Araştırma Makalesi
BibTex RIS Kaynak Göster

Congruence of Curves in Weyl-Otsuki Spaces

Yıl 2024, Cilt: 14 Sayı: 2, 123 - 139, 31.12.2024
https://doi.org/10.37094/adyujsci.1493094

Öz

In this paper, we study the congruence of curves in Weyl-Otsuki spaces using Ricci's coefficients of that congruence in the orthogonal case. We first prove that Ricci’s coefficients determine the regular general connection of an Otsuki space. Then, we give the condition for these coefficients in Weyl-Otsuki spaces to be skew-symmetric in the first two indices as in Riemannian spaces. We obtain the necessary and sufficient conditions for the curves of congruence to be geodesic, normal, and irrotational. Finally, we prove that if a congruence satisfies the equation, and any two of the conditions to be geodesic, normal, and irrotational, then it also satisfies the other third one.

Kaynakça

  • [1] Otsuki, T., Tangent bundles of order 2 and general connections, Mathematical Journal of Okayama University, 8, 143-179, 1958.
  • [2] Otsuki, T., On general connections I, Mathematical Journal of Okayama University, 9, 99-164, 1960.
  • [3] Otsuki, T., On general connections II, Mathematical Journal of Okayama University, 10, 113-124, 1961.
  • [4] Moor, A., Otsukische Übertragung mit rekurrentem masstensor, Acta Scientiarum Mathematicarum, 40, 129-142, 1978.
  • [5] Nadj, D.F., On curvatures of the Weyl-Otsuki spaces, Publicationes Mathematicae Debrecen, 28, 59-73, 1981.
  • [6] Nadj, D.F., Die Frenetformeln des Weyl-Otsukischen raumes, Publicationes Mathematicae Debrecen, 36 (1-4), 221-228, 1989.
  • [7] Nadj, D.F., On subspaces of Riemann-Otsuki space, Publications de l'Institut Mathématique Nouvelle Série, 30 (44), 53-58, 1981.
  • [8] Nadj, D.F., Autoparallel curves of Riemann-Otsuki spaces, Zbornik radova PMF Novi Sad, 13, 227-243, 1983.
  • [9] Nadj, D.F., The Gauss, Codazzi and Kühne equations of Riemann-Otsuki spaces, Acta Mathematica Hungarica , 44 (3-4), 255-260, 1984.
  • [10] Abe, N., General connections on vector bundles, Kodai Mathematical Journal, 8, 322-329, 1985.
  • [11] Abe, N., Geometry of certain first order differential operators and its applications to general connections, Kodai Mathematical Journal, 11, 205-223, 1988.
  • [12] Nagayama, H., A theory of general relativity by general connections I, TRU Mathematics, 20, 173-187, 1984.
  • [13] Nagayama, H., A theory of general relativity by general connections II, TRU Mathematics, 21, 287-317, 1985.
  • [14] Otsuki, T., A construction of spaces with general connections which have points swallowing geodesics, Mathematical Journal of Okayama University, 24, 157-165, 1982.
  • [15] Otsuki, T., A certain space-time metric and smooth general connections, Kodai Mathematical Journal, 8, 307-316, 1985.
  • [16] Otsuki, T., Singular point sets of a general connection and black holes, Mathematical Journal of Okayama University, 30, 199-211, 1988.
  • [17] Weatherburn, C.E., An introduction to Riemannian geometry and the tensor calculus, Cambridge University Press, 1966.

Weyl-Otsuki Uzaylarında Kongrüans Eğrileri

Yıl 2024, Cilt: 14 Sayı: 2, 123 - 139, 31.12.2024
https://doi.org/10.37094/adyujsci.1493094

Öz

Bu makalede Weyl-Otsuki uzaylarında kongrüans eğrilerini bu eğrilerin ortogonal olması durumda Ricci katsayılarını kullanarak inceledik. İlk olarak, Ricci katsayılarının bir Otsuki uzayının regüler genel koneksiyonunu belirlediğini gösterdik. Ardından Riemann uzaylarda olduğu gibi Weyl-Otsuki uzaylarında bu katsayıların ilk iki indisine göre ters-simetrik olma koşulunu verdik. Kongrüans eğrilerinin, sırasıyla, jeodezik, normal ve irrotasyonel olması için gerek ve yeter koşulları elde ettik. Son olarak bir kongrüans eğrisinin denklemi ile birlikte jeodezik, normal ve irrotasyonel olma koşullarından herhangi ikisini sağlaması durumunda diğer üçüncü koşulu da sağladığını kanıtladık.

Kaynakça

  • [1] Otsuki, T., Tangent bundles of order 2 and general connections, Mathematical Journal of Okayama University, 8, 143-179, 1958.
  • [2] Otsuki, T., On general connections I, Mathematical Journal of Okayama University, 9, 99-164, 1960.
  • [3] Otsuki, T., On general connections II, Mathematical Journal of Okayama University, 10, 113-124, 1961.
  • [4] Moor, A., Otsukische Übertragung mit rekurrentem masstensor, Acta Scientiarum Mathematicarum, 40, 129-142, 1978.
  • [5] Nadj, D.F., On curvatures of the Weyl-Otsuki spaces, Publicationes Mathematicae Debrecen, 28, 59-73, 1981.
  • [6] Nadj, D.F., Die Frenetformeln des Weyl-Otsukischen raumes, Publicationes Mathematicae Debrecen, 36 (1-4), 221-228, 1989.
  • [7] Nadj, D.F., On subspaces of Riemann-Otsuki space, Publications de l'Institut Mathématique Nouvelle Série, 30 (44), 53-58, 1981.
  • [8] Nadj, D.F., Autoparallel curves of Riemann-Otsuki spaces, Zbornik radova PMF Novi Sad, 13, 227-243, 1983.
  • [9] Nadj, D.F., The Gauss, Codazzi and Kühne equations of Riemann-Otsuki spaces, Acta Mathematica Hungarica , 44 (3-4), 255-260, 1984.
  • [10] Abe, N., General connections on vector bundles, Kodai Mathematical Journal, 8, 322-329, 1985.
  • [11] Abe, N., Geometry of certain first order differential operators and its applications to general connections, Kodai Mathematical Journal, 11, 205-223, 1988.
  • [12] Nagayama, H., A theory of general relativity by general connections I, TRU Mathematics, 20, 173-187, 1984.
  • [13] Nagayama, H., A theory of general relativity by general connections II, TRU Mathematics, 21, 287-317, 1985.
  • [14] Otsuki, T., A construction of spaces with general connections which have points swallowing geodesics, Mathematical Journal of Okayama University, 24, 157-165, 1982.
  • [15] Otsuki, T., A certain space-time metric and smooth general connections, Kodai Mathematical Journal, 8, 307-316, 1985.
  • [16] Otsuki, T., Singular point sets of a general connection and black holes, Mathematical Journal of Okayama University, 30, 199-211, 1988.
  • [17] Weatherburn, C.E., An introduction to Riemannian geometry and the tensor calculus, Cambridge University Press, 1966.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Matematik
Yazarlar

Beran Pirinççi 0000-0002-4692-9590

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 31 Mayıs 2024
Kabul Tarihi 21 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 2

Kaynak Göster

APA Pirinççi, B. (2024). Congruence of Curves in Weyl-Otsuki Spaces. Adıyaman University Journal of Science, 14(2), 123-139. https://doi.org/10.37094/adyujsci.1493094
AMA Pirinççi B. Congruence of Curves in Weyl-Otsuki Spaces. ADYU J SCI. Aralık 2024;14(2):123-139. doi:10.37094/adyujsci.1493094
Chicago Pirinççi, Beran. “Congruence of Curves in Weyl-Otsuki Spaces”. Adıyaman University Journal of Science 14, sy. 2 (Aralık 2024): 123-39. https://doi.org/10.37094/adyujsci.1493094.
EndNote Pirinççi B (01 Aralık 2024) Congruence of Curves in Weyl-Otsuki Spaces. Adıyaman University Journal of Science 14 2 123–139.
IEEE B. Pirinççi, “Congruence of Curves in Weyl-Otsuki Spaces”, ADYU J SCI, c. 14, sy. 2, ss. 123–139, 2024, doi: 10.37094/adyujsci.1493094.
ISNAD Pirinççi, Beran. “Congruence of Curves in Weyl-Otsuki Spaces”. Adıyaman University Journal of Science 14/2 (Aralık 2024), 123-139. https://doi.org/10.37094/adyujsci.1493094.
JAMA Pirinççi B. Congruence of Curves in Weyl-Otsuki Spaces. ADYU J SCI. 2024;14:123–139.
MLA Pirinççi, Beran. “Congruence of Curves in Weyl-Otsuki Spaces”. Adıyaman University Journal of Science, c. 14, sy. 2, 2024, ss. 123-39, doi:10.37094/adyujsci.1493094.
Vancouver Pirinççi B. Congruence of Curves in Weyl-Otsuki Spaces. ADYU J SCI. 2024;14(2):123-39.

...