Investigation of Biological Activities of Some Microalgae Extract Isolated from Kabakli Pond (Diyarbakır) Turkey
Yıl 2024,
Cilt: 14 Sayı: 2, 59 - 77, 31.12.2024
Feysel Çakmak
,
A. İsmail Özkan
,
Nesrin Haşimi
,
Özlem Demirci
,
Melike Ciniviz
,
Lokman Varışlı
,
Ersin Kılınç
,
Veysel Tolan
Öz
The antimicrobial, antioxidant and mutagenic activities of methanolic extracts of microalgae species isolated from Kabakli Pond (37° 55' 23N, 40°17' 40E, Diyarbakır) and identified as Chlorella vulgaris Beyerinck and Chroococcus limneticus Lemmermann were investigated. The highest antioxidant activity was observed in the ABTS•+ assay of C. vulgaris (36.63%) and C. limneticus (28.48%) at a concentration of 100 µg/ml concentration. The DPPH and CUPRAC assays showed weak activity. The antioxidant activity did not appear to be significant for either species when compared with the positive controls. C. vulgaris showed high antimicrobial activity with inhibition zone and MIC value against S. aureus. There seemed to be no mutagenic activities; however, C. limneticus showed an effect on the colony structure of S. typhimurium strain TA98. C. vulgaris has a good antimicrobial potential, whereas C. limneticus has relatively weak potential. C. limneticus a relatively has a higher antioxidant activity compared to C. vulgaris, but the activities of both extracts are weak compared to the controls. None of the tested extracts showed mutagenic activity against S. typhimurium TA98 at any of the concentrations. These organisms via different solvents or extraction systems since they may affect various biological systems.
Etik Beyan
We intend to publish an article entitled “Investigation of Biological Activities of Some Microalgae Extracts Isolated from Kabakli Pond (Diyarbakır) Turkey” by Feysel Çakmak, Ahmet İsmail Özkan, Nesrin Haşimi, Özlem Demirci, Melike Ciniviz, Lokman Varişli, Ersin KILINÇ and Veysel Tolan, in your esteemed journal as a research article.
On behalf of all the contributors I will act and guarantor and will correspond with the journal from this point onward.
We confirm that this work is original and has not been published previously, in identical or slightly modified form, nor has it been submitted to another journal for publication at the same time, proper citations to the previously reported works have been given, and, in case data /figures are quoted verbatim from some other publication, the required permission to do so has been obtained. All co- authors have been informed about the contents of the manuscript and its submission.
Destekleyen Kurum
Dicle üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü
Proje Numarası
DÜBAP Fen.17.020
Teşekkür
This Project was supported by the Dicle University, Coordinatorship of Scientific Research Projects (DUBAP) Fen.17.020.
Kaynakça
- [1] El-Asmy, A.A., Al-Abdeen, A.Z., El-Maaty, W.M.A., Mostafa, M.M., Synthesis and spectroscopic studies of 2,5-hexanedione bis(isonicotinylhydrazone) and its first raw transition metal complexes, Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 75, 1516–1522, 2010.
- [2] Sisman-Aydin, G., Microalgae Technology and Environmental Uses, Harran Üniversitesi Mühendislik Dergisi, 4, 81–92, 2019.
- [3] Falkowski, P.G., Katz, M.E., Knoll, A.H, Quigg, A., Raven, J.A., Schofield, O. et al., The evolution of modern eukaryotic phytoplankton, Science, 305, 354–360, 2004.
- [4] Massana, R., Terrado, R., Forn, I., Lovejoy, C., Pedros-Alio, C., Distribution and abundance of uncultured heterotrophic flagellates in the world oceans, Environmental Microbiology, 8, 1515–1522, 2006.
- [5] Fehling, J., Stoecker, D., Baldauf, S.L., Photosynthesis and the Eukaryote Tree of Life. Evolution of Primary Producers in the Sea, in: Falkowski, P.G. et al., Evolution of primary producers in the sea, 75-107, 2007.
- [6] Stern, R.F., Horak, A., Andrew, R.L., Coffroth, M.A., Andersen, R.A., Küpper, F.C., et al., Environmental Barcoding Reveals Massive Dinoflagellate Diversity in Marine Environments, PLoS One, 5, 2010.
- [7] Richmond, A., Handbook of Microalgal Culture. Oxford, UK: Blackwell Publishing Ltd., 2003.
- [8] Prarthana, J., Maruthi, K.R., Fresh Water Algae as a Potential Source of Bioactive Compounds for Aquaculture and Significance of Solvent System in Extraction of Antimicrobials, Asian Journal of Scientific Research, 12, 18–28, 2018.
- [9] Sathasivam, R., Radhakrishnan, R., Hashem, A., Abd_Allah, E.F., Microalgae metabolites: A rich source for food and medicine, Saudi Journal of Biological Sciences, 26, 709–722, 2019.
- [10] Landsberg, J.H., The effects of harmful algal blooms on aquatic organisms, Reviews in Fisheries Science, 10, 113–390, 2002.
- [11] Irigoien, X., Hulsman, J., Harris, R.P., Global biodiversity patterns of marine phytoplankton and zooplankton, Nature, 429, 863–867, 2004.
- [12] Caldwell, G.S., The influence of bioactive oxylipins from marine diatoms on invertebrate reproduction and development, Marine Drugs, 7, 367–400, 2009.
- [13] Alwathnani, H., Johansen, J.R., Cyanobacteria in Soils from a Mojave Desert Ecosystem, Monographs of the Western North American Naturalist, 5, 71–89, 2011.
- [14] Khan, M.I., Shin, J.H., Kim, J.D., The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products, Microbial Cell Factories,17:1, 2018.
- [15] Huang, S.S., Huang, G.J., Ho, Y.L., Lin, Y.H., Hung, H.J., Chang, T.N., et al. Antioxidant and antiproliferative activities of the four Hydrocotyle species from Taiwan, Botanical Studies, 49, 311–322, 2008.
- [16] Luna-Castro, S., Samaniego-Barrón, L., Serrano-Rubio, L.E, Ceballos-Olveral I., Avalos-Gómez, C., De La Garza, M., Lactoferrin: A Powerful Antimicrobial Protein Present in Milk. Advances in Dairy Research, 5:4, 2017.
- [17] Jaki, B., Orjala, J., Heilmann, J., Linden, A., Vogler, B., Sticher, O., Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune, Journal of Natural Products, 63, 339–343, 2000.
- [18] Volk, R.B., Girreser, U., Al-Refai, M., Laatsch, H., Bromoanaindolone, a novel antimicrobial exometabolite from the cyanobacterium Anabaena constricta, Journal of Natural Products Research, 23, 607–612, 2009.
- [19] Ghasemi, Y., Moradian, A., Mohagheghzadeh, A., Shokravi, S., Morowvat, M.H., Antifungal and Antibacterial Activity of the Microalgae Collected from Paddy Fields of Iran: Characterization of Antimicrobial Activity of Chroococcus disperses, Journal of Biological Sciences, 6, 904-910, 2007.
- [20] Silva-Stenico, M.E., Silva, C.S.P., Lorenzi, A.S., Shishido, T.K., Etchegaray A., Lira S.P., et al. Non-ribosomal peptides produced by Brazilian cyanobacterial isolates with antimicrobial activity, Microbiological Research, 166, 161–175, 2011.
- [21] Plaza, M., Santoyo, S., Jaime, L., García-Blairsy Reina, G., Herrero, M., Señoráns F.J., et al. Screening for bioactive compounds from algae, Journal of Pharmaceutical and Biomedical Analysis, 51, 450–455, 2010.
- [22] Çakmak F., Kabaklı Göleti’nin Bacillariophyta Dışı Planktonik Algleri Üzerine Bir Araştırma. Master Thesis, Dicle University Institute of Natural and Applied Sciences, 2013.
- [23] Prescott, G.W., Algae of the Western Great Lakes Area Hardcover. 1. Ed. Iowa: WM. C. Brown Company, 1973.
- [24] Corona, E., Fernandez-Acero, J. and Bartual, A., Screening study for antibacterial activity from Marine and freshwater microalgae, International Journal of Pharma and Bio Science, 8(1), 189-194, 2017.
- [25] Blois, M.S., Antioxidant determinations by the use of a stable free radical. Nature, 181,1199–1200, 1958.
- [26] Miller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V., Milner, A., A Novel Method for Measuring Antioxidant Capacity and its Application to Monitoring the Antioxidant Status in Premature Neonates, Clinical Science, 84, 407–412, 1993.
- [27] Apak, R., Güçlü, K., Özyürek, M., Karademir, S.E., Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, Journal of Agricultural and Food Chemistry, 52, 7970–7981, 2004.
- [28] National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility tests : approved standard : NCCLS document M2-A6. 6th ed. Wayne Penn.: NCCLS; 1997.
- [29] Levin, D.E., Yamasaki, E., Ames, B.N., A new Salmonella tester strain, TA97, for the detection of frameshift mutagens: A run of cytosines as a mutational hot-spot, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 94, 315–330, 1982.
- [30] Maron, D.M., Ames, B.N., Revised methods for the Salmonella mutagenicity test, Mutation Research/Environmental Mutagenesis and Related Subjects, 113, 173–215, 1983.
- [31] Taghavi Takyar, M.B., Haghighat Khajavi, S., Safari, R., Evaluation of antioxidant properties of Chlorella vulgaris and Spirulina platensis and their application in order to extend the shelf life of rainbow trout (Oncorhynchus mykiss) fillets during refrigerated storage, LWT- Food Science and Technology, 100, 244–249, 2019.
- [32] Hidhayati, N., Agustini, N.W.S., Widyagustina, D., Antimicrobial activity of ethanol fraction from cyanobacteria Chroococcus turgidus, IOP Conference Series: Earth and Environmental Science, 439 012046, 2020.
- [33] Bharanidharan, M., Sivasubramanian, V., Rama Raja, S., Nayagam, V., Evaluation of antioxidant and antimicrobial potential of cyanobacteria, Chroococcus turgidus (Kützing) Nägeli,. International Journal of Current Microbiology and Applied Sciences, 2, 300–305, 2013.
- [34] Arguelles, E., Total Phenolic Content and in Vitro Analysis of Antioxidant, Antibacterial, and Alpha-Glucosidase Inhibition Properties of Chroococcus Minitus (Kützing) Nageli (Chroococcales, Cyanobacteria), Journal of Faculty of Pharmacy of Ankara University, 46, 170–181, 2022.
- [35] Hamdy, O., Karim, A., Farouk Gheda, S., Ismail, G.A., Abo-Shady, A.M., Assistant of Phycology T. Phytochemical Screening and antioxidant activity of Chlorella vulgaris, Delta Journal of Science, 41, 81–91, 2020.
- [36] Hussein, H.J., Naji, S.S., Al-Khafaji, N.M.S., Antibacterial properties of the Chlorella vulgaris isolated from polluted water in Iraq, Journal of Pharmaceutical Sciences & Resesarc, 10(10), 2457–2460, 2018.
- [37] Zielinski, D., Fraczyk, J., Debowski, M., Zielinski, M., Kaminski, Z.J., Kregiel D., et al. Biological Activity of Hydrophilic Extract of Chlorella vulgaris Grown on Post-Fermentation Leachate from a Biogas Plant Supplied with Stillage and Maize Silage, Molecules, 25(8),1790, 2020.
- [38] Weisburger, J.H., Antimutagenesis and anticarcinogenesis, from the past to the future, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 480–481, 23–35, 2001.
- [39] Leme, D.M., Marin-Morales, M.A., Allium cepa test in environmental monitoring: A review on its application, Mutation Research/Reviews in Mutation Research, 682, 71–81, 2009.
- [40] Himuro, S., Ueno, S., Noguchi, N., Uchikawa, T., Watanabe, K., Safety evaluation of mutagenecity, acute and subacute toxicity study of Chlorella vulgaris CK-22 in rats, Fundamental Toxicology, Science, 1, 151–159, 2014.
- [41] Zainul Azlan, N., Abd Ghafar, N., Mohd Yusof, Y.A., Makpol, S., Toxicity study of Chlorella vulgaris water extract on female Sprague Dawley rats by using the Organization for Economic Cooperation and Development (OECD) Guideline 420, Journal Applied Phycology, 32, 3063–3075, 2020.
- [42] Wei, C.C., Yen, P.L., Chang, S.T., Cheng, P.L., Lo, Y.C., Liao, V.H.C., Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans, PLoS One, 11(6), e0157195, 2016.
- [43] Sawant, S.S., Mane, V.K., Nutritional profile, antioxidant, antimicrobial potential, and bioactives profile of chlorella emersonii KJ725233, Asian Journal of Pharmaceutical and Clinical Research, 11, 220–225, 2018.
- [44] Elshobary, M.E., El-Shenody, R.A., Ashour, M., Zabed, H.M., Qi, X., Antimicrobial and antioxidant characterization of bioactive components from Chlorococcum minutum, Food Bioscience, 35(4), 100567, 2020.
- [45] Flickinger, B.D., Huth, P.J., Dietary fats and oils: Technologies for improving cardiovascular health. Current Atherosclerosis Reports, 6, 468–476, 2004.
- [46] Yang, N., Zhang, Q., Chen, J., Wu, S., Chen, R., Yao, L., et al. Study on bioactive compounds of microalgae as antioxidants in a bibliometric analysis and visualization perspective, Frontiers in Plant Science, 14, 2023.
- [47] El-Fayoumy, E.A., Shanab, S.M.M., Gaballa, H.S., Tantawy, M.A., Shalaby E.A., Evaluation of antioxidant and anticancer activity of crude extract and different fractions of Chlorella vulgaris axenic culture grown under various concentrations of copper ions, BMC Complementary Medicine and Therapies, 21, 51, 2021.
Kabaklı Göleti'nden (Diyarbakır) İzole Edilen Bazı Mikroalg Ekstraktlarının Biyolojik Aktivitelerinin Araştırılması
Yıl 2024,
Cilt: 14 Sayı: 2, 59 - 77, 31.12.2024
Feysel Çakmak
,
A. İsmail Özkan
,
Nesrin Haşimi
,
Özlem Demirci
,
Melike Ciniviz
,
Lokman Varışlı
,
Ersin Kılınç
,
Veysel Tolan
Öz
Kabaklı Göleti'nden (37° 55' 23K, 40°17' 40D, Diyarbakır) izole edilen ve Chlorella vulgaris Beyerinck ve Chroococcus limneticus Lemmermann olarak tanımlanan mikroalg türlerinin metanol ekstraktlarının antimikrobiyal, antioksidan ve mutajenik aktiviteleri araştırıldı. En yüksek antioksidan aktivite, 100 µg/ml konsantrasyonunda C. vulgaris (%36,63) ve C. limneticus (%28,48) için ABTS•+ analizinde gözlendi. DPPH ve CUPRAC analizleri zayıf aktivite gösterdi. Antioksidan aktivite, pozitif kontrollerle karşılaştırıldığında her iki tür için de önemli görülmedi. C. vulgaris metanol ekstraktlarının S. aureus'a karşı inhibisyon zonu ve MİK değeri ile yüksek antimikrobiyal aktivite gösterdi. C. limneticus metanol ekstraktlarının S. typhimurium TA98 üzerinde herhangi bir mutajenik aktivitesi gözlenmedi. C. vulgaris metanol ekstraktı iyi bir antimikrobiyal potansiyele sahipken, C. limneticus ektraktı nispeten zayıf bir potansiyele sahiptir. C. limneticus metanol ekstraktı, C. vulgaris metanol ekstraktına kıyasla nispeten daha yüksek bir antioksidan aktiviteye sahip ancak her iki özütün aktiviteleri kontrollerle karşılaştırıldığında zayıf olarak gözlendi. Test edilen özütlerin hiçbiri, herhangi bir konsantrasyonda S. typhimurium TA98'e karşı mutajenik aktivite göstermedi. Bu organizmalar farklı çözücüler veya ekstraksiyon sistemleri aracılığıyla çeşitli biyolojik sistemleri etkileyebilirler.
Proje Numarası
DÜBAP Fen.17.020
Kaynakça
- [1] El-Asmy, A.A., Al-Abdeen, A.Z., El-Maaty, W.M.A., Mostafa, M.M., Synthesis and spectroscopic studies of 2,5-hexanedione bis(isonicotinylhydrazone) and its first raw transition metal complexes, Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 75, 1516–1522, 2010.
- [2] Sisman-Aydin, G., Microalgae Technology and Environmental Uses, Harran Üniversitesi Mühendislik Dergisi, 4, 81–92, 2019.
- [3] Falkowski, P.G., Katz, M.E., Knoll, A.H, Quigg, A., Raven, J.A., Schofield, O. et al., The evolution of modern eukaryotic phytoplankton, Science, 305, 354–360, 2004.
- [4] Massana, R., Terrado, R., Forn, I., Lovejoy, C., Pedros-Alio, C., Distribution and abundance of uncultured heterotrophic flagellates in the world oceans, Environmental Microbiology, 8, 1515–1522, 2006.
- [5] Fehling, J., Stoecker, D., Baldauf, S.L., Photosynthesis and the Eukaryote Tree of Life. Evolution of Primary Producers in the Sea, in: Falkowski, P.G. et al., Evolution of primary producers in the sea, 75-107, 2007.
- [6] Stern, R.F., Horak, A., Andrew, R.L., Coffroth, M.A., Andersen, R.A., Küpper, F.C., et al., Environmental Barcoding Reveals Massive Dinoflagellate Diversity in Marine Environments, PLoS One, 5, 2010.
- [7] Richmond, A., Handbook of Microalgal Culture. Oxford, UK: Blackwell Publishing Ltd., 2003.
- [8] Prarthana, J., Maruthi, K.R., Fresh Water Algae as a Potential Source of Bioactive Compounds for Aquaculture and Significance of Solvent System in Extraction of Antimicrobials, Asian Journal of Scientific Research, 12, 18–28, 2018.
- [9] Sathasivam, R., Radhakrishnan, R., Hashem, A., Abd_Allah, E.F., Microalgae metabolites: A rich source for food and medicine, Saudi Journal of Biological Sciences, 26, 709–722, 2019.
- [10] Landsberg, J.H., The effects of harmful algal blooms on aquatic organisms, Reviews in Fisheries Science, 10, 113–390, 2002.
- [11] Irigoien, X., Hulsman, J., Harris, R.P., Global biodiversity patterns of marine phytoplankton and zooplankton, Nature, 429, 863–867, 2004.
- [12] Caldwell, G.S., The influence of bioactive oxylipins from marine diatoms on invertebrate reproduction and development, Marine Drugs, 7, 367–400, 2009.
- [13] Alwathnani, H., Johansen, J.R., Cyanobacteria in Soils from a Mojave Desert Ecosystem, Monographs of the Western North American Naturalist, 5, 71–89, 2011.
- [14] Khan, M.I., Shin, J.H., Kim, J.D., The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products, Microbial Cell Factories,17:1, 2018.
- [15] Huang, S.S., Huang, G.J., Ho, Y.L., Lin, Y.H., Hung, H.J., Chang, T.N., et al. Antioxidant and antiproliferative activities of the four Hydrocotyle species from Taiwan, Botanical Studies, 49, 311–322, 2008.
- [16] Luna-Castro, S., Samaniego-Barrón, L., Serrano-Rubio, L.E, Ceballos-Olveral I., Avalos-Gómez, C., De La Garza, M., Lactoferrin: A Powerful Antimicrobial Protein Present in Milk. Advances in Dairy Research, 5:4, 2017.
- [17] Jaki, B., Orjala, J., Heilmann, J., Linden, A., Vogler, B., Sticher, O., Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune, Journal of Natural Products, 63, 339–343, 2000.
- [18] Volk, R.B., Girreser, U., Al-Refai, M., Laatsch, H., Bromoanaindolone, a novel antimicrobial exometabolite from the cyanobacterium Anabaena constricta, Journal of Natural Products Research, 23, 607–612, 2009.
- [19] Ghasemi, Y., Moradian, A., Mohagheghzadeh, A., Shokravi, S., Morowvat, M.H., Antifungal and Antibacterial Activity of the Microalgae Collected from Paddy Fields of Iran: Characterization of Antimicrobial Activity of Chroococcus disperses, Journal of Biological Sciences, 6, 904-910, 2007.
- [20] Silva-Stenico, M.E., Silva, C.S.P., Lorenzi, A.S., Shishido, T.K., Etchegaray A., Lira S.P., et al. Non-ribosomal peptides produced by Brazilian cyanobacterial isolates with antimicrobial activity, Microbiological Research, 166, 161–175, 2011.
- [21] Plaza, M., Santoyo, S., Jaime, L., García-Blairsy Reina, G., Herrero, M., Señoráns F.J., et al. Screening for bioactive compounds from algae, Journal of Pharmaceutical and Biomedical Analysis, 51, 450–455, 2010.
- [22] Çakmak F., Kabaklı Göleti’nin Bacillariophyta Dışı Planktonik Algleri Üzerine Bir Araştırma. Master Thesis, Dicle University Institute of Natural and Applied Sciences, 2013.
- [23] Prescott, G.W., Algae of the Western Great Lakes Area Hardcover. 1. Ed. Iowa: WM. C. Brown Company, 1973.
- [24] Corona, E., Fernandez-Acero, J. and Bartual, A., Screening study for antibacterial activity from Marine and freshwater microalgae, International Journal of Pharma and Bio Science, 8(1), 189-194, 2017.
- [25] Blois, M.S., Antioxidant determinations by the use of a stable free radical. Nature, 181,1199–1200, 1958.
- [26] Miller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V., Milner, A., A Novel Method for Measuring Antioxidant Capacity and its Application to Monitoring the Antioxidant Status in Premature Neonates, Clinical Science, 84, 407–412, 1993.
- [27] Apak, R., Güçlü, K., Özyürek, M., Karademir, S.E., Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method, Journal of Agricultural and Food Chemistry, 52, 7970–7981, 2004.
- [28] National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility tests : approved standard : NCCLS document M2-A6. 6th ed. Wayne Penn.: NCCLS; 1997.
- [29] Levin, D.E., Yamasaki, E., Ames, B.N., A new Salmonella tester strain, TA97, for the detection of frameshift mutagens: A run of cytosines as a mutational hot-spot, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 94, 315–330, 1982.
- [30] Maron, D.M., Ames, B.N., Revised methods for the Salmonella mutagenicity test, Mutation Research/Environmental Mutagenesis and Related Subjects, 113, 173–215, 1983.
- [31] Taghavi Takyar, M.B., Haghighat Khajavi, S., Safari, R., Evaluation of antioxidant properties of Chlorella vulgaris and Spirulina platensis and their application in order to extend the shelf life of rainbow trout (Oncorhynchus mykiss) fillets during refrigerated storage, LWT- Food Science and Technology, 100, 244–249, 2019.
- [32] Hidhayati, N., Agustini, N.W.S., Widyagustina, D., Antimicrobial activity of ethanol fraction from cyanobacteria Chroococcus turgidus, IOP Conference Series: Earth and Environmental Science, 439 012046, 2020.
- [33] Bharanidharan, M., Sivasubramanian, V., Rama Raja, S., Nayagam, V., Evaluation of antioxidant and antimicrobial potential of cyanobacteria, Chroococcus turgidus (Kützing) Nägeli,. International Journal of Current Microbiology and Applied Sciences, 2, 300–305, 2013.
- [34] Arguelles, E., Total Phenolic Content and in Vitro Analysis of Antioxidant, Antibacterial, and Alpha-Glucosidase Inhibition Properties of Chroococcus Minitus (Kützing) Nageli (Chroococcales, Cyanobacteria), Journal of Faculty of Pharmacy of Ankara University, 46, 170–181, 2022.
- [35] Hamdy, O., Karim, A., Farouk Gheda, S., Ismail, G.A., Abo-Shady, A.M., Assistant of Phycology T. Phytochemical Screening and antioxidant activity of Chlorella vulgaris, Delta Journal of Science, 41, 81–91, 2020.
- [36] Hussein, H.J., Naji, S.S., Al-Khafaji, N.M.S., Antibacterial properties of the Chlorella vulgaris isolated from polluted water in Iraq, Journal of Pharmaceutical Sciences & Resesarc, 10(10), 2457–2460, 2018.
- [37] Zielinski, D., Fraczyk, J., Debowski, M., Zielinski, M., Kaminski, Z.J., Kregiel D., et al. Biological Activity of Hydrophilic Extract of Chlorella vulgaris Grown on Post-Fermentation Leachate from a Biogas Plant Supplied with Stillage and Maize Silage, Molecules, 25(8),1790, 2020.
- [38] Weisburger, J.H., Antimutagenesis and anticarcinogenesis, from the past to the future, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 480–481, 23–35, 2001.
- [39] Leme, D.M., Marin-Morales, M.A., Allium cepa test in environmental monitoring: A review on its application, Mutation Research/Reviews in Mutation Research, 682, 71–81, 2009.
- [40] Himuro, S., Ueno, S., Noguchi, N., Uchikawa, T., Watanabe, K., Safety evaluation of mutagenecity, acute and subacute toxicity study of Chlorella vulgaris CK-22 in rats, Fundamental Toxicology, Science, 1, 151–159, 2014.
- [41] Zainul Azlan, N., Abd Ghafar, N., Mohd Yusof, Y.A., Makpol, S., Toxicity study of Chlorella vulgaris water extract on female Sprague Dawley rats by using the Organization for Economic Cooperation and Development (OECD) Guideline 420, Journal Applied Phycology, 32, 3063–3075, 2020.
- [42] Wei, C.C., Yen, P.L., Chang, S.T., Cheng, P.L., Lo, Y.C., Liao, V.H.C., Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans, PLoS One, 11(6), e0157195, 2016.
- [43] Sawant, S.S., Mane, V.K., Nutritional profile, antioxidant, antimicrobial potential, and bioactives profile of chlorella emersonii KJ725233, Asian Journal of Pharmaceutical and Clinical Research, 11, 220–225, 2018.
- [44] Elshobary, M.E., El-Shenody, R.A., Ashour, M., Zabed, H.M., Qi, X., Antimicrobial and antioxidant characterization of bioactive components from Chlorococcum minutum, Food Bioscience, 35(4), 100567, 2020.
- [45] Flickinger, B.D., Huth, P.J., Dietary fats and oils: Technologies for improving cardiovascular health. Current Atherosclerosis Reports, 6, 468–476, 2004.
- [46] Yang, N., Zhang, Q., Chen, J., Wu, S., Chen, R., Yao, L., et al. Study on bioactive compounds of microalgae as antioxidants in a bibliometric analysis and visualization perspective, Frontiers in Plant Science, 14, 2023.
- [47] El-Fayoumy, E.A., Shanab, S.M.M., Gaballa, H.S., Tantawy, M.A., Shalaby E.A., Evaluation of antioxidant and anticancer activity of crude extract and different fractions of Chlorella vulgaris axenic culture grown under various concentrations of copper ions, BMC Complementary Medicine and Therapies, 21, 51, 2021.