2019 yılı sonunda, çoğunlukla solunum yollarını etkileyen bir hastalığın, yeni bir koronavirus ailesinden kaynaklandığı tespit edilmiş ve bu hastalığa COVID-19 adı verilmiştir. Bu hastalık kısa sürede pandemi haline gelmiştir. Güncel veriler; diyabet, hipertansiyon ve kardiyovasküler hastalık gibi kronik rahatsızlığı olan kişilerde hastalığın daha ağır seyrettiğini göstermektedir. Bunlar arasında özellikle diyabetin COVID-19’un morbidite ve mortalite oranını büyük ölçüde artırdığı gözlemlenmiştir. Bu derlemenin amacı; COVID-19 ile diyabet hastalığı arasındaki ilişkinin mercek altına alınıp, mevcut bilgi ve veriler ışığında değerlendirilmesidir.
ABSTRACT:
At the end of 2019, a disease -mostly affecting the respiratory system- caused by the new This disease has rapidly spread all over the world. The recent data indicates that patients with chronic diseases such as diabetes mellitus, hypertension and cardiovascular diseases, are mostly suffering from this sometimes fulminating infectious disease. Diabetes has a very special importance in terms of increasing the risk of morbidity and mortality of COVID-19
The aim of this review is to evaluate the current knowledge and outcomes about the relationship between COVID-19 and diabetes .
Referanslar
1) Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579: 270–3.
2) Cuschieri S, Grech S. COVID-19 and diabetes: The why, the what and the how. J Diabetes Complications. 2020;107637
3) Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. 2019; 157:107843.
4) Maddaloni E, Buzzetti R. Covid-19 and diabetes mellitus: Unveiling the interaction of two pandemics. Diabetes Metab Res Rev. 2020; e33213321
5) C.M. Booth, L.M. Matukas, G.A. Tomlinson, et al. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. Journal of the American Medical Association, 289 (21) (2003) ; pp. 2801-2809
6) Allard, R., Leclerc, P., Tremblay, C., et al. Diabetes and the severity of pandemic influenza A (H1N1) infection. 2010 Diabetes Care 33(7): 1491e1493.
7) Jain, S., Kamimoto, L., Bramley, et al., 2009. Hospitalized patients with 2009 H1N1 influenza in the United States. New England Journal of Medicine. , April-June 2009; 361(20):1935e 1944.
8) Peleg, A.Y., Weerarathna, T., McCarthy, et al. Common infections in diabetes: pathogenesis, management and relationship to glycaemic control. Diabetes Metabolism Research Review 2007; 23(1):3e13.
9) Wang, W., Chen, H., Li, Q., et al. Fastingplasma glucose is an independent predictor for severity of H1N1 pneumonia.BMC Infectious Diseases . 2011; 11:104.
10) H. Wilking, S. Buda, E. von der Lippe, et al. Mortality of 2009 pandemic influenza A(H1N1) in Germany Euro Surveillance, (2010); 15 (49)
11) X. Yang, Y. Yu, J. Xu, et al.Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respiration Medicine (2020)
12) J.J. Zhang, X. Dong, Y.Y. Cao, et al.Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy (2020)
13) W. Guan, W. Liang, Y. Zhao, et al.Comorbidity and its impact on 1590 patients with covid-19 in China: a nationwide analysis. Eur Respir J (2020); p. 2000547
14) Coronavirus COVID-19 FAQ | ADA Accessed April 21 Available from: https://www.diabetes.org/covid-19-faq (2020)
15) N. Jafar, H. Edriss, K. Nugent . The effect of short-term hyperglycemia on the innate immune system Am J Med Sci, 351 (2016), pp. 201-211
16) W. Guo, M. Li, Y. Dong, H. Zhou, Z. Zhang, C. Tian, et al.Diabetes is a risk factor for the progression and prognosis of COVID-19 .Diabetes Metab Res Rev (2020 Apr 7), p. e3319
17) Wang X, Fang X, Cai Z, et al. Comorbid chronic diseases and acute organ injuries are strongly correlated with disease severity and mortality among COVID-19 patients: a systemic review and meta-analysis. Research (Wash DC) 2020;2020:2402961.
18) P.C. Reading, J. Allison, E.C. Crouch, et al. Increased susceptibility of diabetic mice to influenza virus infection: compromise of collectin-mediated host defense of the lung by glucose? Journal of Virology, 72 (8) (1998), pp. 6884-6887
19) MacCuish AC ve ark. Phytohemagglutinin transformation and circulating lymphocyte subpopulations in insulin-dependent diabetic patients. Diabetes. 1974;23(8):708-12.
20) Pozzilli P ve ark. In vivo determination of cell mediated immune response in diabetic patients using a multiple intradermal antigen dispenser. Diabetes Res. 1987;6(1):5-8.
21) Z. Zou, Y. Yan, Y. Shu, R. Gao, Y. Sun, X. Li, et al.Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infectionsNat Commun [Internet], 5 (2014), p. 3594[cited 2020 Mar 21];5.
22) C. Tikellis, M.C. Thomas. Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease Int J Pept, 2012 (2012), pp. 1-8
23) E. Cure, M. Cumhur Cure. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may be harmful in patients with diabetes during COVID-19 pandemic Diabetes Metab Syndr Clin Res Rev, 14 (2020), pp. 349-350
24) G. Liamis.Diabetes mellitus and electrolyte disorders World J Clin Cases, 2 (2014), p. 488
25) R. Kassir. Risk of COVID-19 for patients with obesity. Obes Rev [Internet], 21 (2020), p. e13034, 10.1111/obr.13034[cited 2020 Apr 22];
26) J. Wan, W. Sun, X. Li, et al. Inflammation inhibitors were remarkably up-regulated in plasma of severe acute respiratory syndrome patients at progressive phase Proteomics, 6 (2006), pp. 2886-2894
27) C. Fernandez, J. Rysa, P. Almgren, et al. levels of the proprotein convertase furin and incidence of diabetes and mortality. J Intern Med, 284 (2018), pp. 377-387
28) N. Epperla, F. McKiernanIatrogenic Cushing syndrome and adrenal insufficiency during concomitant therapy with ritonavir and fluticasoneSpringerPlus [Internet], 4 (2015), p. 455[cited 2020 Apr 28];4(1).
29) Sevrioukova, I. F. & Poulos, T. L. Structure and mechanism of the complex between cytochrome P4503A4 and ritonavir. Proc. Natl Acad. Sci. USA 107, 18422–18427 (2010)
30) K. Nakamura, E. Kawasaki, A. Imagawa, et al.Type 1 diabetes and interferon therapy: a nationwide survey in Japan Diabetes Care, 34 (2011 Sep)2084–9
31) P. Gautret, J.-C. Lagier, P. Parola, et al.Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial Int J Antimicrob Agents (2020), p. 105949
32) Kassir R (2020) Risk of COVID-19 for patients with obesity. Obes Rev [Internet] [cited 2020 Apr 22];. 22 Apr 2020
33) Richard C, Wadowski M, Goruk S, et al. Individuals with obesity and type 2 diabetes have additional immune dysfunction compared with obese individuals who are metabolically healthy. BMJ Open Diabetes Res Care. 2017;5:e000379. doi: 10.1136/bmjdrc-2016-000379.
34) C. Kajiwara, Y. Kusaka, S. Kimura, et al.Metformin mediates protection against Legionella pneumonia through activation of AMPK and mitochondrial reactive oxygen species J Immunol, 200 (2) (2018), pp. 623-631, 10.4049/jimmunol.1700474
35) Carboni E, Carta AR, Carboni E. Can pioglitazone be potentially useful therapeutically. in treating patients with COVID-19? Med Hypotheses. 2020;140:109776.
36) Gorricho J, Garjon J, Alonso A, et al. Use of oral antidiabetic agents and risk of community-acquired pneumonia: a nested case-control study. Br J Clin Pharmacol 2017;83(9):2034e44. https://doi.org/10.1111/bcp.13288.
37) Zhang W, Xu YZ, Liu B, et al.Pioglitazone upregulates angiotensin converting enzyme 2 expression in insulin-sensitive tissues in rats with high-fat diet-induced nonalcoholic steatohepatitis. Sci World J 2014 Jan 14;2014:603409. https://doi.org/10.1155/2014/603409.
38) Lambeir AM et al .Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci (2003) ; 40(3):209–294
39) Lei Y et al .Dipeptidyl peptidase-IV inhibition for the treatment of cardiovascular disease- recent insights focusing on angiogenesis and neovascularization. Circ J 81(2017) (6):770–776
40) Durinx C et al . Molecular characterization of dipeptidyl peptidase activity in serum: soluble CD26/dipeptidyl peptidase IV is responsible for the release of X-Pro dipeptides. Eur J Biochem (2000) 267(17):5608–5613
41) Zaki AM et al.Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med (2012) 367(19):1814–1820 18.
42) Wronkowitz N et al .Soluble DPP4 induces infammation and proliferation of human smooth muscle cells via proteaseactivated receptor 2. Biochim Biophys Acta 1842(2014) (9):1613–1621
43) Ling J et al .The eficacy and safety of dipeptidyl peptidase-4 inhibitors for type 2 diabetes: a Bayesian network metaanalysis of 58 randomized controlled trials. Acta Diabetol (2019) 56(3):249–272 33.
44) Ling J et al (2019) DPP-4 inhibitors for the treatment of type 2 diabetes: a methodology overview of systematic reviews. Acta Diabetol 56(1):7–27
45) Sposito AC, Berwanger O, De Carvalho LSF et al.GLP-1RAs in type 2 diabetes: mechanisms that underlie cardiovascular effects and over-view of cardiovascular outcome data. Cardiovasc Diabetol. 2018;17:157
46) Maiorino MI, Chiodini P, Bellastella G, et al. The good companions: insulin and glucagon-like peptide-1 recep-tor agonist in type 2 diabetes. A systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2019;154:101–15
47) Gajjar K, Luthra P. Euglycemic Diabetic Ketoacidosis in the Setting of SGLT2 Inhibitor Use and Hypertriglyceridemia: A Case Report and Review of Literature. Cureus. 2019;11(4):e4384.
48) Zhang, X. J. et al. In-hospital use of statins is associated with a reduced risk of mortality among individuals with COVID-19. Cell Metab. 32, 176–187.e4 (2020).
49) Zheng L, Hunter K, Gaughan J, et al.Preadmission use of calcium channel blockers and outcomes after hospitalization with pneumonia: a retrospective propensity-matched cohort study. Am J Therapeut 2017 Jan/Feb;24(1):e30e8.
50) Meo SA, Alhowikan AM, Al-Khlaiwi T, et al. Novel coronavirus 2019-nCoV: Prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. Eur Rev Med Pharmacol Sci. 2020;24(4):2012-9
51) Yang JK1, Feng Y, Yuan MY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med. 2006;23(6):623e8.
52) Song Z, Xu Y, Bao L, et al. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses. 2019;11(1):59.
53) Drucker, D. J. Coronavirus infections and type 2 diabetes–shared pathways with therapeutic implications. Endocr. Rev. 41, 457–470 (2020). This review covers the pathophysiology and treatment of type 2 diabetes mellitus in the context of coronavirus infection
54) Sardu, C. et al. Outcomes in patients with hyperglycemia affected by COVID-19: can we do more on glycemic control? Diabetes Care 43, 1408–1415 (2020).
55) Kar P, Jones KL, Horowitz M, et al. Management of critically ill patients with type 2 diabetes: The need for personalised therapy. World J Diabetes. 2015;6(5):693-706.
56) Wang W, Lu J, Gu W, et al. Care for diabetes with COVID-19: Advice from China. J Diabetes. 2020;12(5):417-419.
57) Smith SA, Poland GA. Use of influenza and pneumococcal vaccines in people with diabetes. Diabetes Care 2000;23:95–108 22.
58) Matanock A, Lee G, Gierke R, Kobayashi M, Leidner A, Pilishvili T. Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine among adults aged $65 years: updated recommendations of the Advisory Committee on Immunization Practices. MMWR Morb Mortal Wkly Rep 2019;68: 1069–1075 23
59) Satman I et al , Unexpectedly lower mortality rates in COVID-19 patients with and without type 2 diabetes in Istanbul. Diabetes Res Clin Practice 2021
60) Sonmez A et al, Clinical characteristics and outcomes of COVID‐19 in patients with type 2 diabetes in Turkey: A nationwide study (TurCoviDia); J Diabet 2021