Geopolimer esaslı ahşap kompozitleri
Yıl 2022,
Cilt: 3 Sayı: 2, 6 - 13, 18.05.2023
Ergün Güntekin
,
Sebnem Sevil Arpacı
Öz
Ahşap esaslı kompozitler, yapısal veya yapısal olmayan uygulamalarda yaygın olarak
kullanılmaktadır ve bu malzemelere olan talep nüfus artışına paralel olarak artmaktadır.
İnorganik bağlayıcılı ahşap esaslı levhaların diğer ahşap esaslı levhalara boyutsal kararlılık,
yangına dayanım ve böcek/mantarlara karşı dayanım gibi avantajları bulunmaktadır. Son yıllarda
çimentonun neden olduğu sera gazı emisyonunun azaltılmasına yönelik yapılan araştırmaların
sonucunda sonucunda düşük CO2 emisyonu, yüksek mekanik ve dayanıklılık özellikleri
nedeniyle, üçüncü nesil çimento olarak kabul edilen geopolimerler, Portland çimentolarına
alternatif olarak kullanılabilecek çevre dostu bir ürün olarak görülmektedir. Geopolimerlerin
ahşap esaslı kompozitlerin üretiminde Portland çimentosu yerine alternatif olabileceği yapılan
çalışmalarda görülmektedir. Geleneksel inşaat malzemelerine alternatif sürdürülebilir ve çevre
dostu ürünler için yapılan çalışmaların sonucunda ortaya çıkan geopolimerler düşük karbon ayak
izi malzemesi olarak büyük bir potansiyel sunmaktadır. Geopolimer esaslı ahşap kompozitlerin
üretiminde kullanılan farklı parametrelere sahip olmaları kullanım alanlarını çeşitlendirebilir.
Kaynakça
- Al Rim, K., Ledhem, A., Douzane, O., Dheilly, R. M., & Queneudec, M. (1999). Influence of the proportion of wood on the thermal and mechanical performances of clay-cement-wood composites. Cement and Concrete Composites, 21(4), 269-276.
- Alomayri, T., Shaikh, F. U. A., & Low, I. M. (2013). Characterisation of cotton fibre-reinforced geopolymer composites. Composites Part B: Engineering, 50, 1-6.
Amini, M. H. M., Hashim, R., Hiziroglu, S., Sulaiman, N. S., & Sulaiman, O. (2013). Properties of particleboard made from rubberwood using modified starch as binder. Composites Part B: Engineering, 50, 259-264.
Antoni, A., Sugiarto, A. & Hardjito, D., (2017). Effect of Variability of Fly Ash Obtained from the Same Source on the Characteristics of Geopolymer. MATEC Web of Conferences, 97(1026).
Asante, B., Ye, H., Nopens, M., Schmidt, G., & Krause, A. (2022). Influence of wood moisture content on the hardened state properties of geopolymer wood composites. Composites Part A: Applied Science and Manufacturing, 152, 106680.
- Atiş, C. D., Bilim, C., Çelik, Ö., & Karahan, O. (2009). Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Construction and building materials, 23(1), 548-555.
Barbosa Valeria, F., & MacKenzie Kenneth, J. (2000). Thaumaturgo Clelio. Synthesis and characterisation of materials based on inorganic polymers of alumina and sılica: sodium polysialate polymers. Int J Inorganic Polym, 2, 309-17.
- Chen, R., Ahmari, S., & Zhang, L. (2014). Utilization of sweet sorghum fiber to reinforce fly ash-based geopolymer. Journal of Materials Science, 49, 2548-2558.
Cheng, T. W., & Chiu, J. P. (2003). Fire-resistant geopolymer produced by granulated blast furnace slag. Minerals engineering, 16(3), 205-210.
- Davidovits, J. (1991). Geopolymers: İnorganic Polymeric New Materials. Journal of Thermal Analysis and Calorimetry, 37(8), 1633-1656.
- Davidovits, J. (2011). Geopolymer chemistry and applications. 3rd eddition.-France, Saint-Quentin: Institute Geopolymer.
- Davidovits, J. (2013). Geopolymer cement. A review. Geopolymer Institute, Technical papers, 21, 1-11.
- Davidovits, J. (1988). “Geopolymers of the First Generation: SILIFACE-Process.” in Geopolymer ’88, First European Conference on Soft Mineralurgy. Compiegne, France.
Davidovits, J. (2002). 30 years of successes and failures in geopolymer applications. Market trends and potential breakthroughs. In Geopolymer 2002 conference (Vol. 28, p. 29). Saint‐Quentin, France; Melbourne, Australia: Geopolymer Institute.
Duan, P., Yan, C., & Zhou, W. (2016). Influence of partial replacement of fly ash by metakaolin on mechanical properties and microstructure of fly ash geopolymer paste exposed to sulfate attack. Ceramics International, 42(2), 3504-3517.
- Gouny, F., Fouchal, F., Maillard, P., and Rossignol, S. (2014). “Study of the Effect of Siliceous Species in the Formation of a Geopolymer Binder: Understanding the Reaction Mechanisms among the Binder, Wood, and Earth Brick,” Industrial & Engineering Chemistry Research, 53(9), 3559-3569.
- Gourley, J. T., & Johnson, G. B. (2005). Developments in geopolymer precast concrete. In World congress geopolymer (pp. 139-143). Geopolymer Institute Saint-Quentin, France.
- Hardjito, Djwantoro, and B. Vijaya Rangan. (2014). “Geopolymer Concrete for Environmental Protection.” Research Report GC (April):41–59. doi: 10.16953/deusbed.74839.
- Joseph, B. & Mathew, G., (2012). Influence of aggregate content on the behavior of fly ash based geopolymer concrete. Scientia Iranica, 19(5), pp. 1188-1194.
Liu, Y., & Li, K. (2002). Chemical modification of soy protein for wood adhesives. Macromolecular Rapid Communications, 23(13), 739-742.
Malkawi, A. B., Nuruddin, M. F., Fauzi, A., Almattarneh, H., & Mohammed, B. S. (2016). Effects of alkaline solution on properties of the HCFA geopolymer mortars. Procedia engineering, 148, 710-717.
- Olayiwola, H. O. (2021). Development of geopolymer bonded wood composites (Doctoral dissertation, Stellenbosch: Stellenbosch University).
- Palomo, A., Grutzeck, M. W., & Blanco, M. T. (1999). Alkali-activated fly ashes: A cement for the future. Cement and concrete research, 29(8), 1323-1329.
- Petermann, J. C., Saeed, A., & Hammons, M. I. (2010). Alkali-activated geopolymers: a literature review.
- Sarmin, S. N. (2017). The influence of different wood aggregates on the properties of geopolymer composites. In Key Engineering Materials (Vol. 723, pp. 74-79). Trans Tech Publications Ltd.
- Sarmin, S. N., Welling, J., Krause, A., & Shalbafan, A. (2014). Investigating the Possibility of Geopolymer to produce inorganic-bonded wood composites for multifunctional construction material–A Review. BioResources, 9(4), 7941-7950.
- Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials, 237, 117455.
- Sulaiman, N. S., Hashim, R., Amini, M. H. M., Sulaiman, O., & Hiziroglu, S. (2013). Evaluation of the Properties of Particleboard Made Using Oil Palm Starch Modified with Epichlorohydrin. BioResources, 8(1).
- Swanepoel, J. C., & Strydom, C. A. (2002). Utilisation of fly ash in a geopolymeric material. Applied geochemistry, 17(8), 1143-1148.
- Teixeira-Pinto, A., Fernandes, P., & Jalali, S. (2002). Geopolymer manufacture and application-Main problems when using concrete technology. In Geopolymers 2002 International Conference, Melbourne, Australia, Siloxo Pty. Ltd.
- Van Chanh, N., Trung, B. D., & Van Tuan, D. (2008). Recent research geopolymer concrete. In The 3rd ACF international conference-ACF/VCA, Vietnam (Vol. 18, pp. 235-241).
- Van Jaarsveld, J. G. S., Van Deventer, J. S., & Lukey, G. C. (2002). The effect of composition and temperature on the properties of fly ash-and kaolinite-based geopolymers. Chemical Engineering Journal, 89(1-3), 63-73.
Vitale, A., Priola, A., Tonelli, C., & Bongiovanni, R. (2014). Improvement of adhesion between a UV curable fluorinated resin and fluorinated elastomers: effect of chemical modification onto the mechanical properties of the joints. International Journal of Adhesion and Adhesives, 48, 303-309.
- Yel, H. (2015). Bazı üretim faktörlerinin çimentolu yongalevha özelllikleri üzerine etkileri, Doktora tezi. Karadeniz Teknik Üniversitesi, Trabzon.
- Zulfiati, R., & Idris, Y. (2019). Mechanical properties of fly ash-based geopolymer with natural fiber. In Journal of Physics: Conference Series (Vol. 1198, No. 8, p. 082021). IOP Publishing.
- Huang, Y., Tan, J., Xuan, X., Liu, L., Xie, M., Liu, H., Zheng, G. (2021). Study on untreated and alkali treated rice straw reinforced geopolymer composites. Materials Chemistry and Physics, 262, 124304.