Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Atmospheric Stability Conditions Affecting the Distribution of Potential Radiological Contamination at Nuclear Power Plant Sites of Türkiye Using the Pasquill-Gifford Method

Yıl 2025, Cilt: 8 Sayı: 3, 1161 - 1178, 30.11.2025
https://doi.org/10.35341/afet.1678896

Öz

One of the most critical factors determining the dispersion of radiological pollution in the atmosphere is atmospheric stability conditions. This study aims to determine the stability conditions that influence dispersion at nuclear power plant sites in Türkiye. Based on satellite-derived data, the stability characteristics of these sites were calculated using the Pasquill-Gifford classification. The findings indicate that in the vicinity of Akkuyu, stability classes B–C (moderately to slightly unstable) and C (slightly unstable) predominate during daytime throughout the year. Unstable atmospheric conditions are advantageous for turbulent dispersion. At the İnceburun site, class D (neutral) conditions prevail during daytime in winter, while class C (slightly unstable) dominates in autumn, and classes B–C (moderately to slightly unstable) in spring and summer. Although winter conditions are relatively stable and may hinder dispersion, the other seasons present more favorable conditions. In the İğneada region, class D (neutral) is more frequently observed during the daytime. In this area, vertical mixing and dispersion of radionuclides in the atmosphere are likely to be limited, with transport primarily governed by laminar, wind-driven advection. Enhancing such studies at nuclear power plant sites through diverse data sources and methodologies will help ensure that precautionary measures and future developments are grounded on a more robust scientific basis.

Kaynakça

  • Akkan, E. (1975). Sinop Yarımadasının Jeomorfolojisi. Ankara: Ankara Üniversitesi Dil Tarih Coğrafya Fakültesi Yayınları. Ankara Üniversitesi Basımevi.
  • Anaş. (2017). Akkuyu Nükleer Güç Santrali, Saha Parametreleri Raporu. Ankara.
  • Andrews, D. . (2010). An Introduction to Atmospheric Physics (Second Edi). New York: Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK.
  • Bardal, L. M., Onstad, A., Sætran, L., ve Lund, J. (2018). Evaluation of methods for estimating atmospheric stability at two coastal sites. Wind Engineering, 42, 0309524X1878037. https://doi.org/10.1177/0309524X18780378
  • Bulhosa, V., Funcke, R., Brum, T., Sanchez, J., Lima, Z., Vital, H., Andrade, E. (2020). Solid cancer risk dependence on the Pasquill–Gifford atmospheric stability classes in a radiological event. Radiation and Environmental Biophysics, 59. https://doi.org/10.1007/s00411-020-00840-3
  • Camuffo, D. B. T.-D. in A. S. (Ed.). (1998). Chapter 7 Atmospheric stability and pollutant dispersion. Içinde Microclimate for Cultural Heritage (C. 23, ss. 195–234). Elsevier. https://doi.org/10.1016/S0167-5117(98)80010-4
  • Chambers, S. D., Galeriu, D., Williams, A. G., Melintescu, A., Griffiths, A. D., Crawford, J., … Zorila, B. (2016). Atmospheric stability effects on potential radiological releases at a nuclear research facility in Romania: Characterising the atmospheric mixing state. Journal of Environmental Radioactivity, 154, 68–82. https://doi.org/10.1016/j.jenvrad.2016.01.010
  • Dvorak, P., Mazanek, M., ve Zvanovec, S. (2012). Short-term Prediction and Detection of Dynamic Atmospheric Phenomena by Microwave Radiometer. Radioengineering, 21, 1060–1066.
  • Edokpa, D., ve Nwagbara, M. (2017). Atmospheric Stability Pattern over Port Harcourt, Nigeria. Journal of Atmospheric Pollution, 5, 9–17. https://doi.org/10.12691/jap-5-1-2
  • Essa, K. S. ., Embaby, M. ., Kozae, A. ., Mubarak, F., ve Kamel, I. (2006). Estimation of Seasonal Atmospheric Stability and Mixing Height by Using Different Schemes. VIII Radiation Physics and Protection Conference, 13-15 November. Fayoum, Egypt.
  • Fattah, A., Mohammed, S., ve Hussain, H. (2014). Atmospheric Stability and Its Effect on The Polluted Columns of Concentrations in North West of Baghdad City‬. https://doi.org/10.13140/RG.2.2.10928.00006
  • Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., … Zhao, B. (2017). The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1
  • Gómez-Moreno, F. J., Pujadas, M., Plaza, J., Rodríguez-Maroto, J. J., Martínez-Lozano, P., ve Artíñano, B. (2011). Influence of seasonal factors on the atmospheric particle number concentration and size distribution in Madrid. Atmospheric Environment, 45(18), 3169–3180. https://doi.org/10.1016/j.atmosenv.2011.02.041
  • Haklander, A., ve van Delden, A. (2014). Thunderstorm predictors and their forecast skill for the Netherlands. Atmospheric Research, 67–68, 273–299. https://doi.org/10.1016/S0169-8095(03)00056-5
  • He, S., Zhao, Z., Ni, S., Deng, W., ve Zhao, J. (2024). A CFD study on radionuclides diffusion and dose assessment in Daya Bay nuclear power plant. Progress in Nuclear Energy, 173, 105271. https://doi.org/10.1016/j.pnucene.2024.105271
  • Hu, T., ve Yoshie, R. (2020). Effect of atmospheric stability on air pollutant concentration and its generalization for real and idealized urban block models based on field observation data and wind tunnel experiments. Journal of Wind Engineering and Industrial Aerodynamics, 207, 104380. https://doi.org/10.1016/j.jweia.2020.104380
  • Huertas, J. I., Martinez, D. S., ve Prato, D. F. (2021). Numerical approximation to the effects of the atmospheric stability conditions on the dispersion of pollutants over flat areas. Scientific Reports, 11(1), 11566. https://doi.org/10.1038/s41598-021-89200-9
  • Jayakrishnan, P. R., ve Babu, C. A. (2014). Assessment of Convective Activity Using Stability Indices as Inferred from Radiosonde and MODIS Data. Atmospheric and Climate Sciences, 04, 122–130. https://doi.org/10.4236/acs.2014.41014
  • Kumar, L., ve Mutanga, O. (2018). Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10), 1–15. https://doi.org/10.3390/rs10101509
  • Lai, H.-C., Dai, Y.-T., Mkasimongwa, S. W., Hsiao, M.-C., ve Lai, L.-W. (2023). The Impact of Atmospheric Synoptic Weather Condition and Long-Range Transportation of Air Mass on Extreme PM10 Concentration Events. Atmosphere, C. 14. https://doi.org/10.3390/atmos14020406
  • Lee, S.-C., Yoon, D.-J., ve Song, D.-S. (2014). Atmospheric stability classification of dispersion factor for radiological analysis at Yonggwang site in Korea. International Congress on Advances in Nuclear Power Plants, ICAPP 2014, 2, 921–929.
  • Lee, W. M. (1985). Application of Monin-Obukhov length in the atmospheric stability class determination for air dispersion models.
  • Maro, D., Crabol, B., Germain, P., Barón, Y., Hebert, D., ve Bouisset, P. (2002). A study of the near field atmospheric dispersion of emission at height: Comparison of Gaussian plume models (Doury, Pasquill-Briggs, Caire) with krypton-85 measurements taken around La Hague nuclear reprocessing plant. https://doi.org/10.1051/radiopro/2002160
  • Matthew, O., Abiye, O., ve Ayoola, M. (2021). Assessment of static stability indices and related thermodynamic parameters for predictions of atmospheric convective potential and precipitation over Nigeria. Meteorology and Atmospheric Physics, 133. https://doi.org/10.1007/s00703-020-00772-z
  • Mayhoub, A. B., Essa, K. S. M., ve Aly, S. (2004). Analytical form of pollutants dispersion for different atmospheric conditions. 4. Conference and Workshop on Cyclotrons and Applications, 388–397. Cairo, Egypt.
  • McDougall, T. J., ve Feistel, R. (2003). What causes the adiabatic lapse rate? Deep Sea Research Part I: Oceanographic Research Papers, 50(12), 1523–1535. https://doi.org/10.1016/j.dsr.2003.09.007
  • Mcnally, A., Arsenault, K., Kumar, S., Shukla, S., Peterson, P., Wang, S., … Verdin, J. (2017). A land data assimilation system for sub-Saharan Africa food and water security applications. Scientific Data, 4, 170012. https://doi.org/10.1038/sdata.2017.12
  • Mohan, M., ve Siddiqui, T. A. (1998). Analysis of various schemes for the estimation of atmospheric stability classification. Atmospheric Environment, 32(21), 3775–3781. https://doi.org/10.1016/S1352-2310(98)00109-5
  • Muhammad, H., Xuan, W., Mingjun, W., ve Su, G. (2025). Review of spatial scale dispersion models (ATDMs) to simulate environmental dispersion and deposition of radionuclides and the overview of GIS coupling with dispersion models. International Journal of Advanced Nuclear Reactor Design and Technology. https://doi.org/10.1016/j.jandt.2025.03.004
  • Mukherjee, S., ve Mishra, A. K. (2021). Cascading effect of meteorological forcing on extreme precipitation events: Role of atmospheric rivers in southeastern US. Journal of Hydrology, 601, 126641. https://doi.org/10.1016/j.jhydrol.2021.126641
  • Nakyai, T., Santasnachok, M., Thetkathuek, A., ve Phatrabuddha, N. (2025). Influence of meteorological factors on air pollution and health risks: A comparative analysis of industrial and urban areas in Chonburi Province, Thailand. Environmental Advances, 19, 100608. https://doi.org/10.1016/j.envadv.2024.100608
  • Pasquill, F. (1961). The estimation of the dispersion of windborne material. Meteorology Magazine, 8(11), 33–40.
  • Pérez-Cutillas, P., Pérez-Navarro, A., Conesa-García, C., Zema, D. A., ve Amado-Álvarez, J. P. (2023). What is going on within google earth engine? A systematic review and meta-analysis. Remote Sensing Applications: Society and Environment, 29, 100907. https://doi.org/10.1016/j.rsase.2022.100907
  • Reda, E., Mahmood, W. M. F., Zulkifli, R., ve Harun, Z. (2018). CFD Simulation of Automotive Pollutant Dispersion in High-Rise Building Urban Environment Under Deeply Stable Atmospheric Condition. International Journal of Engineering and Technology(UAE), 7, 5–14. https://doi.org/10.14419/ijet.v7i3.17.16612
  • Rohli, R., ve Li, C. (2021). Atmospheric Stability and Potential Temperature. https://doi.org/10.1007/978-3-030-73093-2_8
  • Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., … Becker, E. (2014). The NCEP Climate Forecast System Version 2. Journal of Climate, 27(6), 2185–2208. https://doi.org/10.1175/JCLI-D-12-00823.1
  • Sedefian, L., ve Bennett, E. (1980). A comparison of turbulence classification schemes. Atmospheric Environment (1967), 14(7), 741–750. https://doi.org/10.1016/0004-6981(80)90128-6
  • Seigneur, C. (Ed.). (2019). Atmospheric Dispersion. Içinde Air Pollution: Concepts, Theory, and Applications (ss. 95–124). Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108674614.006
  • Till, J. E., ve Meyer, H. R. (1983). Radiological Assessment, A Textbook on Environmental Dose Analysis. Washington: U.S. Nuclear Regulatory Commission.
  • URL 1, https://developers.google.com/earth-engine/ datasets/catalog/NOAA_CFSV2_FOR6H# description. Erişim Tarihi: 10.03.2025
  • URL 2, https://developers.google.com/earth-engine/ datasets/catalog/NASA_FLDAS_NOAH01 _C_GL_M_V001#description. Erişim Tarihi: 10.03.2025
  • URL 3, https://power.larc.nasa.gov/data-access-viewer /. Erişim Tarihi: 10.03.2025
  • URL 4, IAEA, International Atomic Energy Agency, “Report from Working Group on Emergency Planning Zone,” https://www.iaea.org/sites/default/files/18/01/smr-rf-report-appendix-iv-29012018.pdf. Erişim Tarihi: 10.03.2025
  • Vallero, D. A. (2024). Chapter 14 - Air pollution dispersion models (D. A. B. T.-A. P. C. (Second E. Vallero, Ed.). Elsevier. https://doi.org/10.1016/B978-0-443-13987-1.00022-3
  • Wu, F., Meng, B., Lian, B., Wang, Y., ve Kang, J. (2024). Assessment of radiological environmental impact under various meteorological condition. Thermal Science, 28, 2225–2231. https://doi.org/10.2298/TSCI2403225W
  • Ye, W., Yu, Y., ve Cao, J. (2024). Region‐dependent meteorological conditions of thunderstorm based on clustering analysis of stability and precipitable water indices. International Journal of Climatology, 44, 2650–2665. https://doi.org/10.1002/joc.8473

Türkiye’nin Nükleer Santral Alanlarında Potansiyel Radyolojik Kirliliğin Dağılımını Etkileyecek Atmosfer Kararlılık Şartlarının Pasquill-Gifford Yöntemi ile Belirlenmesi

Yıl 2025, Cilt: 8 Sayı: 3, 1161 - 1178, 30.11.2025
https://doi.org/10.35341/afet.1678896

Öz

Radyolojik kirliliğin atmosferdeki dağılımını belirleyen en önemli faktörlerden biri atmosferin kararlılık özellikleridir. Bu araştırmanın amacı, Türkiye’nin nükleer santral alanlarında dağılımı etkileyecek olan kararlılık şartlarının belirlenmesidir. Çalışmada uydu kaynaklarından elde edilen veriler kullanılarak, Pasquill-Gifford sınıflandırmasına göre sahalara ait kararlılık özellikleri hesaplanmıştır. Elde edilen bulgulara göre, Akkuyu çevresinde gündüz süresinde yıl içerisinde B-C (Orta derecede kararsız-az kararsız) ve C (Az kararsız) sınıfı hakimdir. Kararsız atmosfer koşulları türbülansif dağılım açısından avantaj oluşturmaktadır. İnceburun sahasında gündüz koşullarında; kış mevsiminde D (Nötr), sonbaharda C (Az kararsız), ilkbahar ve yaz mevsimlerinde B-C (Orta derecede kararsız-az kararsız) şartları yaygındır. Kış mevsimi dağılımı sınırlandıran kararlılık özelliklerine sahip olsa da diğer zaman dilimlerinde şartlar nispeten elverişlidir. İğneada çevresinde ise gündüz koşullarında daha çok D (Nötr) sınıfı görülür. Sahada radyonüklidlerin atmosferdeki dikey dağılımının ve karışımın sınırlı olması muhtemeldir. Daha çok rüzgarlar aracılığıyla laminer bir taşınım oluşabilir. Nükleer santral alanlarına ait yapılan bu tip çalışmaların farklı veri kaynakları ve metodolojilerle desteklenmesi, alınacak önlemlerin ve gerçekleştirilecek atılımların daha bilimsel bir zeminde ilerlemesini sağlayacaktır.

Kaynakça

  • Akkan, E. (1975). Sinop Yarımadasının Jeomorfolojisi. Ankara: Ankara Üniversitesi Dil Tarih Coğrafya Fakültesi Yayınları. Ankara Üniversitesi Basımevi.
  • Anaş. (2017). Akkuyu Nükleer Güç Santrali, Saha Parametreleri Raporu. Ankara.
  • Andrews, D. . (2010). An Introduction to Atmospheric Physics (Second Edi). New York: Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK.
  • Bardal, L. M., Onstad, A., Sætran, L., ve Lund, J. (2018). Evaluation of methods for estimating atmospheric stability at two coastal sites. Wind Engineering, 42, 0309524X1878037. https://doi.org/10.1177/0309524X18780378
  • Bulhosa, V., Funcke, R., Brum, T., Sanchez, J., Lima, Z., Vital, H., Andrade, E. (2020). Solid cancer risk dependence on the Pasquill–Gifford atmospheric stability classes in a radiological event. Radiation and Environmental Biophysics, 59. https://doi.org/10.1007/s00411-020-00840-3
  • Camuffo, D. B. T.-D. in A. S. (Ed.). (1998). Chapter 7 Atmospheric stability and pollutant dispersion. Içinde Microclimate for Cultural Heritage (C. 23, ss. 195–234). Elsevier. https://doi.org/10.1016/S0167-5117(98)80010-4
  • Chambers, S. D., Galeriu, D., Williams, A. G., Melintescu, A., Griffiths, A. D., Crawford, J., … Zorila, B. (2016). Atmospheric stability effects on potential radiological releases at a nuclear research facility in Romania: Characterising the atmospheric mixing state. Journal of Environmental Radioactivity, 154, 68–82. https://doi.org/10.1016/j.jenvrad.2016.01.010
  • Dvorak, P., Mazanek, M., ve Zvanovec, S. (2012). Short-term Prediction and Detection of Dynamic Atmospheric Phenomena by Microwave Radiometer. Radioengineering, 21, 1060–1066.
  • Edokpa, D., ve Nwagbara, M. (2017). Atmospheric Stability Pattern over Port Harcourt, Nigeria. Journal of Atmospheric Pollution, 5, 9–17. https://doi.org/10.12691/jap-5-1-2
  • Essa, K. S. ., Embaby, M. ., Kozae, A. ., Mubarak, F., ve Kamel, I. (2006). Estimation of Seasonal Atmospheric Stability and Mixing Height by Using Different Schemes. VIII Radiation Physics and Protection Conference, 13-15 November. Fayoum, Egypt.
  • Fattah, A., Mohammed, S., ve Hussain, H. (2014). Atmospheric Stability and Its Effect on The Polluted Columns of Concentrations in North West of Baghdad City‬. https://doi.org/10.13140/RG.2.2.10928.00006
  • Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., … Zhao, B. (2017). The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1
  • Gómez-Moreno, F. J., Pujadas, M., Plaza, J., Rodríguez-Maroto, J. J., Martínez-Lozano, P., ve Artíñano, B. (2011). Influence of seasonal factors on the atmospheric particle number concentration and size distribution in Madrid. Atmospheric Environment, 45(18), 3169–3180. https://doi.org/10.1016/j.atmosenv.2011.02.041
  • Haklander, A., ve van Delden, A. (2014). Thunderstorm predictors and their forecast skill for the Netherlands. Atmospheric Research, 67–68, 273–299. https://doi.org/10.1016/S0169-8095(03)00056-5
  • He, S., Zhao, Z., Ni, S., Deng, W., ve Zhao, J. (2024). A CFD study on radionuclides diffusion and dose assessment in Daya Bay nuclear power plant. Progress in Nuclear Energy, 173, 105271. https://doi.org/10.1016/j.pnucene.2024.105271
  • Hu, T., ve Yoshie, R. (2020). Effect of atmospheric stability on air pollutant concentration and its generalization for real and idealized urban block models based on field observation data and wind tunnel experiments. Journal of Wind Engineering and Industrial Aerodynamics, 207, 104380. https://doi.org/10.1016/j.jweia.2020.104380
  • Huertas, J. I., Martinez, D. S., ve Prato, D. F. (2021). Numerical approximation to the effects of the atmospheric stability conditions on the dispersion of pollutants over flat areas. Scientific Reports, 11(1), 11566. https://doi.org/10.1038/s41598-021-89200-9
  • Jayakrishnan, P. R., ve Babu, C. A. (2014). Assessment of Convective Activity Using Stability Indices as Inferred from Radiosonde and MODIS Data. Atmospheric and Climate Sciences, 04, 122–130. https://doi.org/10.4236/acs.2014.41014
  • Kumar, L., ve Mutanga, O. (2018). Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10), 1–15. https://doi.org/10.3390/rs10101509
  • Lai, H.-C., Dai, Y.-T., Mkasimongwa, S. W., Hsiao, M.-C., ve Lai, L.-W. (2023). The Impact of Atmospheric Synoptic Weather Condition and Long-Range Transportation of Air Mass on Extreme PM10 Concentration Events. Atmosphere, C. 14. https://doi.org/10.3390/atmos14020406
  • Lee, S.-C., Yoon, D.-J., ve Song, D.-S. (2014). Atmospheric stability classification of dispersion factor for radiological analysis at Yonggwang site in Korea. International Congress on Advances in Nuclear Power Plants, ICAPP 2014, 2, 921–929.
  • Lee, W. M. (1985). Application of Monin-Obukhov length in the atmospheric stability class determination for air dispersion models.
  • Maro, D., Crabol, B., Germain, P., Barón, Y., Hebert, D., ve Bouisset, P. (2002). A study of the near field atmospheric dispersion of emission at height: Comparison of Gaussian plume models (Doury, Pasquill-Briggs, Caire) with krypton-85 measurements taken around La Hague nuclear reprocessing plant. https://doi.org/10.1051/radiopro/2002160
  • Matthew, O., Abiye, O., ve Ayoola, M. (2021). Assessment of static stability indices and related thermodynamic parameters for predictions of atmospheric convective potential and precipitation over Nigeria. Meteorology and Atmospheric Physics, 133. https://doi.org/10.1007/s00703-020-00772-z
  • Mayhoub, A. B., Essa, K. S. M., ve Aly, S. (2004). Analytical form of pollutants dispersion for different atmospheric conditions. 4. Conference and Workshop on Cyclotrons and Applications, 388–397. Cairo, Egypt.
  • McDougall, T. J., ve Feistel, R. (2003). What causes the adiabatic lapse rate? Deep Sea Research Part I: Oceanographic Research Papers, 50(12), 1523–1535. https://doi.org/10.1016/j.dsr.2003.09.007
  • Mcnally, A., Arsenault, K., Kumar, S., Shukla, S., Peterson, P., Wang, S., … Verdin, J. (2017). A land data assimilation system for sub-Saharan Africa food and water security applications. Scientific Data, 4, 170012. https://doi.org/10.1038/sdata.2017.12
  • Mohan, M., ve Siddiqui, T. A. (1998). Analysis of various schemes for the estimation of atmospheric stability classification. Atmospheric Environment, 32(21), 3775–3781. https://doi.org/10.1016/S1352-2310(98)00109-5
  • Muhammad, H., Xuan, W., Mingjun, W., ve Su, G. (2025). Review of spatial scale dispersion models (ATDMs) to simulate environmental dispersion and deposition of radionuclides and the overview of GIS coupling with dispersion models. International Journal of Advanced Nuclear Reactor Design and Technology. https://doi.org/10.1016/j.jandt.2025.03.004
  • Mukherjee, S., ve Mishra, A. K. (2021). Cascading effect of meteorological forcing on extreme precipitation events: Role of atmospheric rivers in southeastern US. Journal of Hydrology, 601, 126641. https://doi.org/10.1016/j.jhydrol.2021.126641
  • Nakyai, T., Santasnachok, M., Thetkathuek, A., ve Phatrabuddha, N. (2025). Influence of meteorological factors on air pollution and health risks: A comparative analysis of industrial and urban areas in Chonburi Province, Thailand. Environmental Advances, 19, 100608. https://doi.org/10.1016/j.envadv.2024.100608
  • Pasquill, F. (1961). The estimation of the dispersion of windborne material. Meteorology Magazine, 8(11), 33–40.
  • Pérez-Cutillas, P., Pérez-Navarro, A., Conesa-García, C., Zema, D. A., ve Amado-Álvarez, J. P. (2023). What is going on within google earth engine? A systematic review and meta-analysis. Remote Sensing Applications: Society and Environment, 29, 100907. https://doi.org/10.1016/j.rsase.2022.100907
  • Reda, E., Mahmood, W. M. F., Zulkifli, R., ve Harun, Z. (2018). CFD Simulation of Automotive Pollutant Dispersion in High-Rise Building Urban Environment Under Deeply Stable Atmospheric Condition. International Journal of Engineering and Technology(UAE), 7, 5–14. https://doi.org/10.14419/ijet.v7i3.17.16612
  • Rohli, R., ve Li, C. (2021). Atmospheric Stability and Potential Temperature. https://doi.org/10.1007/978-3-030-73093-2_8
  • Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., … Becker, E. (2014). The NCEP Climate Forecast System Version 2. Journal of Climate, 27(6), 2185–2208. https://doi.org/10.1175/JCLI-D-12-00823.1
  • Sedefian, L., ve Bennett, E. (1980). A comparison of turbulence classification schemes. Atmospheric Environment (1967), 14(7), 741–750. https://doi.org/10.1016/0004-6981(80)90128-6
  • Seigneur, C. (Ed.). (2019). Atmospheric Dispersion. Içinde Air Pollution: Concepts, Theory, and Applications (ss. 95–124). Cambridge: Cambridge University Press. https://doi.org/10.1017/9781108674614.006
  • Till, J. E., ve Meyer, H. R. (1983). Radiological Assessment, A Textbook on Environmental Dose Analysis. Washington: U.S. Nuclear Regulatory Commission.
  • URL 1, https://developers.google.com/earth-engine/ datasets/catalog/NOAA_CFSV2_FOR6H# description. Erişim Tarihi: 10.03.2025
  • URL 2, https://developers.google.com/earth-engine/ datasets/catalog/NASA_FLDAS_NOAH01 _C_GL_M_V001#description. Erişim Tarihi: 10.03.2025
  • URL 3, https://power.larc.nasa.gov/data-access-viewer /. Erişim Tarihi: 10.03.2025
  • URL 4, IAEA, International Atomic Energy Agency, “Report from Working Group on Emergency Planning Zone,” https://www.iaea.org/sites/default/files/18/01/smr-rf-report-appendix-iv-29012018.pdf. Erişim Tarihi: 10.03.2025
  • Vallero, D. A. (2024). Chapter 14 - Air pollution dispersion models (D. A. B. T.-A. P. C. (Second E. Vallero, Ed.). Elsevier. https://doi.org/10.1016/B978-0-443-13987-1.00022-3
  • Wu, F., Meng, B., Lian, B., Wang, Y., ve Kang, J. (2024). Assessment of radiological environmental impact under various meteorological condition. Thermal Science, 28, 2225–2231. https://doi.org/10.2298/TSCI2403225W
  • Ye, W., Yu, Y., ve Cao, J. (2024). Region‐dependent meteorological conditions of thunderstorm based on clustering analysis of stability and precipitable water indices. International Journal of Climatology, 44, 2650–2665. https://doi.org/10.1002/joc.8473
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Sağlığı
Bölüm Araştırma Makalesi
Yazarlar

Onur Canbulat 0000-0002-9269-4219

Gönderilme Tarihi 18 Nisan 2025
Kabul Tarihi 23 Kasım 2025
Yayımlanma Tarihi 30 Kasım 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 3

Kaynak Göster

APA Canbulat, O. (2025). Türkiye’nin Nükleer Santral Alanlarında Potansiyel Radyolojik Kirliliğin Dağılımını Etkileyecek Atmosfer Kararlılık Şartlarının Pasquill-Gifford Yöntemi ile Belirlenmesi. Afet ve Risk Dergisi, 8(3), 1161-1178. https://doi.org/10.35341/afet.1678896
AMA Canbulat O. Türkiye’nin Nükleer Santral Alanlarında Potansiyel Radyolojik Kirliliğin Dağılımını Etkileyecek Atmosfer Kararlılık Şartlarının Pasquill-Gifford Yöntemi ile Belirlenmesi. Afet ve Risk Dergisi. Kasım 2025;8(3):1161-1178. doi:10.35341/afet.1678896
Chicago Canbulat, Onur. “Türkiye’nin Nükleer Santral Alanlarında Potansiyel Radyolojik Kirliliğin Dağılımını Etkileyecek Atmosfer Kararlılık Şartlarının Pasquill-Gifford Yöntemi ile Belirlenmesi”. Afet ve Risk Dergisi 8, sy. 3 (Kasım 2025): 1161-78. https://doi.org/10.35341/afet.1678896.
EndNote Canbulat O (01 Kasım 2025) Türkiye’nin Nükleer Santral Alanlarında Potansiyel Radyolojik Kirliliğin Dağılımını Etkileyecek Atmosfer Kararlılık Şartlarının Pasquill-Gifford Yöntemi ile Belirlenmesi. Afet ve Risk Dergisi 8 3 1161–1178.
IEEE O. Canbulat, “Türkiye’nin Nükleer Santral Alanlarında Potansiyel Radyolojik Kirliliğin Dağılımını Etkileyecek Atmosfer Kararlılık Şartlarının Pasquill-Gifford Yöntemi ile Belirlenmesi”, Afet ve Risk Dergisi, c. 8, sy. 3, ss. 1161–1178, 2025, doi: 10.35341/afet.1678896.
ISNAD Canbulat, Onur. “Türkiye’nin Nükleer Santral Alanlarında Potansiyel Radyolojik Kirliliğin Dağılımını Etkileyecek Atmosfer Kararlılık Şartlarının Pasquill-Gifford Yöntemi ile Belirlenmesi”. Afet ve Risk Dergisi 8/3 (Kasım2025), 1161-1178. https://doi.org/10.35341/afet.1678896.
JAMA Canbulat O. Türkiye’nin Nükleer Santral Alanlarında Potansiyel Radyolojik Kirliliğin Dağılımını Etkileyecek Atmosfer Kararlılık Şartlarının Pasquill-Gifford Yöntemi ile Belirlenmesi. Afet ve Risk Dergisi. 2025;8:1161–1178.
MLA Canbulat, Onur. “Türkiye’nin Nükleer Santral Alanlarında Potansiyel Radyolojik Kirliliğin Dağılımını Etkileyecek Atmosfer Kararlılık Şartlarının Pasquill-Gifford Yöntemi ile Belirlenmesi”. Afet ve Risk Dergisi, c. 8, sy. 3, 2025, ss. 1161-78, doi:10.35341/afet.1678896.
Vancouver Canbulat O. Türkiye’nin Nükleer Santral Alanlarında Potansiyel Radyolojik Kirliliğin Dağılımını Etkileyecek Atmosfer Kararlılık Şartlarının Pasquill-Gifford Yöntemi ile Belirlenmesi. Afet ve Risk Dergisi. 2025;8(3):1161-78.