, Southeast Asian Bulletin of Mathematics, 33, 805-819, 2009.
  • [12] Nişancı, B., Pancar, A., On generalization of \oplus-cofinitely supplemented modules, Ukrainian Mathematical Journal, 62(2), 203-209, 2010.
  • [13] Thuyet, L.V., Koşan, M.T., Quynh, T.C., On \delta-cofinitely semiperfect modules, Acta Mathematica Vietnamica, 33(2), 197-207, 2008.
  • [14] Alattass, A.Ö., Cofinitely \delta_M-supplemented and cofinitely \delta_M-semiperfect modules, International Journal of Algebra, 5(32), 1575-1588, 2011.
  • [15] Al-Takhman, K., Cofinitely \delta-supplemented and cofinitely \delta-semiperfect modules, International Journal of Algebra, 1(12), 601-613, 2007.
  • [16] Talebi, Y., Talaee, B., On generalized \delta-supplemented modules, Vietnam Journal of Mathematics, 37(4), 515-525, 2009.
  • [17] Yüzbaşı, F., Eren, Ş., Generalized cofinitely \delta-semiperfect modules, Analele Ştiinţ. University of Alexandru Ioan Cuza Iaşi Secţ. I. Mathematics, 59(2), 269-280, 2013.
  • [18] Özcan, A.Ç., Harmancı, A., Smith, P.F., Duo modules, Glasgow Mathematical Journal, Trust, 48, 533-545, 2006.
  • [19] Büyükaşık, E., Demirci, Y.M., Weakly distributive modules, applications to supplement submodules, Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 120 (5), 525-534, 2010.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematiksel Fizik, Matematik
Bölüm Matematik
Yazarlar

Figen Eryılmaz

Yayımlanma Tarihi 30 Aralık 2019
Gönderilme Tarihi 2 Kasım 2018
Kabul Tarihi 18 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 2

Kaynak Göster

APA Eryılmaz, F. (2019). Some Properties of $\oplus -$ Cofinitely $\delta -$s Supplemented Modules. Adıyaman University Journal of Science, 9(2), 303-313. https://doi.org/10.37094/adyujsci.476813
AMA Eryılmaz F. Some Properties of $\oplus -$ Cofinitely $\delta -$s Supplemented Modules. ADYU J SCI. Aralık 2019;9(2):303-313. doi:10.37094/adyujsci.476813
Chicago Eryılmaz, Figen. “Some Properties of $\oplus -$ Cofinitely $\delta -$s Supplemented Modules”. Adıyaman University Journal of Science 9, sy. 2 (Aralık 2019): 303-13. https://doi.org/10.37094/adyujsci.476813.
EndNote Eryılmaz F (01 Aralık 2019) Some Properties of $\oplus -$ Cofinitely $\delta -$s Supplemented Modules. Adıyaman University Journal of Science 9 2 303–313.
IEEE F. Eryılmaz, “Some Properties of $\oplus -$ Cofinitely $\delta -$s Supplemented Modules”, ADYU J SCI, c. 9, sy. 2, ss. 303–313, 2019, doi: 10.37094/adyujsci.476813.
ISNAD Eryılmaz, Figen. “Some Properties of $\oplus -$ Cofinitely $\delta -$s Supplemented Modules”. Adıyaman University Journal of Science 9/2 (Aralık 2019), 303-313. https://doi.org/10.37094/adyujsci.476813.
JAMA Eryılmaz F. Some Properties of $\oplus -$ Cofinitely $\delta -$s Supplemented Modules. ADYU J SCI. 2019;9:303–313.
MLA Eryılmaz, Figen. “Some Properties of $\oplus -$ Cofinitely $\delta -$s Supplemented Modules”. Adıyaman University Journal of Science, c. 9, sy. 2, 2019, ss. 303-1, doi:10.37094/adyujsci.476813.
Vancouver Eryılmaz F. Some Properties of $\oplus -$ Cofinitely $\delta -$s Supplemented Modules. ADYU J SCI. 2019;9(2):303-1.

...