Araştırma Makalesi
BibTex RIS Kaynak Göster

Mikrodalga İşlemi Görmüş ve Açık Hava Şartlarında Bekletilmiş Okaliptus (Eucalyptus camaldulensis Dehn) Odununun Yüzey Renk ve Pürüzlülük Özellikleri

Yıl 2025, Cilt: 6 Sayı: 2, 94 - 101, 24.12.2025
https://doi.org/10.59751/agacorman.1679303

Öz

Dış hava şartlarının, mikrodalga işlemi (MW) sonrası yüzey özelliklerini önemli ölçüde etkilediği gözlemlenmiştir. Renk parlaklık (L*), yeşil-kırmızılık (a*) ve sarı-mavilik (b*) renk koordinatlarının tümü önemli ölçüde değişmiştir. Bununla birlikte, en yüksek parlaklık azaltıcı değerler ΔL: -24.36 ve -25.79 (metrik) olarak, sırasıyla bir ve iki aylık hava koşullarına maruz kalmış numuneler için, 180 W ve 30 saniye koşullarında MW işlemi görmüş numunelerde gözlenmiştir. İki aylık hava koşullarına maruz kalma sürelerinin genellikle numunelerin daha açık tonların oluşmasına etkisi ilginçtir. Toplam renk farkı değerlerinin (ΔE) başlangıçta, düşük güç seviyelerinde (90 ve 180 W) arttığı, ardından MW işlem koşullarının daha yüksek güç seviyelerinde (360 ve 600 W) uygulanmasıyla azalma eğiliminde olduğu görülmüştür. Ayrıca, kroma ölçümleriyle odun numunelerinin renk doygunluk özelliklerinin değiştiği anlaşılmıştır. MW işlemleri, liflere her iki yönde de, (paralel ve dik) yüzey pürüzlülüğü değerlerinde artış sağladığı görülmüştür. Bu çalışmada bulunan sonuçlar, literatürde bildirilen ısıl işlemler ve dış hava koşulalarda elde edilen bulguların yüzey renk ve pürüzsüzlük özelliklerine etkileri sonuçlarıyla uyum içinde olduğu gözlemlenmiştir.

Etik Beyan

This study does not require ethics committee permission or any special permission.

Destekleyen Kurum

The author (s) has no received any financial support for the research, authorship or publication of this study.

Kaynakça

  • Corsaro, A., Chiacchio, U., Pistarà, V., & Romeo, G. (2004). Microwave-assisted chemistry of carbohydrates. Current Organic Chemistry, 8(6), 511–538.
  • Dirckx, O., Triboulot-Trouy, M. C., Merlin, A., & Deglise, X. (1992). Modifications de la couleur du bois d'Abies grandis exposé à la lumière solaire. Annales des sciences forestières, 49(5), 425–447.
  • Esteves, B., & Pereira, H. (2009). Wood modification by heat treatment: A review. BioResources, 4(1), 370–404.
  • Gherardi Hein, P. R., & Tarcísio Lima, J. (2012). Relationships between microfibril angle, modulus of elasticity and compressive strength in Eucalyptus wood. Maderas. Ciencia y tecnología, 14(3), 267–274.
  • Hansson, L. (2007). Microwave treatment of wood [Doctoral dissertation, Luleå University of Technology]. Luleå University of Technology.
  • Horikoshi, S., Schiffmann, R. F., Fukushima, J., & Serpone, N. (2018). Microwave chemical and materials processing. Springer Nature Singapore Pte Ltd.
  • Johansson, J. (2001). Property predictions of wood using microwaves [Licentiate thesis, Luleå University of Technology]. Luleå University of Technology.
  • Lundgren, N. (2007). Microwave sensor for scanning sawn timber [Doctoral dissertation, Luleå University of Technology]. Luleå University of Technology.
  • Mantanis, G. I., Young, R. A., & Rowell, R. M. (1994). Swelling of wood, Part 1. Swelling in water. Wood Science and Technology, 28, 119.
  • Ozkan, U., & Sahin, H. T. (2023a). Treatment of paper recycling wastewater using microwave technology. Turkish Journal of Forestry, 24(2), 134–138.
  • Ozkan, U., & Sahin, H. T. (2023b). A comparative study on paper recycling wastewater treatment using microwave irradiation and centrifuge technology. Tree and Forest, 4(2), 66–72.
  • Pereira, B. L. C., Carneiro, A. D. C. O., Carvalho, A. M. M. L., Colodette, J. L., Oliveira, A. C., & Fontes, M. P. F. (2013). Influence of chemical composition of Eucalyptus wood on gravimetric yield and charcoal properties. BioResources, 8(3), 4574–4592.
  • Sahin, H. T., Arslan, M. B., Korkut, S., & Sahin, C. (2011). Colour changes of heat‐treated woods of red‐bud maple, European hophornbeam and oak. Color Research & Application, 36(6), 462–466.
  • Sahin, H. T. (2007). The use of Arrhenius kinetic model to predict activation energies in hardwood–water systems. Surface Review and Letters, 14(05), 999–1005.
  • Sahin, H. T. (2008). Wood-water interactions as affected by chemical constituents of woods. Asian Journal of Chemistry, 20(4), 3267.
  • Sahin, C. K., Topay, M., & Var, A. A. (2020). A study on suitability of some wood species for landscape applications: Surface color, hardness and roughness changes at outdoor conditions. Wood Research, 65(3), 395–404.
  • Sahin, H. T., & Aydemir, D. (2020). Effect of microwave treatment on hydrophilicity and bonding strength properties of woods. Journal of Bartın Faculty of Forestry, 22(2), 465–471.
  • Sahin, H. T., & Ozcelik, G. (2021). A study on microwave exposure effects on surface coating properties of linden (Tilia cordata) and spruce (Picea abies) woods. Journal of Applied Life Sciences International, 24(5), 19–29.
  • Sahin, C. K., & Merdan, R. (2025a). Surface behaviors of pine wood (Pinus nigra) after short-term weathering: Urban furniture suitability investigation. European Journal of Applied Sciences, 13(1), 98–109.
  • Sahin, C. K., & Merdan, R. (2025b). Outdoor exposure effects on different formulated clear coats of wood as sustainable urban design material. European Journal of Applied Sciences, 13(1), 110–121.
  • Siau, F. (1984). Transport processes in wood. Springer-Verlag.
  • Simpson, W. T. (1993). Specific gravity, moisture content, and density relationship for wood (USDA FPL-GTR-76). U.S. Department of Agriculture, Forest Products Laboratory.
  • Santos, J. A. (2000). Mechanical behaviour of Eucalyptus wood modified by heat. Wood Science and Technology, 34(1), 39–43.
  • Torgovnikov, G., & Vinden, P. (2000, December 10–13). New wood based materials Torgvin and Vintorg [Conference presentation]. 5th Pacific Rim Bio-Based Composite Symposium, Canberra, Australia.
  • Tarkow, H. (1981). Wood and moisture. In F. F. Wangaard (Ed.), Wood: Its structure and properties (pp. 147–186). Penn State University Press.
  • Tolvaj, L., & Faix, O. (1995). Artificial ageing of wood monitored by DRIFT spectroscopy and CIE Lab* color measurements. 1. Effect of UV light. Holzforschung, 49, 397–404.
  • Ugur, B., Ozkan, U., & Sahin, H. T. (2024). Effects of microwave treatment on alkyd-varnished wood exposed to outdoor conditions. Journal of Engineering Research and Reports, 26(10), 323–334.
  • Unsal, O., Korkut, S., & Atik, C. (2003). The effect of heat treatment on some properties and colour in eucalyptus (Eucalyptus camaldulensis Dehn.) wood. Maderas. Ciencia y tecnología, 5(2), 145–152.

Effects on Surface Color and Roughness Properties of Post-Microwave Treated Eucalyptus (Eucalyptus camaldulensis Dehn) Wood

Yıl 2025, Cilt: 6 Sayı: 2, 94 - 101, 24.12.2025
https://doi.org/10.59751/agacorman.1679303

Öz

It has been observed that weathering significantly influenced the Microwave (MW) post-treated samples. All color coordinates of Lightness (L*), red-green (a*), and yellow-blue (b*) color coordinates changed significantly. However, the highest lightness-reducing values of ΔL: -24.36 and -25.79 (metric) were observed in MW-treated samples at 180 W and 30 s. conditions for one and two-month weathered samples, respectively. It is interesting to note that two months of weathering usually impact the lighter tone of samples. Total color difference values (ΔE) appeared to increase initially at lower power levels (90 and 180 W), then decrease at higher power levels (360 and 600 W) of MW treatment conditions. It is also further evidenced by the discoloration of wood samples with chroma measurements. The MW treatments have also had an impact on increasing the trend toward higher surface roughness values in MW-treated samples under all conditions, in both directions (parallel to and perpendicular to the grain). It is also realized that post-MW treated and weathered samples show a smooth trend, with no clear effects observed under varying MW treatment conditions (power and time). The measured results found in this study are in good agreement with the results reported in the literature which indicate that heat treatments and weathering affect surface color and smoothness properties.

Etik Beyan

This study does not require ethics committee permission or any special permission.

Destekleyen Kurum

The author (s) has no received any financial support for the research, authorship or publication of this study.

Kaynakça

  • Corsaro, A., Chiacchio, U., Pistarà, V., & Romeo, G. (2004). Microwave-assisted chemistry of carbohydrates. Current Organic Chemistry, 8(6), 511–538.
  • Dirckx, O., Triboulot-Trouy, M. C., Merlin, A., & Deglise, X. (1992). Modifications de la couleur du bois d'Abies grandis exposé à la lumière solaire. Annales des sciences forestières, 49(5), 425–447.
  • Esteves, B., & Pereira, H. (2009). Wood modification by heat treatment: A review. BioResources, 4(1), 370–404.
  • Gherardi Hein, P. R., & Tarcísio Lima, J. (2012). Relationships between microfibril angle, modulus of elasticity and compressive strength in Eucalyptus wood. Maderas. Ciencia y tecnología, 14(3), 267–274.
  • Hansson, L. (2007). Microwave treatment of wood [Doctoral dissertation, Luleå University of Technology]. Luleå University of Technology.
  • Horikoshi, S., Schiffmann, R. F., Fukushima, J., & Serpone, N. (2018). Microwave chemical and materials processing. Springer Nature Singapore Pte Ltd.
  • Johansson, J. (2001). Property predictions of wood using microwaves [Licentiate thesis, Luleå University of Technology]. Luleå University of Technology.
  • Lundgren, N. (2007). Microwave sensor for scanning sawn timber [Doctoral dissertation, Luleå University of Technology]. Luleå University of Technology.
  • Mantanis, G. I., Young, R. A., & Rowell, R. M. (1994). Swelling of wood, Part 1. Swelling in water. Wood Science and Technology, 28, 119.
  • Ozkan, U., & Sahin, H. T. (2023a). Treatment of paper recycling wastewater using microwave technology. Turkish Journal of Forestry, 24(2), 134–138.
  • Ozkan, U., & Sahin, H. T. (2023b). A comparative study on paper recycling wastewater treatment using microwave irradiation and centrifuge technology. Tree and Forest, 4(2), 66–72.
  • Pereira, B. L. C., Carneiro, A. D. C. O., Carvalho, A. M. M. L., Colodette, J. L., Oliveira, A. C., & Fontes, M. P. F. (2013). Influence of chemical composition of Eucalyptus wood on gravimetric yield and charcoal properties. BioResources, 8(3), 4574–4592.
  • Sahin, H. T., Arslan, M. B., Korkut, S., & Sahin, C. (2011). Colour changes of heat‐treated woods of red‐bud maple, European hophornbeam and oak. Color Research & Application, 36(6), 462–466.
  • Sahin, H. T. (2007). The use of Arrhenius kinetic model to predict activation energies in hardwood–water systems. Surface Review and Letters, 14(05), 999–1005.
  • Sahin, H. T. (2008). Wood-water interactions as affected by chemical constituents of woods. Asian Journal of Chemistry, 20(4), 3267.
  • Sahin, C. K., Topay, M., & Var, A. A. (2020). A study on suitability of some wood species for landscape applications: Surface color, hardness and roughness changes at outdoor conditions. Wood Research, 65(3), 395–404.
  • Sahin, H. T., & Aydemir, D. (2020). Effect of microwave treatment on hydrophilicity and bonding strength properties of woods. Journal of Bartın Faculty of Forestry, 22(2), 465–471.
  • Sahin, H. T., & Ozcelik, G. (2021). A study on microwave exposure effects on surface coating properties of linden (Tilia cordata) and spruce (Picea abies) woods. Journal of Applied Life Sciences International, 24(5), 19–29.
  • Sahin, C. K., & Merdan, R. (2025a). Surface behaviors of pine wood (Pinus nigra) after short-term weathering: Urban furniture suitability investigation. European Journal of Applied Sciences, 13(1), 98–109.
  • Sahin, C. K., & Merdan, R. (2025b). Outdoor exposure effects on different formulated clear coats of wood as sustainable urban design material. European Journal of Applied Sciences, 13(1), 110–121.
  • Siau, F. (1984). Transport processes in wood. Springer-Verlag.
  • Simpson, W. T. (1993). Specific gravity, moisture content, and density relationship for wood (USDA FPL-GTR-76). U.S. Department of Agriculture, Forest Products Laboratory.
  • Santos, J. A. (2000). Mechanical behaviour of Eucalyptus wood modified by heat. Wood Science and Technology, 34(1), 39–43.
  • Torgovnikov, G., & Vinden, P. (2000, December 10–13). New wood based materials Torgvin and Vintorg [Conference presentation]. 5th Pacific Rim Bio-Based Composite Symposium, Canberra, Australia.
  • Tarkow, H. (1981). Wood and moisture. In F. F. Wangaard (Ed.), Wood: Its structure and properties (pp. 147–186). Penn State University Press.
  • Tolvaj, L., & Faix, O. (1995). Artificial ageing of wood monitored by DRIFT spectroscopy and CIE Lab* color measurements. 1. Effect of UV light. Holzforschung, 49, 397–404.
  • Ugur, B., Ozkan, U., & Sahin, H. T. (2024). Effects of microwave treatment on alkyd-varnished wood exposed to outdoor conditions. Journal of Engineering Research and Reports, 26(10), 323–334.
  • Unsal, O., Korkut, S., & Atik, C. (2003). The effect of heat treatment on some properties and colour in eucalyptus (Eucalyptus camaldulensis Dehn.) wood. Maderas. Ciencia y tecnología, 5(2), 145–152.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ahşap Fiziği ve Mekaniği
Bölüm Araştırma Makalesi
Yazarlar

Halil Turgut Şahin 0000-0001-5633-6505

Gönderilme Tarihi 18 Nisan 2025
Kabul Tarihi 2 Haziran 2025
Erken Görünüm Tarihi 6 Aralık 2025
Yayımlanma Tarihi 24 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

APA Şahin, H. T. (2025). Effects on Surface Color and Roughness Properties of Post-Microwave Treated Eucalyptus (Eucalyptus camaldulensis Dehn) Wood. Ağaç ve Orman, 6(2), 94-101. https://doi.org/10.59751/agacorman.1679303