Araştırma Makalesi
BibTex RIS Kaynak Göster

Overall Evaluation of the Effects of the 24 January 2020 Sivrice Earthquake (East Anatolian Fault), Turkey

Yıl 2022, , 420 - 436, 31.10.2022
https://doi.org/10.35341/afet.1101628

Öz

Turkey is a country where earthquakes are frequent for it is at the junction of a number of tectonic plates. There have been more than 130 recorded destructive earthquakes during the 20th and 21st centuries and they have caused enormous damage. One of the most destructive was the one that hit the east of the country on 24 January 2020. The epicenter of this magnitude 6.8 earthquake was in the town of Sivrice in Elazığ. Sivrice earthquake did not produce primary surface rupture; however, triggered landslides and liquefaction over an area of ~55 km2. The 24 January 2020 earthquake, now known as the Sivrice earthquake, caused substantial human and material losses. Despite the fact that there is a considerable amount of papers available about the Sivrice earthquake, none presents a detailed account of the extensive impact of the Sivrice earthquake its significance. The present study will discuss in detail for the first time the overall impacts of the disaster. It will, therefore, begin with a description of the earthquake and tectonic setting of the area. It then will give an overall assessment of the impact of the earthquake: the direct and indirect losses. Direct effects include all human losses and total or partial destruction of material, as well as the estimated cost of the demolition and clean-up operation required in the region. indirect losses resulted from damage to social and economic infrastructure including accommodation for the homeless, difficulties in transportation and communication, and indirect economic effects. Turkey is highly susceptible to earthquakes and earthquakes related effects due largely to its geological location. Millions of people live in or close to a seismically active area in Turkey for many reasons. It; therefore, will review the policy for sustainable management of earthquakes in Turkey.

Kaynakça

  • Ambraseys, N N (1989). “Temporary seismic quiescence: SE Turkey.” Geophysical Journal 96, 311–331.
  • Arpat, Şaroğlu, F (1975). “Türkiye’deki bazı önemli genç tektonik olaylar.” Türkiye Jeoloji Kurumu Bülteni, 18(1), 91-101.
  • Beyarslan, M, Ertürk, M A, Rizeli, M E, Sar, A (2022). Doğu Anadolu Fay Sistemi Boyunca Gelişen Kuvaterner Mafik Alkali Volkanizmasının Petrojenezi ve Tektonik Konumu, Güneydoğu Anadolu Orojenik Kuşağı (Elazığ). El-Cezeri, 9(1), 171-188.
  • Cooper Jr, H H, Bredehoeft, J D, Papadopulos, I S, Bennett, R R (1965). “The response of well‐aquifer systems to seismic waves.” Journal of Geophysical Research, 70(16), 3915-3926.
  • Disaster and Emergency Management Authority, Presidential of Earthquake Department (AFAD) (2020a). Report on Sivrice Earthquake.
  • Disaster and Emergency Management Authority, Presidential of Earthquake Department (AFAD) (2020b). Report on aid organization about Sivrice earthquake.
  • Disaster and Emergency Management Authority, Presidential of Earthquake Department (AFAD) (2020c). Historical and Instrumental earthquake catalogue of Turkey.
  • Duman, T Y, and Emre, Ö (2013). “The East Anatolian Fault: geometry, segmentation and jog characteristics.” Geological Society, London, Special Publications published online February 19, 2013 as doi: 10.1144/SP372.14.
  • Doğan, U, Ergintav, S, Zabcı, C, Özarpacı, S, Özdemir, A, Erkoç, M H, Yazıcı, M, Yiğitoğlu, A, Çakır, Z, Karabulut, H, Köküm, M, Bayram, B, Bilham, R (2019). Investigating the characteristic properties of creeping along the Hazar-Palu Segment of the East Anatolian Fault, Turkey. AGU19.
  • Emre, Ö, Duman, T Y, Özalp, S, Elmacı, H, Olgun, Ş and Şaroğlu, F (2013). “Active Fault Map of Turkey with an Explanatory Text. 1:1,250,000 Scale.” General Directorate of Mineral Research and Exploration, Special Publication Series-30, Ankara-Turkey. ISBN: 978-605-5310-56-1.
  • Ertürk, M A, Beyarslan, M, Chung, S L, Lin, T H (2018). Eocene magmatism (maden complex) in the Southeast anatolian orogenic belt: magma genesis and tectonic implications. Geosci. Front. 9, 1829–1847.
  • Ertürk, M A, Sar, A, Rizeli, M E (2022). Petrology, zircon UPb geochronology and tectonic implications of the A1-type intrusions: Keban region, eastern Turkey. Geochemistry, 125882.
  • Goenjian AK, Walling D, Steinberg AM, Karayan I, Najarian LM, Pynoos R (2005). “A prospective study of posttraumatic stress and depressive reactions among treated and untreated adolescents 5 years after a catastrophic disaster.” Am J Psychiatry. 162(12):2302–8. Gökgöz, D D, Eriş, K K, Uçarkuş, G, Yakupoğlu, N, Kırkan, E, Uçar, A, Bozyiğit, C, Sabuncu, A, Şaşmaz, A, Köküm, M (2022). The sedimentologic parameters of earthquake related turbidites in Lake Hazar (Turkey) along the East Anatolian Fault Zone, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-265, https://doi.org/10.5194/egusphere-egu22-265, 2022.
  • Guvercin, S, Karabulut, H, Dogan, U, Cakir, Z, Ergintav, S, Zabci, C, Ozdemir, A, Ozarpaci, S, Konca, A O, and Kokum, M (2020). Present Seismotectonic Behavior of the EAF from Improved Seismicity Catalog and Earthquake Source Mechanism Solutions , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18053, https://doi.org/10.5194/egusphere-egu2020-18053.
  • Herece, E, Akay, E (1992). The East Anatolian fault between Karliova and Celikhan. In Proc. gh Petroleum Congress, Chamber of Pet. Eng. And Turk. Assoc. of Pet. Geol (pp. 361-372).
  • Herece, E (2008). Atlas of East Anatolian fault. General Directorate of Mineral Research and Exploration (MTA), Special Publication Series, 13.
  • Ishikawa S, Motoya R, Sasagawa S, Takahashi T, Okajima I, Takeishi Y, et al. (2015). Mental health problems among undergraduates in Fukushima, Tokyo, and Kyoto after the March 11 Tohoku earthquake. Tohoku J Exp Med. 236(2):115–22.
  • Kilic, A D, Ateş, C (2015). Geochronology of the Late Cretaceous magmatism and metamorphism, Pütürge massif, Turkey. Yanshi Xuebao, 31, 1485-1493.
  • Kiliç, A D, İnceöz, M (2015). Mineralogical, geochemical and isotopic effect of silica in ultramaphic systems, eastern Anatolian Turkey. Geochemistry International, 53(4), 369-382.
  • Kandilli Observatory (KOERI) (2020). Instrumental earthquakes of Turkey.
  • Kokum, M (2012). Block modeling of present-day deformation of Anatolia and slip rates along the North Anatolian Fault. Ph. D. Thesis.
  • Köküm, M. (2017). Doğu Anadolu fay sistemi’nin Palu-Uslu (Elazığ) arasındaki kesiminin kinematik analizi. Fen Bilimleri Enstitüsü, Doktora Tezi, 100.
  • Köküm, M, Inceöz, M (2017). Kinematics of The Area Between Palu (Elaziğ) And Pütürge (Malatya) On The East Anatolian Fault System In Turkey. PATA DAYS 2017: 8th International Workshop on Paleoseismology, Active Tectonics and Archeoseismology, 13th - 16th November., (2017),210-211.
  • Köküm, M, İnceöz, M (2018). Structural analysis of the northern part of the East Anatolian Fault System. Journal of Structural Geology, 114, 55-63.
  • Köküm, M (2019). Landsat TM görüntüleri üzerinden doğu anadolu fay sistemi’nin Palu (Elazığ)-Pütürge (Malatya) arasındaki bölümünün çizgisellik analizi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 119-127.
  • Köküm, M, Özçeli̇k, F (2020). An example study on re-evaluation of historical earthquakes: 1789 Palu (Elazığ) earthquake, Eastern Anatolia, Turkey. Bulletin of the Mineral Research and Exploration, 161 (161), 157-170. DOI: 10.19111/bulletinofmre.603929
  • Köküm, M, İnceöz, M (2020). “Paleostress analysis of the Yeşilyurt-Elazığ Fault Zone and its importance for the tectonic evolution, East Turkey.” Journal of Structural Geology, 138, 104093. Köküm, M (2021). Landslides and lateral spreading triggered by the 24 January 2020 Sivrice earthquake (East Anatolian Fault). Gümüşhane Üniversitesi Fen Bilimleri Dergisi , 11 (3) , 751-760 . DOI: 10.17714/gumusfenbil.877544
  • Liu, K B, Fearn, M L (1993). Lake-sediment record of late Holocene hurricane activities from coastal Alabama. Geology, 21(9), 793-796.
  • McKenzie, D (1972). Active tectonics of the Mediterranean region. Geophysical Journal International, 30(2), 109-185.
  • MTA (2011). 1/100.000 Ölçekli Türkiye Jeoloji Haritası. Maden Tetkik ve Arama Genel Müdürlügü, Ankara (in Turkish).
  • Akça Taşçı, G, Özsoy, F (2021). Deprem travmasının erken dönem psikolojik etkileri ve olası risk faktörleri. Cukurova Medical Journal 46. 488-494 https://dergipark.org.tr/tr/pub/cumj/issue/62101/841197
  • Palutoğlu, M, Şaşmaz, A (2017). “29 November 1795 Kahramanmaraş Earthquake, Southern Turkey.” Bulletin of the Mineral Research and Exploration (155):10-10. DOI: 10.19111/bulletinofmre.314211.
  • Reilinger, R, McClusky, S, Vernant, P, Lawrence, S, Ergintav, S, Çakmak, R, Özener, H, Kadirov, F, Guliev, I, Stepanyan, R, Nadariya, M, Hahubia, G, Mahmoud, S, Sakr, K, A Rajehi, A, Paradissis, D, Al-Aydrus, A, Prilepin, M, Guseva, T, Evren, E, Dmitrotsa, A, Filikov, S V, Gomez, F, Al-Ghazzi, R, Karam, G. (2006). “GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions.” J. Geophys. Res. 111, B05411.
  • Rizeli, M E, Beyarslan, M, Wang, K-L, Bingol, A F (2016). Mineral chemistry and petrology ofmantle peridotites from the Guleman ophiolite (SE Anatolia, Turkey): evidence of a forearc setting. J. Afr. Earth Sci. 123, 392–402.
  • Rizeli, M E, Abdullah, Sar, Ertürk, M A (2021). Keban Magmatik Kayaçları’nın Petrografik Ve Jeokimyasal Özellikleri (Keban-Elazığ). Mühendislik Bilimleri ve Araştırmaları Dergisi, 3(1), 69-80.
  • Sar, A, Ertürk, M A, Rizeli, M E (2019). Genesis of Late Cretaceous intra-oceanic arc intrusions in the Pertek area of Tunceli Province, eastern Turkey, and implications for the geodynamic evolution of the southern Neo-Tethys: Results of zircon U-Pb geochronology and geochemical and Sr-Nd isotopic analyses, Lithos, 350, 105263.Lithos, https://doi.org/10.1016/j.lithos.2019.105263.
  • Sar, A (2016). Pertek (Tunceli) Güneydoğusundaki Granitoidlerin Petrolojisi. FU Fen Bil. Enst. Master theses (unpublished), 72.
  • Sar, A., Kürüm, S (2022). Mineralogical and Petrographic Characteristics of the Jurassic Kaban Dacite in the Eastern Sakarya Zone (Olur/Erzurum) . Erzincan University Journal of Science and Technology, 15 (2), 498-506. DOI: 10.18185/erzifbed.1005847
  • Saroglu, F, Emre, O, Kuşçu, I (1992). “The east Anatolian fault zone of Turkey.”
  • Waller, R. M., Coble, R. W., Post, A., McGarr, A., Vorhis, R. C. (1966). “The Alaska earthquake, March 27, 1964: effects on hydrologic regimen (No. 544).” US Government Printing Office. Tekin, U K, Ural, M, Goncüoglu, M C, Arslan, M, Kürüm, S (2015). Upper-Cretaceous Radiolarian ages from an arc-back-arc within the Yüksekova Complex in the southern Neotethys melange, SE Turkey. Comptes Rendus Palevol 14, 73–84.
  • The United Nation Secretariat for the International Strategy for disaster Reduction (ISDR) (2002). The Socio-Economic Consequences of the Earthquake at Izmit, Turkey, 17 August 1999. United States Geological Survey (USGS) (2020). Report on Hydrological change after earthquakes.
  • Ural, M, Arslan, M, Goncüoglu, U K, Kürüm, S, (2015). Late Cretaceous arc and back-arc formation within the southern Neotethys: whole-rock, trace element and Sr-Nd-Pb isotopic data from basaltic rocks of the Yüksekova Complex (Malatya-Elazıg, SE Turkey). Ofioliti 40 (1), 57–72.
  • Ural, M, Sayit, K, Koralay, O E, Goncuoglu, M C (2021). Geochemistry and Zircon U‐Pb Dates of Felsic‐Intermediate Members of the Late Cretaceous Yüksekova Arc Basin: Constraints on the Evolution of the Bitlis–Zagros Branch of Neotethys (Elazığ, E Turkey). Acta Geologica Sinica‐English Edition, 95(4), 1199-1216.
  • Ural, M, Cihan, A, (2021). Uslu (Elazığ G) Çevresindeki Volkanik Kayaçların (Yüksekova Karmaşığı) Jeokimyası . Avrupa Bilim ve Teknoloji Dergisi , (21) , 198-206 . DOI: 10.31590/ejosat.796129
  • Ural, M, Sayit, K, Tekin, U T, (2022). Whole-Rock and Nd-Pb Isotope Geochemistry and Radiolarian Ages of the Volcanics from the Yüksekova Complex (Maden Area, Elaziğ, E Turkey): Implications for a Late Cretaceous (Santonian-Campanian) Back-Arc Basin in the Southern Neotethys. Ofioliti, 47(1). https://doi.org/10.4454/ofioliti.v47i1.552.
  • Westaway, R, Arger, J, (2001). “Kinematics of the Malatya–Ovacik fault zone.” Geodinamica Acta, 14(1-3), 103-131.
  • Westaway, R, (2003). Kinematics of the Middle East and Eastern Mediterranean Updated. Turkish Journal of Earth Sciences, 12(1).
  • Yazıcı, M, Basmenji, M, Köküm, M, Doğan, U, Zabcı, C, Ergintav, S (2020). Contributions of fault gouge mineralogy on aseismic creep of active faults: the East Anatolian Fault (Eastern Turkey) as a case study. European Geosciences Union (EGU_2020).
  • URL-1 https://netblocks.org/reports/eastern-turkey-earthquake-knocks-out telecommunication-networks-gBLRMp84 (accessed 25 February 2020).
  • URL-2 https://dask.gov.tr/tr/tazminat-odemeleri (accessed 25 October 2022). URL-3 https://csb.gov.tr/kentsel-donusum-eylem-plani-aciklandi-bakanlik-faaliyetleri-28602 (accessed 25 October 2022).

24 Ocak 2020 Sivrice Depremi'nin (Doğu Anadolu Fayı) Etkilerinin Genel Değerlendirmesi, Türkiye

Yıl 2022, , 420 - 436, 31.10.2022
https://doi.org/10.35341/afet.1101628

Öz

Türkiye, birçok tektonik levhanın etkileştiği yerde olması nedeniyle depremlerin sık görüldüğü bir ülkedir. 20. ve 21. yüzyıllarda 130'dan fazla kayıtlı yıkıcı deprem oldu ve bu depremler çok büyük hasara neden oldular. Bu depremlerin en yıkıcı olanlarından birisi 24 Ocak 2020 tarihinde ülkenin doğusunda meydan geldi. Mw 6,8 büyüklüğündeki depremin merkez üssü Elazığ ilinin Sivrice ilçesidir. Sivrice depremi birincil yüzey kırığı (yer değiştirme) oluşturmadı, ancak ~55 km2 alanda heyelanlar ve bazı sıvılaşma yapıları gelişti. Günümüzde Sivrice depremi olarak bilinen 24 Ocak 2020 depremi, önemli can ve maddi kayıplara neden olmuştur. Sivrice depremi hakkında çok sayıda makale mevcut olmasına rağmen, hiçbiri Sivrice depreminin kapsamlı etkisinin önemi hakkında ayrıntılı bir açıklama sunmamaktadır. Bu çalışma, afetin genel etkilerini ilk kez ayrıntılı olarak tartışacaktır. Öncelikle depreme ait genel bilgiler verilecek ve bölgenin tektonik ortamı tanıtılacaktır. Daha sonra depremin etkisinin genel bir değerlendirmesi iki ana başlık altında yapılacaktır: doğrudan ve dolaylı kayıplar. Doğrudan etkiler, can ve mal kayıpları ve çevre üzerindeki etkiler olarak alt başlıklara ayrılmıştır. Dolaylı etkiler ise, sosyal yaşam ve ekonomi üzerinde etkiler olarak sınıflandırılmıştır. Türkiye, jeolojik konumu nedeniyle depremlere ve depremlerle ilgili etkilere karşı oldukça hassastır. Milyonlarca insan birçok nedenden dolayı Türkiye'de sismik olarak aktif bir bölgede veya yakınında yaşıyor. Bu nedenle, Türkiye'deki depremlerin sürdürülebilir yönetimine yönelik politika gözden geçirilecektir.

Kaynakça

  • Ambraseys, N N (1989). “Temporary seismic quiescence: SE Turkey.” Geophysical Journal 96, 311–331.
  • Arpat, Şaroğlu, F (1975). “Türkiye’deki bazı önemli genç tektonik olaylar.” Türkiye Jeoloji Kurumu Bülteni, 18(1), 91-101.
  • Beyarslan, M, Ertürk, M A, Rizeli, M E, Sar, A (2022). Doğu Anadolu Fay Sistemi Boyunca Gelişen Kuvaterner Mafik Alkali Volkanizmasının Petrojenezi ve Tektonik Konumu, Güneydoğu Anadolu Orojenik Kuşağı (Elazığ). El-Cezeri, 9(1), 171-188.
  • Cooper Jr, H H, Bredehoeft, J D, Papadopulos, I S, Bennett, R R (1965). “The response of well‐aquifer systems to seismic waves.” Journal of Geophysical Research, 70(16), 3915-3926.
  • Disaster and Emergency Management Authority, Presidential of Earthquake Department (AFAD) (2020a). Report on Sivrice Earthquake.
  • Disaster and Emergency Management Authority, Presidential of Earthquake Department (AFAD) (2020b). Report on aid organization about Sivrice earthquake.
  • Disaster and Emergency Management Authority, Presidential of Earthquake Department (AFAD) (2020c). Historical and Instrumental earthquake catalogue of Turkey.
  • Duman, T Y, and Emre, Ö (2013). “The East Anatolian Fault: geometry, segmentation and jog characteristics.” Geological Society, London, Special Publications published online February 19, 2013 as doi: 10.1144/SP372.14.
  • Doğan, U, Ergintav, S, Zabcı, C, Özarpacı, S, Özdemir, A, Erkoç, M H, Yazıcı, M, Yiğitoğlu, A, Çakır, Z, Karabulut, H, Köküm, M, Bayram, B, Bilham, R (2019). Investigating the characteristic properties of creeping along the Hazar-Palu Segment of the East Anatolian Fault, Turkey. AGU19.
  • Emre, Ö, Duman, T Y, Özalp, S, Elmacı, H, Olgun, Ş and Şaroğlu, F (2013). “Active Fault Map of Turkey with an Explanatory Text. 1:1,250,000 Scale.” General Directorate of Mineral Research and Exploration, Special Publication Series-30, Ankara-Turkey. ISBN: 978-605-5310-56-1.
  • Ertürk, M A, Beyarslan, M, Chung, S L, Lin, T H (2018). Eocene magmatism (maden complex) in the Southeast anatolian orogenic belt: magma genesis and tectonic implications. Geosci. Front. 9, 1829–1847.
  • Ertürk, M A, Sar, A, Rizeli, M E (2022). Petrology, zircon UPb geochronology and tectonic implications of the A1-type intrusions: Keban region, eastern Turkey. Geochemistry, 125882.
  • Goenjian AK, Walling D, Steinberg AM, Karayan I, Najarian LM, Pynoos R (2005). “A prospective study of posttraumatic stress and depressive reactions among treated and untreated adolescents 5 years after a catastrophic disaster.” Am J Psychiatry. 162(12):2302–8. Gökgöz, D D, Eriş, K K, Uçarkuş, G, Yakupoğlu, N, Kırkan, E, Uçar, A, Bozyiğit, C, Sabuncu, A, Şaşmaz, A, Köküm, M (2022). The sedimentologic parameters of earthquake related turbidites in Lake Hazar (Turkey) along the East Anatolian Fault Zone, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-265, https://doi.org/10.5194/egusphere-egu22-265, 2022.
  • Guvercin, S, Karabulut, H, Dogan, U, Cakir, Z, Ergintav, S, Zabci, C, Ozdemir, A, Ozarpaci, S, Konca, A O, and Kokum, M (2020). Present Seismotectonic Behavior of the EAF from Improved Seismicity Catalog and Earthquake Source Mechanism Solutions , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18053, https://doi.org/10.5194/egusphere-egu2020-18053.
  • Herece, E, Akay, E (1992). The East Anatolian fault between Karliova and Celikhan. In Proc. gh Petroleum Congress, Chamber of Pet. Eng. And Turk. Assoc. of Pet. Geol (pp. 361-372).
  • Herece, E (2008). Atlas of East Anatolian fault. General Directorate of Mineral Research and Exploration (MTA), Special Publication Series, 13.
  • Ishikawa S, Motoya R, Sasagawa S, Takahashi T, Okajima I, Takeishi Y, et al. (2015). Mental health problems among undergraduates in Fukushima, Tokyo, and Kyoto after the March 11 Tohoku earthquake. Tohoku J Exp Med. 236(2):115–22.
  • Kilic, A D, Ateş, C (2015). Geochronology of the Late Cretaceous magmatism and metamorphism, Pütürge massif, Turkey. Yanshi Xuebao, 31, 1485-1493.
  • Kiliç, A D, İnceöz, M (2015). Mineralogical, geochemical and isotopic effect of silica in ultramaphic systems, eastern Anatolian Turkey. Geochemistry International, 53(4), 369-382.
  • Kandilli Observatory (KOERI) (2020). Instrumental earthquakes of Turkey.
  • Kokum, M (2012). Block modeling of present-day deformation of Anatolia and slip rates along the North Anatolian Fault. Ph. D. Thesis.
  • Köküm, M. (2017). Doğu Anadolu fay sistemi’nin Palu-Uslu (Elazığ) arasındaki kesiminin kinematik analizi. Fen Bilimleri Enstitüsü, Doktora Tezi, 100.
  • Köküm, M, Inceöz, M (2017). Kinematics of The Area Between Palu (Elaziğ) And Pütürge (Malatya) On The East Anatolian Fault System In Turkey. PATA DAYS 2017: 8th International Workshop on Paleoseismology, Active Tectonics and Archeoseismology, 13th - 16th November., (2017),210-211.
  • Köküm, M, İnceöz, M (2018). Structural analysis of the northern part of the East Anatolian Fault System. Journal of Structural Geology, 114, 55-63.
  • Köküm, M (2019). Landsat TM görüntüleri üzerinden doğu anadolu fay sistemi’nin Palu (Elazığ)-Pütürge (Malatya) arasındaki bölümünün çizgisellik analizi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 119-127.
  • Köküm, M, Özçeli̇k, F (2020). An example study on re-evaluation of historical earthquakes: 1789 Palu (Elazığ) earthquake, Eastern Anatolia, Turkey. Bulletin of the Mineral Research and Exploration, 161 (161), 157-170. DOI: 10.19111/bulletinofmre.603929
  • Köküm, M, İnceöz, M (2020). “Paleostress analysis of the Yeşilyurt-Elazığ Fault Zone and its importance for the tectonic evolution, East Turkey.” Journal of Structural Geology, 138, 104093. Köküm, M (2021). Landslides and lateral spreading triggered by the 24 January 2020 Sivrice earthquake (East Anatolian Fault). Gümüşhane Üniversitesi Fen Bilimleri Dergisi , 11 (3) , 751-760 . DOI: 10.17714/gumusfenbil.877544
  • Liu, K B, Fearn, M L (1993). Lake-sediment record of late Holocene hurricane activities from coastal Alabama. Geology, 21(9), 793-796.
  • McKenzie, D (1972). Active tectonics of the Mediterranean region. Geophysical Journal International, 30(2), 109-185.
  • MTA (2011). 1/100.000 Ölçekli Türkiye Jeoloji Haritası. Maden Tetkik ve Arama Genel Müdürlügü, Ankara (in Turkish).
  • Akça Taşçı, G, Özsoy, F (2021). Deprem travmasının erken dönem psikolojik etkileri ve olası risk faktörleri. Cukurova Medical Journal 46. 488-494 https://dergipark.org.tr/tr/pub/cumj/issue/62101/841197
  • Palutoğlu, M, Şaşmaz, A (2017). “29 November 1795 Kahramanmaraş Earthquake, Southern Turkey.” Bulletin of the Mineral Research and Exploration (155):10-10. DOI: 10.19111/bulletinofmre.314211.
  • Reilinger, R, McClusky, S, Vernant, P, Lawrence, S, Ergintav, S, Çakmak, R, Özener, H, Kadirov, F, Guliev, I, Stepanyan, R, Nadariya, M, Hahubia, G, Mahmoud, S, Sakr, K, A Rajehi, A, Paradissis, D, Al-Aydrus, A, Prilepin, M, Guseva, T, Evren, E, Dmitrotsa, A, Filikov, S V, Gomez, F, Al-Ghazzi, R, Karam, G. (2006). “GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions.” J. Geophys. Res. 111, B05411.
  • Rizeli, M E, Beyarslan, M, Wang, K-L, Bingol, A F (2016). Mineral chemistry and petrology ofmantle peridotites from the Guleman ophiolite (SE Anatolia, Turkey): evidence of a forearc setting. J. Afr. Earth Sci. 123, 392–402.
  • Rizeli, M E, Abdullah, Sar, Ertürk, M A (2021). Keban Magmatik Kayaçları’nın Petrografik Ve Jeokimyasal Özellikleri (Keban-Elazığ). Mühendislik Bilimleri ve Araştırmaları Dergisi, 3(1), 69-80.
  • Sar, A, Ertürk, M A, Rizeli, M E (2019). Genesis of Late Cretaceous intra-oceanic arc intrusions in the Pertek area of Tunceli Province, eastern Turkey, and implications for the geodynamic evolution of the southern Neo-Tethys: Results of zircon U-Pb geochronology and geochemical and Sr-Nd isotopic analyses, Lithos, 350, 105263.Lithos, https://doi.org/10.1016/j.lithos.2019.105263.
  • Sar, A (2016). Pertek (Tunceli) Güneydoğusundaki Granitoidlerin Petrolojisi. FU Fen Bil. Enst. Master theses (unpublished), 72.
  • Sar, A., Kürüm, S (2022). Mineralogical and Petrographic Characteristics of the Jurassic Kaban Dacite in the Eastern Sakarya Zone (Olur/Erzurum) . Erzincan University Journal of Science and Technology, 15 (2), 498-506. DOI: 10.18185/erzifbed.1005847
  • Saroglu, F, Emre, O, Kuşçu, I (1992). “The east Anatolian fault zone of Turkey.”
  • Waller, R. M., Coble, R. W., Post, A., McGarr, A., Vorhis, R. C. (1966). “The Alaska earthquake, March 27, 1964: effects on hydrologic regimen (No. 544).” US Government Printing Office. Tekin, U K, Ural, M, Goncüoglu, M C, Arslan, M, Kürüm, S (2015). Upper-Cretaceous Radiolarian ages from an arc-back-arc within the Yüksekova Complex in the southern Neotethys melange, SE Turkey. Comptes Rendus Palevol 14, 73–84.
  • The United Nation Secretariat for the International Strategy for disaster Reduction (ISDR) (2002). The Socio-Economic Consequences of the Earthquake at Izmit, Turkey, 17 August 1999. United States Geological Survey (USGS) (2020). Report on Hydrological change after earthquakes.
  • Ural, M, Arslan, M, Goncüoglu, U K, Kürüm, S, (2015). Late Cretaceous arc and back-arc formation within the southern Neotethys: whole-rock, trace element and Sr-Nd-Pb isotopic data from basaltic rocks of the Yüksekova Complex (Malatya-Elazıg, SE Turkey). Ofioliti 40 (1), 57–72.
  • Ural, M, Sayit, K, Koralay, O E, Goncuoglu, M C (2021). Geochemistry and Zircon U‐Pb Dates of Felsic‐Intermediate Members of the Late Cretaceous Yüksekova Arc Basin: Constraints on the Evolution of the Bitlis–Zagros Branch of Neotethys (Elazığ, E Turkey). Acta Geologica Sinica‐English Edition, 95(4), 1199-1216.
  • Ural, M, Cihan, A, (2021). Uslu (Elazığ G) Çevresindeki Volkanik Kayaçların (Yüksekova Karmaşığı) Jeokimyası . Avrupa Bilim ve Teknoloji Dergisi , (21) , 198-206 . DOI: 10.31590/ejosat.796129
  • Ural, M, Sayit, K, Tekin, U T, (2022). Whole-Rock and Nd-Pb Isotope Geochemistry and Radiolarian Ages of the Volcanics from the Yüksekova Complex (Maden Area, Elaziğ, E Turkey): Implications for a Late Cretaceous (Santonian-Campanian) Back-Arc Basin in the Southern Neotethys. Ofioliti, 47(1). https://doi.org/10.4454/ofioliti.v47i1.552.
  • Westaway, R, Arger, J, (2001). “Kinematics of the Malatya–Ovacik fault zone.” Geodinamica Acta, 14(1-3), 103-131.
  • Westaway, R, (2003). Kinematics of the Middle East and Eastern Mediterranean Updated. Turkish Journal of Earth Sciences, 12(1).
  • Yazıcı, M, Basmenji, M, Köküm, M, Doğan, U, Zabcı, C, Ergintav, S (2020). Contributions of fault gouge mineralogy on aseismic creep of active faults: the East Anatolian Fault (Eastern Turkey) as a case study. European Geosciences Union (EGU_2020).
  • URL-1 https://netblocks.org/reports/eastern-turkey-earthquake-knocks-out telecommunication-networks-gBLRMp84 (accessed 25 February 2020).
  • URL-2 https://dask.gov.tr/tr/tazminat-odemeleri (accessed 25 October 2022). URL-3 https://csb.gov.tr/kentsel-donusum-eylem-plani-aciklandi-bakanlik-faaliyetleri-28602 (accessed 25 October 2022).
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Mehmet Köküm 0000-0001-5149-3931

Yayımlanma Tarihi 31 Ekim 2022
Kabul Tarihi 26 Ekim 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Köküm, M. (2022). Overall Evaluation of the Effects of the 24 January 2020 Sivrice Earthquake (East Anatolian Fault), Turkey. Afet Ve Risk Dergisi, 5(2), 420-436. https://doi.org/10.35341/afet.1101628
AMA Köküm M. Overall Evaluation of the Effects of the 24 January 2020 Sivrice Earthquake (East Anatolian Fault), Turkey. Afet ve Risk Dergisi. Ekim 2022;5(2):420-436. doi:10.35341/afet.1101628
Chicago Köküm, Mehmet. “Overall Evaluation of the Effects of the 24 January 2020 Sivrice Earthquake (East Anatolian Fault), Turkey”. Afet Ve Risk Dergisi 5, sy. 2 (Ekim 2022): 420-36. https://doi.org/10.35341/afet.1101628.
EndNote Köküm M (01 Ekim 2022) Overall Evaluation of the Effects of the 24 January 2020 Sivrice Earthquake (East Anatolian Fault), Turkey. Afet ve Risk Dergisi 5 2 420–436.
IEEE M. Köküm, “Overall Evaluation of the Effects of the 24 January 2020 Sivrice Earthquake (East Anatolian Fault), Turkey”, Afet ve Risk Dergisi, c. 5, sy. 2, ss. 420–436, 2022, doi: 10.35341/afet.1101628.
ISNAD Köküm, Mehmet. “Overall Evaluation of the Effects of the 24 January 2020 Sivrice Earthquake (East Anatolian Fault), Turkey”. Afet ve Risk Dergisi 5/2 (Ekim 2022), 420-436. https://doi.org/10.35341/afet.1101628.
JAMA Köküm M. Overall Evaluation of the Effects of the 24 January 2020 Sivrice Earthquake (East Anatolian Fault), Turkey. Afet ve Risk Dergisi. 2022;5:420–436.
MLA Köküm, Mehmet. “Overall Evaluation of the Effects of the 24 January 2020 Sivrice Earthquake (East Anatolian Fault), Turkey”. Afet Ve Risk Dergisi, c. 5, sy. 2, 2022, ss. 420-36, doi:10.35341/afet.1101628.
Vancouver Köküm M. Overall Evaluation of the Effects of the 24 January 2020 Sivrice Earthquake (East Anatolian Fault), Turkey. Afet ve Risk Dergisi. 2022;5(2):420-36.