Araştırma Makalesi
BibTex RIS Kaynak Göster

Flood Inundation Mapping for Porsuk Stream, Eskişehir, Turkey

Yıl 2023, Cilt: 6 Sayı: 3, 759 - 775, 30.09.2023
https://doi.org/10.35341/afet.1197929

Öz

Flood is one of the most widespread and catastrophic natural hazards for settlements in different parts of the world. Eskişehir has faced numerous floods at varying scales, especially in the last century. Porsuk Stream moves in an artificial channel through the Eskişehir city center. The bed of Porsuk Stream is expanded and cascaded at the entrance to the city center, and the stream has been turned into one of the attractions of the city by increasing its water level with nine regulators. Expanding the river bed is a frequently used method to reduce flood risk. However, in Eskisehir, the fact that the river bed is kept largely filled with water is a major source of risk in case of flooding. The study is based on a scenario in which flooding occurs due to the failure of regulator covers to open. In the study field, the sensitivity of the numerical field model that was created along the stream bed was further improved by measuring lengths and depths throughout the channel. Within the framework of the scenario, the water levels that can change with flood discharges were determined, and inundation areas were calculated. The results revealed that, according to the flood discharges in Porsuk Stream with probabilities of occurrence in every 50, 100, and 200 years, areas of 3.20 km2, 4.03 km2, and 4.48 km2 would be flooded, respectively. The maximum discharge with a return period of 200 years (Q200) is 194.46 m3/s, which, if realized, would result in inundation of 1.58 km2 of residential areas and 0.55 km2 of agricultural land. Of the total flood area, 35% will be residential areas, 33% will be airports, 12% will be agricultural lands, 9% will be green areas, 7% will be industrial areas and 3% will be sports facilities.

Kaynakça

  • Ahad, U., Ali, U., Inayatullah, M., Rauf Shah, A., (2022). Flood Frequency Analysis: A Case Study of Pohru River Catchment, Kashmir Himalayas, India. Journal of the Geological Society of India, 98(12), 1754-1760
  • Alfieri L., Salamon P., Bianchi A., Neal J., Bates P., Feyen L., (2014) Advances in pan-European flood hazard mapping. Hydrol Process 28(13):4067–4077. https://doi.org/10.1002/hyp.9947
  • Amellah O., El Morabiti K., Ouchar Al-djazouli M., (2020) Spatialization and assessment of flood hazard using 1D numerical simulation in the plain of Oued Laou (North Morocco). Arab J Geosci (13) 635. https://doi.org/10.1007/s12517-020-05592-4
  • Ashley R.M., Balmforth D.J., Saul A.J., Blanskby J.D., (2005) Flooding in the future - predicting climate change. risks and responses in urban areas. Water Sci Technol. 52(5): 265-273. https://doi.org/10.2166/wst.2005.0142
  • Baker V.R., (2013) Global late Quaternary fluvial paleohydrology with special emphasis on paleofloods and megafloods, in: Fluvial Geomorphology, edited by: Wohl, EE, Vol. 9, Treatise on Geomorphology, Academic Press, San Diego, 511–527
  • Bayazıt Y., Bakiş R., Koç C., Kaya T., Özdemir N., (2019) Formation of Eskişehir Province Flood Maps with Using of Geographical Information Systems. Journal of Geoscience and Environment Protection. 7(11). 151. https://doi.org/10.4236/gep.2019.711011
  • Bedient P.B., Huber W.C., (2002) Hydrology and Floodplain Analysis. Prentice Hall. USA.
  • Berghuijs W.R., Allen S.T., Harrigan S., Kirchner J.W., (2019) Growing spatial scales of synchronous river flooding in Europe. Geophysical Research Letters, 46(3), 1423-1428. https://doi.org/10.1029/2018GL081883
  • Berz G., (2001) Flood disasters: lessons from the past-worries for the future. Proceedings of The Institution of Civil Engineers-Water Maritime and Energy. 148(1). 57-58. https://doi.org/10.1680/wame.2000.142.1.3
  • Bharath R., Elshorbagy A., (2018) Flood mapping under uncertainty: a case study in the Canadian prair. Natural Hazards 94: 537. https://doi.org/10.1007/s11069-018-3401-1
  • Chang H., Franczyk J., (2008) Climate Change, Land Use Change, and Floods: Toward an Integrated Assessment. Geography Compass. 2(5). 1549-1579. https://doi.org/10.1111/j.1749-8198.2008.00136.x
  • Chen J., Hill A.A., Urbano L.D., (2009) A GIS-based model for urban flood inundation. J Hydrol 373(1):184–192. https://doi.org/10.1016/j.jhydrol.2009.04.021
  • Costabile, P., Costanzo, C., Ferraro, D., Macchione, F., Petaccia, G., (2020) Performances of the new HEC-RAS version 5 for 2-D hydrodynamic-based rainfall-runoff simulations at basin scale: Comparison with a state-of-the art model. Water, 12(9), 2326.
  • CRED (2003) International Disaster Database. Centre for Research on the Epidemiology of Disasters. Brussels. Belgium.
  • Crow, E.L., Shimizu, K., (1987) Lognormal distributions. New York: Marcel Dekker.
  • Cutter S.L., Emrich C.T., Gall M., Reeves R. (2018) Flash flod risk and the paradox of urban development. Natural Hazards Review, 19(1), 05017005. https://doi.org/10.1061/(asce)nh.1527-6996.0000268
  • Cürebal I., Efe R., Özdemir H., Soykan A., Sönmez S., (2016) GIS-based approach for flood analysis: case study of Keçidere flash flood event (Turkey). Geocarto International, 31(4), 355-366. https://doi.org/10.1080/10106049.2015.1047411
  • Çiçek İ., Duman N., (2015) Seasonal and annual precipitation trends in Turkey. Carpathian Journal of Earth and Environmental Sciences, 10(2), 77-84.
  • Dahri N., Abida H., (2020) Causes and impacts of flash floods: case of Gabes City, Southern Tunisia. Arab J Geosci (13) 176. https://doi.org/10.1007/s12517-020-5149-7
  • Dottori F., Szewczyk W., Ciscar J.C., Zhao F., Alfieri L., Hirabayashi Y., Bianchi A., Mongelli I., Frieler K., Betts R.A., Feyen L. (2018) Increased human and economic losses from river flooding with anthropogenic warming. Nature Climate Change, 8(9), 781-786.
  • Dutta D., Herath S., (2004) Trend of floods in asia and proposal for flood risk management with integrated river basin approach. In Proceeding of the Second International Conference of Asia-Pacific Hydrology and Water ResourcesAssociation. Singapore. Volume I; 128-137.
  • Erkal T., Taş B., (2013) Jeomorfoloji ve İnsan. Yeditepe: İstanbul
  • Gumbel, E.J. (1958). Statistics of extremes. Colombia University Press: New York.
  • Haltas I., Elçi S., Tayfur G., (2016) Numerical simulation of flood wave propagation in two-dimensions in densely populated urban areas due to dam break. Water Resources Management. 30(15). 5699-5721.
  • Hirabayashi Y., Mahendran R., Koirala S., Konoshima L., Yamazaki D., Watanabe S., Kim H., Kanae S., (2013) Global flood risk under climate change. Nature Climate Change. 3(9). p.816.
  • Huong H.T.L., Pathirana A., (2013) Urbanization and climate change impacts on future urban flooding in Can Tho city. Vietnam. Hydrol Earth Syst Sc. 17(1): 379-394. https://doi.org/10.5194/hess-17-379-2013
  • IACWD (Interagency Asvisory Committee on Water Data). (1982) Guidelines for Determining Flood Frequency. Bulletin#17B of Hydrology Subcommittee. Office of Water Data Coordination. US Geolohisal Survey. Reston. V.A.
  • Kaya Melisa C., Varol N., Gungor O., (2020) Investigation of the role of land use method on increased flood vulnerability in rural areas: a case study on Güneysu River, Turkey. Arab J Geosci (13) 578. https://doi.org/10.1007/s12517-020-05627-w
  • Karaer F., Koparal A., Tombul M., (2018) Environmental risk determination of flood in Porsuk River basin via one-dimensional modelling. Appl. Ecol. Environ. Res. 16. 4969-4983. https://dx.doi.org/10.15666/aeer/1604_49694983
  • Kleinen T., Petschel-Held G., (2007) Integrated assessment of changes in flooding probabilities due to climate change. Climatic Change. 81(3). 283-312.
  • Kolmogorov A.N., (1933) Sulla determinazone empirica di une legge di distribuzione. G. İst. Attuari,4(1), 83–91.
  • Korkmaz, M., (2022a) Drought Research and Trend Analysis in Yozgat Province (Turkiye). Engineering Sciences, 17(3), 21-34.
  • Korkmaz, M., (2022b) Nehirlerde Taşkın Tekerrür Debisi Hesabı ve Taşkın Risk Değerlendirmesi. El-Cezeri, 9(2), 532-541.
  • Koylu Z., (2008) XX. Yüzyılın Başlarında Eskişehir / Eskişehir at the Beginning of the 20th Century. Atatürk Araştırma Merkezi Dergisi Cilt: XXIV. Sayı: 71
  • Li G.F., Xiang X.Y., Tong Y.Y., Wang H.M., (2013) Impact assessment of urbanization on flood risk in the Yangtze River Delta. Stoch Env Res Risk A. 27(7): 1683-1693.
  • Masood M., Takeuchi K., (2012) Assessment of flood hazard. vulnerability and risk of mid-eastern Dhaka using DEM and 1D hydrodynamic model. Nat Hazards 61(2):757–770.
  • McCabe G.J.J., Wolock D.M., (1997) Climate change and the detection of trends in annual runoff. Clim.Res.8.129-134
  • Milly P.C.D., Wetherald R.T., Dunne K.A., Delworth T.L., (2002) Increasing risk of great floods in a changing climate. Nature. 415(6871). 514.
  • Moel H., Alphen J.V., Aerts J.C.J.H., (2009) Flood maps in Europe— methods. availability and use. Nat. Hazards Earth Syst. Sci. 9. 289–301
  • Namara, W. G., Damisse, T. A., Tufa, F. G., (2022) Application of HEC-RAS and HEC-GeoRAS model for Flood Inundation Mapping, the case of Awash Bello Flood Plain, Upper Awash River Basin, Oromiya Regional State, Ethiopia. Modeling Earth Systems and Environment, 8(2), 1449-1460.
  • OSİB (Orman ve Su İşleri Bakanlığı). (2015). Ulusal Taşkın Yönetimi Strateji Belgesi ve Eylem Planı. Ankara.
  • Özdemir H., (2008) Havran Çayı’nın (Balıkesir) Taşkın Sıklık Analizinde Gumbel ve Log Pearson Tip III Dağılımlarının Karşılaştırılması. Coğrafi Bilimler Dergisi. 6(1). 41-53.
  • Özdemir A., Leloğlu U.M., (2014) Climate change impact assessment on river basin: Sarisu-Eylikler River. Turkey. In 2nd International sustainable watershed management conference. SuWaMa (pp. 103-112).
  • Pinos J., Quesada-Román A., (2021) Flood risk-related research trends in latin america and the caribbean. Water, 14(1), 10. https://doi.org/10.3390/w14010010
  • Quirogaa, V. M., Kurea, S., Udoa, K., Manoa, A., (2016) Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua, 3(1), 25-33.
  • Rao A.R., Hamed K.H., (2000) Flood Frequncy Analysis. CRS Press. USA.
  • Sarış F., Hannah D.M., Eastwood W.J., (2010) Spatial variability of precipitation regimes over Turkey. Hydrological Sciences Journal. 55. 234-249. https://doi.org/10.1080/02626660903546142
  • Scalenghe R., Marsan F., (2009) The anthropogenic sealing of soils in urban areas. Landscape and Urban Planning, 90(1–2),1–10. https://doi.org/10.1016/j.landurbplan.2008.10.011
  • Shi J., Cui L., Tian Z., (2020) Spatial and temporal distribution and trend in flood and drought disasters in East China. Environmental Research, 185, 109406. https://doi.org/10.1016/j.envres.2020.109406
  • Simonovic S.P., (2012) Floods in a changing climate: risk management. Cambridge University Press. United Kingdom
  • Strohbach, M. W., Döring, A. O., Möck, M., Sedrez, M., Mumm, O., Schneider, A. K., Schröder, B., (2019). The “hidden urbanization”: Trends of impervious surface in low-density housing developments and resulting impacts on the water balance. Frontiers in Environmental Science, 7, 29. https://doi.org/10.3389/fenvs.2019.00029
  • Şimşek G., (2014) River Rehabilitation with Cities in Mind: The Eskişehir Case. METU Journal of the Faculty of Architecture. 31(1). http://dx.doi.org/10.4305/metu.jfa.2014.1.2
  • Tate, E., Maidment, D., (1999) Floodplain mapping using HEC-RAS and ArcView GIS. University of Texas at Austin Center For Research in Water Resources.
  • TBMM (1950) Eskişehir sel baskınından zarar görenler için yaptırılacak meskenler hakkında kanun tasarısı (1/765). Meclis Tutanağı S. Sayısı:283. Ankara
  • Usul, N. (2013). Mühendislik Hidrolojisi. ODTU Yayıncılık: Ankara.
  • URL 1, Economic Losses. Poverty and Disasters: 1998-2017; https://www.cred.be/downloadFile.php?file=sites/default/files/CRED_Economic_Losses_10oct.pdf. [Date of access : Nov 01 2019].
  • URL 2, EM-DAT (Emergency Events Database) OFDA/CRED International Disaster Database. Universite Catholique de Louvain. Brussels. www.cred.be/emdat. [Date of access : Nov 08 2019].
  • URL 3, https://tabb-dokuman.afad.gov.tr/, [Date of access : Nov 11 2019].
  • Utlu M., Şimşek M., Öztürk M.Z., (2020) 1d Taşkin modellemeleri açisindan topo SYM ve ALOS SAM verilerinin karşilaştirilmasi: Alara Çayi örneği (Antalya). Aegean Geographical Journal, 29(2), 161-177.
  • Ward R.C., (1978) Floods - a geographical perspective. Published by: Macmillan.
  • Yang, J., Townsend, R. D., Daneshfar, B., (2006) Applying the HEC-RAS model and GIS techniques in river network floodplain delineation. Canadian Journal of Civil Engineering, 33(1), 19-28.
  • Yevjevich V., (1972) Probability and Statistics in Hydrology. Water Resources Publications, Fort Collins, Colorado.

Flood Inundation Mapping for Porsuk Stream, Eskişehir, Turkey

Yıl 2023, Cilt: 6 Sayı: 3, 759 - 775, 30.09.2023
https://doi.org/10.35341/afet.1197929

Öz

Flood is one of the most widespread and catastrophic natural hazards for settlements in different parts of the world. Eskişehir has faced numerous floods at varying scales, especially in the last century. Porsuk Stream moves in an artificial channel through the Eskişehir city center. The bed of Porsuk Stream is expanded and cascaded at the entrance to the city center, and the stream has been turned into one of the attractions of the city by increasing its water level with nine regulators. Expanding the river bed is a frequently used method to reduce flood risk. However, in Eskisehir, the fact that the river bed is kept largely filled with water is a major source of risk in case of flooding. The study is based on a scenario in which flooding occurs due to the failure of regulator covers to open. In the study field, the sensitivity of the numerical field model that was created along the stream bed was further improved by measuring lengths and depths throughout the channel. Within the framework of the scenario, the water levels that can change with flood discharges were determined, and inundation areas were calculated. The results revealed that, according to the flood discharges in Porsuk Stream with probabilities of occurrence in every 50, 100, and 200 years, areas of 3.20 km2, 4.03 km2, and 4.48 km2 would be flooded, respectively. The maximum discharge with a return period of 200 years (Q200) is 194.46 m3/s, which, if realized, would result in inundation of 1.58 km2 of residential areas and 0.55 km2 of agricultural land. Of the total flood area, 35% will be residential areas, 33% will be airports, 12% will be agricultural lands, 9% will be green areas, 7% will be industrial areas and 3% will be sports facilities.

Kaynakça

  • Ahad, U., Ali, U., Inayatullah, M., Rauf Shah, A., (2022). Flood Frequency Analysis: A Case Study of Pohru River Catchment, Kashmir Himalayas, India. Journal of the Geological Society of India, 98(12), 1754-1760
  • Alfieri L., Salamon P., Bianchi A., Neal J., Bates P., Feyen L., (2014) Advances in pan-European flood hazard mapping. Hydrol Process 28(13):4067–4077. https://doi.org/10.1002/hyp.9947
  • Amellah O., El Morabiti K., Ouchar Al-djazouli M., (2020) Spatialization and assessment of flood hazard using 1D numerical simulation in the plain of Oued Laou (North Morocco). Arab J Geosci (13) 635. https://doi.org/10.1007/s12517-020-05592-4
  • Ashley R.M., Balmforth D.J., Saul A.J., Blanskby J.D., (2005) Flooding in the future - predicting climate change. risks and responses in urban areas. Water Sci Technol. 52(5): 265-273. https://doi.org/10.2166/wst.2005.0142
  • Baker V.R., (2013) Global late Quaternary fluvial paleohydrology with special emphasis on paleofloods and megafloods, in: Fluvial Geomorphology, edited by: Wohl, EE, Vol. 9, Treatise on Geomorphology, Academic Press, San Diego, 511–527
  • Bayazıt Y., Bakiş R., Koç C., Kaya T., Özdemir N., (2019) Formation of Eskişehir Province Flood Maps with Using of Geographical Information Systems. Journal of Geoscience and Environment Protection. 7(11). 151. https://doi.org/10.4236/gep.2019.711011
  • Bedient P.B., Huber W.C., (2002) Hydrology and Floodplain Analysis. Prentice Hall. USA.
  • Berghuijs W.R., Allen S.T., Harrigan S., Kirchner J.W., (2019) Growing spatial scales of synchronous river flooding in Europe. Geophysical Research Letters, 46(3), 1423-1428. https://doi.org/10.1029/2018GL081883
  • Berz G., (2001) Flood disasters: lessons from the past-worries for the future. Proceedings of The Institution of Civil Engineers-Water Maritime and Energy. 148(1). 57-58. https://doi.org/10.1680/wame.2000.142.1.3
  • Bharath R., Elshorbagy A., (2018) Flood mapping under uncertainty: a case study in the Canadian prair. Natural Hazards 94: 537. https://doi.org/10.1007/s11069-018-3401-1
  • Chang H., Franczyk J., (2008) Climate Change, Land Use Change, and Floods: Toward an Integrated Assessment. Geography Compass. 2(5). 1549-1579. https://doi.org/10.1111/j.1749-8198.2008.00136.x
  • Chen J., Hill A.A., Urbano L.D., (2009) A GIS-based model for urban flood inundation. J Hydrol 373(1):184–192. https://doi.org/10.1016/j.jhydrol.2009.04.021
  • Costabile, P., Costanzo, C., Ferraro, D., Macchione, F., Petaccia, G., (2020) Performances of the new HEC-RAS version 5 for 2-D hydrodynamic-based rainfall-runoff simulations at basin scale: Comparison with a state-of-the art model. Water, 12(9), 2326.
  • CRED (2003) International Disaster Database. Centre for Research on the Epidemiology of Disasters. Brussels. Belgium.
  • Crow, E.L., Shimizu, K., (1987) Lognormal distributions. New York: Marcel Dekker.
  • Cutter S.L., Emrich C.T., Gall M., Reeves R. (2018) Flash flod risk and the paradox of urban development. Natural Hazards Review, 19(1), 05017005. https://doi.org/10.1061/(asce)nh.1527-6996.0000268
  • Cürebal I., Efe R., Özdemir H., Soykan A., Sönmez S., (2016) GIS-based approach for flood analysis: case study of Keçidere flash flood event (Turkey). Geocarto International, 31(4), 355-366. https://doi.org/10.1080/10106049.2015.1047411
  • Çiçek İ., Duman N., (2015) Seasonal and annual precipitation trends in Turkey. Carpathian Journal of Earth and Environmental Sciences, 10(2), 77-84.
  • Dahri N., Abida H., (2020) Causes and impacts of flash floods: case of Gabes City, Southern Tunisia. Arab J Geosci (13) 176. https://doi.org/10.1007/s12517-020-5149-7
  • Dottori F., Szewczyk W., Ciscar J.C., Zhao F., Alfieri L., Hirabayashi Y., Bianchi A., Mongelli I., Frieler K., Betts R.A., Feyen L. (2018) Increased human and economic losses from river flooding with anthropogenic warming. Nature Climate Change, 8(9), 781-786.
  • Dutta D., Herath S., (2004) Trend of floods in asia and proposal for flood risk management with integrated river basin approach. In Proceeding of the Second International Conference of Asia-Pacific Hydrology and Water ResourcesAssociation. Singapore. Volume I; 128-137.
  • Erkal T., Taş B., (2013) Jeomorfoloji ve İnsan. Yeditepe: İstanbul
  • Gumbel, E.J. (1958). Statistics of extremes. Colombia University Press: New York.
  • Haltas I., Elçi S., Tayfur G., (2016) Numerical simulation of flood wave propagation in two-dimensions in densely populated urban areas due to dam break. Water Resources Management. 30(15). 5699-5721.
  • Hirabayashi Y., Mahendran R., Koirala S., Konoshima L., Yamazaki D., Watanabe S., Kim H., Kanae S., (2013) Global flood risk under climate change. Nature Climate Change. 3(9). p.816.
  • Huong H.T.L., Pathirana A., (2013) Urbanization and climate change impacts on future urban flooding in Can Tho city. Vietnam. Hydrol Earth Syst Sc. 17(1): 379-394. https://doi.org/10.5194/hess-17-379-2013
  • IACWD (Interagency Asvisory Committee on Water Data). (1982) Guidelines for Determining Flood Frequency. Bulletin#17B of Hydrology Subcommittee. Office of Water Data Coordination. US Geolohisal Survey. Reston. V.A.
  • Kaya Melisa C., Varol N., Gungor O., (2020) Investigation of the role of land use method on increased flood vulnerability in rural areas: a case study on Güneysu River, Turkey. Arab J Geosci (13) 578. https://doi.org/10.1007/s12517-020-05627-w
  • Karaer F., Koparal A., Tombul M., (2018) Environmental risk determination of flood in Porsuk River basin via one-dimensional modelling. Appl. Ecol. Environ. Res. 16. 4969-4983. https://dx.doi.org/10.15666/aeer/1604_49694983
  • Kleinen T., Petschel-Held G., (2007) Integrated assessment of changes in flooding probabilities due to climate change. Climatic Change. 81(3). 283-312.
  • Kolmogorov A.N., (1933) Sulla determinazone empirica di une legge di distribuzione. G. İst. Attuari,4(1), 83–91.
  • Korkmaz, M., (2022a) Drought Research and Trend Analysis in Yozgat Province (Turkiye). Engineering Sciences, 17(3), 21-34.
  • Korkmaz, M., (2022b) Nehirlerde Taşkın Tekerrür Debisi Hesabı ve Taşkın Risk Değerlendirmesi. El-Cezeri, 9(2), 532-541.
  • Koylu Z., (2008) XX. Yüzyılın Başlarında Eskişehir / Eskişehir at the Beginning of the 20th Century. Atatürk Araştırma Merkezi Dergisi Cilt: XXIV. Sayı: 71
  • Li G.F., Xiang X.Y., Tong Y.Y., Wang H.M., (2013) Impact assessment of urbanization on flood risk in the Yangtze River Delta. Stoch Env Res Risk A. 27(7): 1683-1693.
  • Masood M., Takeuchi K., (2012) Assessment of flood hazard. vulnerability and risk of mid-eastern Dhaka using DEM and 1D hydrodynamic model. Nat Hazards 61(2):757–770.
  • McCabe G.J.J., Wolock D.M., (1997) Climate change and the detection of trends in annual runoff. Clim.Res.8.129-134
  • Milly P.C.D., Wetherald R.T., Dunne K.A., Delworth T.L., (2002) Increasing risk of great floods in a changing climate. Nature. 415(6871). 514.
  • Moel H., Alphen J.V., Aerts J.C.J.H., (2009) Flood maps in Europe— methods. availability and use. Nat. Hazards Earth Syst. Sci. 9. 289–301
  • Namara, W. G., Damisse, T. A., Tufa, F. G., (2022) Application of HEC-RAS and HEC-GeoRAS model for Flood Inundation Mapping, the case of Awash Bello Flood Plain, Upper Awash River Basin, Oromiya Regional State, Ethiopia. Modeling Earth Systems and Environment, 8(2), 1449-1460.
  • OSİB (Orman ve Su İşleri Bakanlığı). (2015). Ulusal Taşkın Yönetimi Strateji Belgesi ve Eylem Planı. Ankara.
  • Özdemir H., (2008) Havran Çayı’nın (Balıkesir) Taşkın Sıklık Analizinde Gumbel ve Log Pearson Tip III Dağılımlarının Karşılaştırılması. Coğrafi Bilimler Dergisi. 6(1). 41-53.
  • Özdemir A., Leloğlu U.M., (2014) Climate change impact assessment on river basin: Sarisu-Eylikler River. Turkey. In 2nd International sustainable watershed management conference. SuWaMa (pp. 103-112).
  • Pinos J., Quesada-Román A., (2021) Flood risk-related research trends in latin america and the caribbean. Water, 14(1), 10. https://doi.org/10.3390/w14010010
  • Quirogaa, V. M., Kurea, S., Udoa, K., Manoa, A., (2016) Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua, 3(1), 25-33.
  • Rao A.R., Hamed K.H., (2000) Flood Frequncy Analysis. CRS Press. USA.
  • Sarış F., Hannah D.M., Eastwood W.J., (2010) Spatial variability of precipitation regimes over Turkey. Hydrological Sciences Journal. 55. 234-249. https://doi.org/10.1080/02626660903546142
  • Scalenghe R., Marsan F., (2009) The anthropogenic sealing of soils in urban areas. Landscape and Urban Planning, 90(1–2),1–10. https://doi.org/10.1016/j.landurbplan.2008.10.011
  • Shi J., Cui L., Tian Z., (2020) Spatial and temporal distribution and trend in flood and drought disasters in East China. Environmental Research, 185, 109406. https://doi.org/10.1016/j.envres.2020.109406
  • Simonovic S.P., (2012) Floods in a changing climate: risk management. Cambridge University Press. United Kingdom
  • Strohbach, M. W., Döring, A. O., Möck, M., Sedrez, M., Mumm, O., Schneider, A. K., Schröder, B., (2019). The “hidden urbanization”: Trends of impervious surface in low-density housing developments and resulting impacts on the water balance. Frontiers in Environmental Science, 7, 29. https://doi.org/10.3389/fenvs.2019.00029
  • Şimşek G., (2014) River Rehabilitation with Cities in Mind: The Eskişehir Case. METU Journal of the Faculty of Architecture. 31(1). http://dx.doi.org/10.4305/metu.jfa.2014.1.2
  • Tate, E., Maidment, D., (1999) Floodplain mapping using HEC-RAS and ArcView GIS. University of Texas at Austin Center For Research in Water Resources.
  • TBMM (1950) Eskişehir sel baskınından zarar görenler için yaptırılacak meskenler hakkında kanun tasarısı (1/765). Meclis Tutanağı S. Sayısı:283. Ankara
  • Usul, N. (2013). Mühendislik Hidrolojisi. ODTU Yayıncılık: Ankara.
  • URL 1, Economic Losses. Poverty and Disasters: 1998-2017; https://www.cred.be/downloadFile.php?file=sites/default/files/CRED_Economic_Losses_10oct.pdf. [Date of access : Nov 01 2019].
  • URL 2, EM-DAT (Emergency Events Database) OFDA/CRED International Disaster Database. Universite Catholique de Louvain. Brussels. www.cred.be/emdat. [Date of access : Nov 08 2019].
  • URL 3, https://tabb-dokuman.afad.gov.tr/, [Date of access : Nov 11 2019].
  • Utlu M., Şimşek M., Öztürk M.Z., (2020) 1d Taşkin modellemeleri açisindan topo SYM ve ALOS SAM verilerinin karşilaştirilmasi: Alara Çayi örneği (Antalya). Aegean Geographical Journal, 29(2), 161-177.
  • Ward R.C., (1978) Floods - a geographical perspective. Published by: Macmillan.
  • Yang, J., Townsend, R. D., Daneshfar, B., (2006) Applying the HEC-RAS model and GIS techniques in river network floodplain delineation. Canadian Journal of Civil Engineering, 33(1), 19-28.
  • Yevjevich V., (1972) Probability and Statistics in Hydrology. Water Resources Publications, Fort Collins, Colorado.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Beşeri Coğrafya
Bölüm Makaleler
Yazarlar

Mustafa Murat Kale 0000-0001-6975-7069

Murat Ataol 0000-0002-3213-0972

Yayımlanma Tarihi 30 Eylül 2023
Kabul Tarihi 31 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 3

Kaynak Göster

APA Kale, M. M., & Ataol, M. (2023). Flood Inundation Mapping for Porsuk Stream, Eskişehir, Turkey. Afet Ve Risk Dergisi, 6(3), 759-775. https://doi.org/10.35341/afet.1197929
AMA Kale MM, Ataol M. Flood Inundation Mapping for Porsuk Stream, Eskişehir, Turkey. Afet ve Risk Dergisi. Eylül 2023;6(3):759-775. doi:10.35341/afet.1197929
Chicago Kale, Mustafa Murat, ve Murat Ataol. “Flood Inundation Mapping for Porsuk Stream, Eskişehir, Turkey”. Afet Ve Risk Dergisi 6, sy. 3 (Eylül 2023): 759-75. https://doi.org/10.35341/afet.1197929.
EndNote Kale MM, Ataol M (01 Eylül 2023) Flood Inundation Mapping for Porsuk Stream, Eskişehir, Turkey. Afet ve Risk Dergisi 6 3 759–775.
IEEE M. M. Kale ve M. Ataol, “Flood Inundation Mapping for Porsuk Stream, Eskişehir, Turkey”, Afet ve Risk Dergisi, c. 6, sy. 3, ss. 759–775, 2023, doi: 10.35341/afet.1197929.
ISNAD Kale, Mustafa Murat - Ataol, Murat. “Flood Inundation Mapping for Porsuk Stream, Eskişehir, Turkey”. Afet ve Risk Dergisi 6/3 (Eylül 2023), 759-775. https://doi.org/10.35341/afet.1197929.
JAMA Kale MM, Ataol M. Flood Inundation Mapping for Porsuk Stream, Eskişehir, Turkey. Afet ve Risk Dergisi. 2023;6:759–775.
MLA Kale, Mustafa Murat ve Murat Ataol. “Flood Inundation Mapping for Porsuk Stream, Eskişehir, Turkey”. Afet Ve Risk Dergisi, c. 6, sy. 3, 2023, ss. 759-75, doi:10.35341/afet.1197929.
Vancouver Kale MM, Ataol M. Flood Inundation Mapping for Porsuk Stream, Eskişehir, Turkey. Afet ve Risk Dergisi. 2023;6(3):759-75.