Araştırma Makalesi
BibTex RIS Kaynak Göster

Non-Routıne Problem Solvıng Skılls of Nınth Grade Students: An Experımental Study

Yıl 2020, Cilt: 4 Sayı: 1, 23 - 29, 30.06.2020
https://doi.org/10.31805/acjes.632560

Öz

In this study, the effect of an experimental intervention about non-routine problem solving on ninth grade
students’ strategy use and success in solving these kinds of problems were examined. One group pretestposttest
experimental design was used in the study. Pretest and posttest consisted of eight open-ended
non routine problems. Students solved 60 non-routine problems during the intervention that lasted 12
class periods. Problems requiring to use of guess and check, make a systematic list, work backward, look
for a pattern, simplify the problem, logical reasoning, write an equation, and make a drawing strategies
were used in the study. For the analysis of data, descriptive statistics, normality tests, and paired sample
t-test were used. Findings highlight two important points: i) Ninth graders were quite successful in solving
non-routine problems without any intervention, ii) given intervention increased students’ success in this
respect.

Kaynakça

  • Abedalaziz, N. (2001). Gender-related differences of Malaysian students in their solution processes of solving mathematical problems. OIDA International Journal of Sustainable Development, 2(7), 11-25.
  • Altun, M. (2016). İlkokullarda matematik öğretimi (20. Baskı). Bursa: Aktüel Alfa Yayıncılık.
  • Altun, M., Yazgan, Y., Memnun, D., S.(2007). Sınıf öğretmeni adaylarının rutin olmayan matematiksel problemleri çözme becerileri ve bu konudaki düşünceleri, İlköğretim Online, 6(1), 127-143.
  • Budak, İ. (2012). Mathematical profiles and problem solving abilities of mathematically promising students. Educational Research and Review, 7(16), 344-350.
  • Büyüköztürk, Ş., Kılıç-Çakmak, E., Akgün, Ö. E., Karadeniz, Ş. ve Demirel, F. (2010). Bilimsel araştırma yöntemleri (7. baskı). Ankara: Pegem A Yayıncılık.
  • Fang, Y., Ho, K.F., Lioe, L.T., Wong, K.Y., Tiong Y.S.J. (2009). Developing the repertoire of heuristics for mathematical problem solving: Technical Report for Project CRP1/04 TSK/JH. Singapore: Centre for Research in Pedagogy and Practice, National Institute of Education, Nanyang Technological University.
  • Herr, T., Johnson, K. (2002). Problem-solving strategies: Crossing the river with dogs. USA: Key Curriculum Press.
  • Krulik, S. ve Rudnick, J. A. (1993). Reasoning and problem solving. A handbook for elementary school teachers. Needham Heights. Mass: Allyn And Bacon, Inc.
  • Lee, N.H.,Yeo, J.S.D., & Hong, S.E. (2014). A metacognitive based instruction for primary four students to approach non-routine mathematical word problems. ZDM – the International Journal on Mathematics Education, 46(3), 465-480.
  • Leng, N.W. (2008). Problem solving heuristics for primary school mathematics: a comprehensive guide. Singapore: Prentice Hall.
  • London, R. (2007). What is essential in mathematics education: A holistic viewpoint. MSOR Connections, 7(1), 30-34.
  • Mabilangan, R.A., Limjap, A.A., & Belecina, R.R. (2012). Problem solving strategies of high school students on non-routine problems. Alipato: A Journal of Basic Education, 5, 23-45
  • Marchis, I. (2012). Non-routine problems in primary mathematics workbooks from Romania. Acta Didactica Napocensia, 5(3), 49-56.
  • Milli Eğitim Bakanlığı (2018). Ortaöğretim matematik dersi öğretim programı. Ankara: Talim Terbiye Kurulu Başkanlığı.
  • Nancarrow, M. (2004). Exploration of metacognition and non-routine problem based mathematics instruction on undergraduate student problem-solving success, Unpublished PhD thesis, the Florida State University, Florida.
  • National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA.
  • Novick , L.R., Bassok, M. (2005). Problem solving. In Holyoak, K.J. & Morrison, R.G. (ed.). The Cambridge Handbook of Thinking and Reasoning, New York: Cambridge University Press.
  • Polya, G. (1957). How to solve it? Princeton: Princeton University Press.
  • Posamentier A.S., Krulik, S. (2008). Problem solving strategies for efficient and elegant solutions, grades 6-12: a resource for the mathematics teacher. USA: Corwin Press.
  • Sahillioğulları (2019). Farklı öğrenme stillerine sahip olan dokuzuncu sınıf öğrencilerinin problem çözme becerileri arasındaki farklılıkların incelenmesi (Basılmamış yüksek lisans tezi). Necmettin Erbakan Üniversitesi Eğitim Bilimleri Enstitüsü, Konya.
  • Salleh, F., & Zakaria, E. (2009). Non-routine problem-solving and attitudes toward problem-solving among high achievers. International Journal of Learning, 16(5), 549-559.
  • Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematics Educator, 14(1), 19–34.
  • Tiong, J. Y. S., Hedberg, J. G., & Lioe, L. T. (2005). A metacognitive approach to support heuristic solution of mathematical problems. Proceedings of the Redesigning Pedagogy: Research, Policy, Practice Conference. Singapore: NIE.
  • Woodward, J., Beckmann, S., Driscoll, M., Franke, M., Herzig, P., Jitendra, A., Koedinger, K. R., & Ogbuehi, P. (2012). Improving mathematical problem-solving in Grades 4 through 8: A practice guide. Washington, D.C.: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.
  • Yazgan,Y., (2013). Non-routine mathematical problem-solving at high school level and its relation with success on university entrance exam. US-China Education Review A, 3(8). 571-579.
  • Yeo, K.K.J. (2009). Secondary 2 students’ difficulties ın solving non-routine problems. International Journal for Mathematics Teaching and Learning, 8,1-30.

Dokuzuncu Sınıf Öğrencilerinin Rutin Olmayan Problem Çözme Becerileri: Deneysel Bir Çalışma

Yıl 2020, Cilt: 4 Sayı: 1, 23 - 29, 30.06.2020
https://doi.org/10.31805/acjes.632560

Öz

Bu çalışmada, deneysel bir
sıradışı problem çözme eğitiminin dokuzuncu sınıf öğrencilerinin strateji kullanımı
ve bu problemlerle ilgili düşünceleri üzerindeki etkisi incelenmiştir. Araştırmada
tek grup ön test - son test  deneysel desen
kullanılmıştır. Ön ve son test sekiz adet açık uçlu sıradışı problemden
oluşmuştur. Haftada iki veya üç ders saati olarak planlanan eğitim, sekiz hafta
sürmüştür. Öğrenciler eğitim sırasında 60 adet sıradışı problem çözmüşlerdir. Çalışmada
tahmin ve kontrol, sistematik liste
yapma, geriye doğru çalışma, bağıntı bulma, problemi basitleştirme, muhakeme
etme, denklem kurma
ve şekil çizme
stratejilerinin kullanımını gerektiren sorular kullanılmıştır. Verilerin nicel
analizleri için betimsel istatistikler, normallik testleri ve ilişkili
örneklemler için t testi kullanılmıştır. Eğitim sonunda öğrencilere sıradışı problemlere
yönelik oluşan düşüncelerini öğrenmek için dört adet açık uçlu soru sorulmuş ve
elde edilen cevaplar nitel anlamda değerlendirilmiştir. Ayrıca, öğrencilerin çalışmaları
ile ilgili gözlemler ve çözümler göz önüne alınmıştır. Bulgular üç önemli
noktaya işaret etmektedir: i) Dokuzuncu sınıf öğrencileri herhangi bir müdahale
olmaksızın sıradışı problem çözmede oldukça başarılıdırlar, ii) verilen eğitim
öğrencilerin bu konudaki başarılarını arttırmıştır ve iii) öğrenciler eğitimden
sonra sıradışı problemlere karşı olumlu tutum sergilemişlerdir.

Kaynakça

  • Abedalaziz, N. (2001). Gender-related differences of Malaysian students in their solution processes of solving mathematical problems. OIDA International Journal of Sustainable Development, 2(7), 11-25.
  • Altun, M. (2016). İlkokullarda matematik öğretimi (20. Baskı). Bursa: Aktüel Alfa Yayıncılık.
  • Altun, M., Yazgan, Y., Memnun, D., S.(2007). Sınıf öğretmeni adaylarının rutin olmayan matematiksel problemleri çözme becerileri ve bu konudaki düşünceleri, İlköğretim Online, 6(1), 127-143.
  • Budak, İ. (2012). Mathematical profiles and problem solving abilities of mathematically promising students. Educational Research and Review, 7(16), 344-350.
  • Büyüköztürk, Ş., Kılıç-Çakmak, E., Akgün, Ö. E., Karadeniz, Ş. ve Demirel, F. (2010). Bilimsel araştırma yöntemleri (7. baskı). Ankara: Pegem A Yayıncılık.
  • Fang, Y., Ho, K.F., Lioe, L.T., Wong, K.Y., Tiong Y.S.J. (2009). Developing the repertoire of heuristics for mathematical problem solving: Technical Report for Project CRP1/04 TSK/JH. Singapore: Centre for Research in Pedagogy and Practice, National Institute of Education, Nanyang Technological University.
  • Herr, T., Johnson, K. (2002). Problem-solving strategies: Crossing the river with dogs. USA: Key Curriculum Press.
  • Krulik, S. ve Rudnick, J. A. (1993). Reasoning and problem solving. A handbook for elementary school teachers. Needham Heights. Mass: Allyn And Bacon, Inc.
  • Lee, N.H.,Yeo, J.S.D., & Hong, S.E. (2014). A metacognitive based instruction for primary four students to approach non-routine mathematical word problems. ZDM – the International Journal on Mathematics Education, 46(3), 465-480.
  • Leng, N.W. (2008). Problem solving heuristics for primary school mathematics: a comprehensive guide. Singapore: Prentice Hall.
  • London, R. (2007). What is essential in mathematics education: A holistic viewpoint. MSOR Connections, 7(1), 30-34.
  • Mabilangan, R.A., Limjap, A.A., & Belecina, R.R. (2012). Problem solving strategies of high school students on non-routine problems. Alipato: A Journal of Basic Education, 5, 23-45
  • Marchis, I. (2012). Non-routine problems in primary mathematics workbooks from Romania. Acta Didactica Napocensia, 5(3), 49-56.
  • Milli Eğitim Bakanlığı (2018). Ortaöğretim matematik dersi öğretim programı. Ankara: Talim Terbiye Kurulu Başkanlığı.
  • Nancarrow, M. (2004). Exploration of metacognition and non-routine problem based mathematics instruction on undergraduate student problem-solving success, Unpublished PhD thesis, the Florida State University, Florida.
  • National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA.
  • Novick , L.R., Bassok, M. (2005). Problem solving. In Holyoak, K.J. & Morrison, R.G. (ed.). The Cambridge Handbook of Thinking and Reasoning, New York: Cambridge University Press.
  • Polya, G. (1957). How to solve it? Princeton: Princeton University Press.
  • Posamentier A.S., Krulik, S. (2008). Problem solving strategies for efficient and elegant solutions, grades 6-12: a resource for the mathematics teacher. USA: Corwin Press.
  • Sahillioğulları (2019). Farklı öğrenme stillerine sahip olan dokuzuncu sınıf öğrencilerinin problem çözme becerileri arasındaki farklılıkların incelenmesi (Basılmamış yüksek lisans tezi). Necmettin Erbakan Üniversitesi Eğitim Bilimleri Enstitüsü, Konya.
  • Salleh, F., & Zakaria, E. (2009). Non-routine problem-solving and attitudes toward problem-solving among high achievers. International Journal of Learning, 16(5), 549-559.
  • Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematics Educator, 14(1), 19–34.
  • Tiong, J. Y. S., Hedberg, J. G., & Lioe, L. T. (2005). A metacognitive approach to support heuristic solution of mathematical problems. Proceedings of the Redesigning Pedagogy: Research, Policy, Practice Conference. Singapore: NIE.
  • Woodward, J., Beckmann, S., Driscoll, M., Franke, M., Herzig, P., Jitendra, A., Koedinger, K. R., & Ogbuehi, P. (2012). Improving mathematical problem-solving in Grades 4 through 8: A practice guide. Washington, D.C.: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.
  • Yazgan,Y., (2013). Non-routine mathematical problem-solving at high school level and its relation with success on university entrance exam. US-China Education Review A, 3(8). 571-579.
  • Yeo, K.K.J. (2009). Secondary 2 students’ difficulties ın solving non-routine problems. International Journal for Mathematics Teaching and Learning, 8,1-30.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Özel Eğitim ve Engelli Eğitimi, Eğitim Psikolojisi
Bölüm Makaleler
Yazarlar

Serkan Gürsan Bu kişi benim 0000-0003-2715-3181

Yeliz Yazgan 0000-0002-8417-1100

Yayımlanma Tarihi 30 Haziran 2020
Gönderilme Tarihi 20 Ekim 2019
Kabul Tarihi 7 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 4 Sayı: 1

Kaynak Göster

APA Gürsan, S., & Yazgan, Y. (2020). Dokuzuncu Sınıf Öğrencilerinin Rutin Olmayan Problem Çözme Becerileri: Deneysel Bir Çalışma. Academy Journal of Educational Sciences, 4(1), 23-29. https://doi.org/10.31805/acjes.632560