Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 10 Sayı: 1, 218 - 225, 25.06.2020
https://doi.org/10.37094/adyujsci.546724

Öz

Kaynakça

  • [1] Hilger, S., Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten, PhD Thesis, 1989.
  • [2] Hilger, S., Analysis on measure chains—a unified approach to continuous and discrete calculus, Results in Mathematics 18, 1-2, 18-56, 1990.
  • [3] Fast, H., Sur la convergence statistique, Colloquium Mathematicae, 2(3-4), 1951.
  • [4] Schoenberg, I.J,.The integrability of certain functions and related summability methods, The American Mathematical Monthly, 66(5), 361-775, 1959.
  • [5] Fridy, J.A., On statistical convergence, Analysis,5(4), 301-314, 1985.
  • [6] Seyyidoğlu, M.S., Tan, N.Ö,. A note on statistical convergence on time scale, Journal of Inequalities and Applications, 2012(1), 219, 2012.
  • [7] Altın, Y., Koyunbakan, H., Yılmaz, E., Uniform statistical convergence on time scales, Journal of Applied Mathematics, vol. 2014, 6 pages, 2014.
  • [8] Yılmaz, E., Altın, A., Koyunbakan, H., λ-Statistical convergence on time scales, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 23, 69-78, 2016.
  • [9] Ceylan, T., Duman, O., Fundamental Properties of Statistical Convergence and Lacunary Statistical Convergence on Time Scales, Filomat, 31(14), 2017.

On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale

Yıl 2020, Cilt: 10 Sayı: 1, 218 - 225, 25.06.2020
https://doi.org/10.37094/adyujsci.546724

Öz

In this article, we define the concept of $\Delta$-Cauchy$, \Delta$-uniform convergence and $\Delta$-pointwise convergence of a family of functions $\{f_{j}\}_{j\in \mathbb{J}}$, where $\mathbb{J}$ is a time scale. We study the relationships between these notions. Moreover, we introduced sufficient conditions for interchangeability of $\Delta$-limitation with Riemann $\Delta$-integration or $\Delta$-differentiation. Also, we obtain the analogue of the well-known Dini's Theorem.

Kaynakça

  • [1] Hilger, S., Ein maßkettenkalkül mit anwendung auf zentrumsmannigfaltigkeiten, PhD Thesis, 1989.
  • [2] Hilger, S., Analysis on measure chains—a unified approach to continuous and discrete calculus, Results in Mathematics 18, 1-2, 18-56, 1990.
  • [3] Fast, H., Sur la convergence statistique, Colloquium Mathematicae, 2(3-4), 1951.
  • [4] Schoenberg, I.J,.The integrability of certain functions and related summability methods, The American Mathematical Monthly, 66(5), 361-775, 1959.
  • [5] Fridy, J.A., On statistical convergence, Analysis,5(4), 301-314, 1985.
  • [6] Seyyidoğlu, M.S., Tan, N.Ö,. A note on statistical convergence on time scale, Journal of Inequalities and Applications, 2012(1), 219, 2012.
  • [7] Altın, Y., Koyunbakan, H., Yılmaz, E., Uniform statistical convergence on time scales, Journal of Applied Mathematics, vol. 2014, 6 pages, 2014.
  • [8] Yılmaz, E., Altın, A., Koyunbakan, H., λ-Statistical convergence on time scales, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 23, 69-78, 2016.
  • [9] Ceylan, T., Duman, O., Fundamental Properties of Statistical Convergence and Lacunary Statistical Convergence on Time Scales, Filomat, 31(14), 2017.
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

Mustafa Seyyit Seyyidoğlu 0000-0001-9129-1373

Ayşe Karadaş Bu kişi benim

Yayımlanma Tarihi 25 Haziran 2020
Gönderilme Tarihi 29 Mart 2019
Kabul Tarihi 3 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 1

Kaynak Göster

APA Seyyidoğlu, M. S., & Karadaş, A. (2020). On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale. Adıyaman University Journal of Science, 10(1), 218-225. https://doi.org/10.37094/adyujsci.546724
AMA Seyyidoğlu MS, Karadaş A. On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale. ADYU J SCI. Haziran 2020;10(1):218-225. doi:10.37094/adyujsci.546724
Chicago Seyyidoğlu, Mustafa Seyyit, ve Ayşe Karadaş. “On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale”. Adıyaman University Journal of Science 10, sy. 1 (Haziran 2020): 218-25. https://doi.org/10.37094/adyujsci.546724.
EndNote Seyyidoğlu MS, Karadaş A (01 Haziran 2020) On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale. Adıyaman University Journal of Science 10 1 218–225.
IEEE M. S. Seyyidoğlu ve A. Karadaş, “On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale”, ADYU J SCI, c. 10, sy. 1, ss. 218–225, 2020, doi: 10.37094/adyujsci.546724.
ISNAD Seyyidoğlu, Mustafa Seyyit - Karadaş, Ayşe. “On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale”. Adıyaman University Journal of Science 10/1 (Haziran 2020), 218-225. https://doi.org/10.37094/adyujsci.546724.
JAMA Seyyidoğlu MS, Karadaş A. On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale. ADYU J SCI. 2020;10:218–225.
MLA Seyyidoğlu, Mustafa Seyyit ve Ayşe Karadaş. “On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale”. Adıyaman University Journal of Science, c. 10, sy. 1, 2020, ss. 218-25, doi:10.37094/adyujsci.546724.
Vancouver Seyyidoğlu MS, Karadaş A. On $\Delta$-Uniform and $\Delta$-Pointwise Convergence on Time Scale. ADYU J SCI. 2020;10(1):218-25.

...