Araştırma Makalesi
BibTex RIS Kaynak Göster

Yabani Kiraz (Prunus avium L.) Genotipleri: Morfolojik, Biyokimyasal ve Antioksidan Çeşitlilik

Yıl 2023, Cilt: 54 Sayı: 3 - Research in Agricultural Sciences, 124 - 129, 19.10.2023
https://doi.org/10.5152/AUAF.2023.23151

Öz

Türkiye, kirazın anavatanı konumunda ve özellikle Kuzeydoğu Anadolu Bölgesi yabani kiraz genotipleri açısından oldukça zengindir. Bölgede farklı morfolojik özelliklere sahip çok sayıda yabani kiraz ağacı bulunmakta olup biyolojik çeşitliliğe önemli ölçüde katkı sağlamaktadır. Bu çalışmada, Türkiye'nin Kuzeydoğusunda Erzurum ilinin Bağbaşı ilçesinde bulunan toplam 12 yabani kiraz genotipinin bazı önemli meyve ve ağaç özellikleri açısından incelenmiştir. Morfolojik karakterizasyon çalışmalarında, 12 genotipe ait ağaç (gelişme kuvveti, taç yapısı, dal yapısı), meyve (tat, meyve kabuğu rengi, meyve ağırlığı, suda çözünür katı madde, C vitamini, toplam fenolik, toplam flavonoid, toplam antosiyanin içeriği) ve antioksidan kapasitesi (DPPH ve FRAP testleri) incelenmiştir. Sonuçlar, ağaç, meyve ve antioksidan özelliklerinin çoğunda genotipler arasında yüksek farklılıklar olduğunu göstermiştir. Genel olarak genotipler orta gelişme kuvvetine ve yarı dik taç yapısına sahiptir. Siyahımsı, koyu kırmızı, kırmızı, açık kırmızı ve sarı meyve kabuğu renkleri gözlenmiştir. Genotipler 1.19-2.06 g arasında meyve ağırlığı, %19.23-22.10 arasında suda çözünebilir katı madde içeriği (SÇKM), 135-249 mg gallik asit/100 g taze ağırlık bazında toplam fenolik madde içeriği göstermiştir. Toplam antosiyanin ve C vitamini içeriği 3.10-113.81 mg/100 g ve 15.86-20.67 mg/100 g taze ağırlık arasında bulunmuştur. Sonuçlar, bu çalışmada değerlendirilen yabani kiraz genotiplerinin potansiyel biyoaktif bileşik kaynakları olduğunu göstermiştir. Meyveler, yüksek miktarda fenolik bileşik ve antioksidan aktivitesi nedeniyle bilimsel ve endüstriyel alanda keşfedilme
potansiyeline sahiptir.

Kaynakça

  • Ağlar, E., Saraçoğlu, O., Karakaya, O., Öztürk, B., & Gün, S. (2019). The relationship between fruit color and fruit quality of sweet cherry (Prunus avium L. cv. ‘0900 Ziraat’). Turkish Journal of Food and Agriculture Sciences, 1(1), 1–5.
  • Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M., & AlMssallem, M. Q. (2022). Flavonoids as potential anti-ınflammatory molecules: A review. Molecules, 27(9), 2901. [CrossRef]
  • Anonim. (2013, May 5). Doğa. http://www.coruhdogadernegi.org/doga.html.
  • Basile, B., Brown, N., Valdes, J. M., Cardarelli, M., Scognamiglio, P., Mataffo, A., Rouphael, Y., Bonini, P., & Colla, G. (2021). Plant based bio stimulant as sustainable alternative to synthetic growth regulators in two sweet cherry cultivars. Plants, 10(4), 619. [CrossRef]
  • Benzie, I. F. F., & Strain, J. J. (1996). Ferric reducing ability of plasma (FRAP)
  • as a measure of antioxidant power: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. [CrossRef]
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199–1200. [CrossRef]
  • Calle, A., Serradilla, M. J., & Wünsch, A. (2021). QTL mapping of phenolic compounds and fruit color in sweet cherry using a 6+9K SNP array genetic map. Scientia Horticulturae, 280, 109900. [CrossRef]
  • Cosme, F., Pinto, T., Aires, A., Morais, M. C., Bacelar, E., Anjos, R., FerreiraCardoso, J., Oliveira, I., Vilela, A., & Gonçalves, B. (2022). Red fruits composition and their health benefits—A review. Foods, 11(5), 644. [CrossRef]
  • del Rio-Celestino, M., & Font, R. (2020). The health benefits of fruits and vegetables. Foods, 9(3), 369. [CrossRef]
  • Demir, T., Demirsoy, L., Demirsoy, H., Kaçar, Y. A., Yılmaz, M., & Macit, I. (2011). Molecular characterization of sweet cherry genetic resources in Giresun, Turkey. Fruits, 66(1), 53–62. [CrossRef]
  • Eken, B. U., Kirdök, E., Velioğlu, E., & Çiftçi, Y. Ö. (2022). Assessment of genetic variation of natural populations of wild cherry (Prunus avium L.) via SSR markers. Turkish Journal of Botany, 46(1), 14–25. [CrossRef]
  • Ercişli, S. (2004). A short review of the fruit germplasm resources of Turkey. Genetic Resources and Crop Evolution, 51(4), 419–435. [CrossRef]
  • Ercişli, S., Ağar, G., Yıldırım, N., Duralija, B., Vokurka, A., & Karlıdağ, H. (2011). Genetic diversity in wild sweet cherries (Prunus avium) in Turkey revealed by SSR markers. Genetics and Molecular Research, 10(2), 1211–1219. [CrossRef]
  • Ercişli, S., Tosun, M., Karlıdağ, H., Dzubur, A., Hadziabulic, S., & Aliman, Y. (2012). Color and antioxidant characteristics of some fresh fig (Ficus carica L.) genotypes from Northeastern Turkey. Plant Foods for Human Nutrition, 67(3), 271–276. [CrossRef]
  • Eroğul, D. (2018). An Overview of sweet cherry fruit cultivation in Turkey. Trends in Horticulture, 1(2). [CrossRef]
  • Esti, M., Cinquanta, L., Sinesio, F., Moneta, E., & Di Matteo, M. (2002). Physicochemical and sensory fruit characteristics of two sweet cherry cultivars after cool storage. Food Chemistry, 76(4), 399–405. [CrossRef]
  • Gjamovski, V., Kiprijanovski, M., & Arsov, T. (2016). Evaluation of some cherry varieties grafted on Gisela 5 rootstock. Turkish Journal of Agriculture and Forestry, 40, 737–745. [CrossRef]
  • Gündoğdu, M., & Bilge, U. (2012). Determination of organics, phenolics, sugars and vitamin C contents of some cherry cultivars (Prunus avium). International Journal of Agriculture and Biology, 14(4), 595–599.
  • Hrotkó, K., Németh-Csigai, K., Magyar, L., & Ficzek, G. (2023). Growth and productivity of sweet cherry varieties on Hungarian clonal Prunus mahaleb (L.) rootstocks. Horticulturae, 9(2), 198. [CrossRef]
  • Jaglan, P., Buttar, H. S., Al-Bawareed, O. V., & Chibisov, S. (2022). Potential health benefits of selected fruits: Apples, blueberries, grapes, guavas, mangos, pomegranates, and tomatoes. In Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases, R. B. Singh, S. Watanabe, & A. A. Isaza (Eds.), Functional foods and nutraceuticals in metabolic and non-communicable diseases (pp. 359–370). Academic Press.
  • Jin, W., Wang, H., Li, M., Wang, J., Yang, Y., Zhang, X., Yan, G., Zhang, H., Liu, J., & Zhang, K. (2016). The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunus avium L.). Plant Biotechnology Journal, 14(11), 2120–2133. [CrossRef]
  • Kalajdžić, J., Milić, B., Petreš, M., Stankov, A., Grahovac, M., Magazin, N., & Keserović, Z. (2019). Postharvest quality of sweet cherry fruits as affected by bioregulators. Acta Scientiarum Polonorum Hortorum Cultus, 18(5), 189–199. [CrossRef]
  • Karlıdağ, H., Ercişli, S., Şengül, M., & Tosun, M. (2009). Physico-chemical diversity in fruits of wild-growing sweet cherries (Prunus avium L.). Biotechnology and Biotechnological Equipment, 23(3), 1325–1329. [CrossRef]
  • Kim, D. O., Heo, H. J., Kim, Y. J., Yang, H. S., & Lee, C. Y. (2005). Sweet and sour cherry phenolics and their protective effects on neuronal cells. Journal of Agricultural and Food Chemistry, 53(26), 9921–9927. [CrossRef]
  • Krawczyk, U., & Petri, G. (1992). Application of RP-HPLC and spectrophotometry in standardization of bilberry anthocyanin extract. Archiv Der Pharmazie, 325(3), 147–149. [CrossRef]
  • Magalhães, L. M., Santos, F., Segundo, M. A., Reis, S., & Lima, J. L. F. C. (2010). Rapid microplate high-throughput methodology for assessment of Folin–Ciocalteu reducing capacity. Talanta, 83(2), 441–447. [CrossRef]
  • Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91(3), 571–577. [CrossRef]
  • Mikulic-Petkovsek, M., Schmitzer, V., Slatnar, A., Stampar, F., & Veberic, R. (2012). Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. Journal of Food Science, 77(10), C1064–C1070. [CrossRef]
  • Mratinić, E., Fotirić-Akšić, M., & Jovković, R. (2012). Analysis of wild sweet cherry (Prunus avium L.) germplasm diversity in South-East Serbia. Genetika, 44(2), 259–268. [CrossRef] Olas, B. (2018). Berry phenolic antioxidants-Implications for human health? Frontiers in Pharmacology, 9, 78. [CrossRef]
  • Premier, R. (2002). Phytochemical composition: A paradigm shift for food-health considerations. Asia Pacific Journal of Clinical Nutrition, 11(6), S197–S201. [CrossRef]
  • Rymbai, H., Verma, V. K., Talang, H., Assumi, S. R., Devi, M. B., Vanlalruati, S., Sangma, R. H. C., Biam, K. P., Chanu, L. J., Makdoh, B., Singh, A. R., Mawleiñ, J., Hazarika, S., & Mishra, V. K. (2023). Biochemical and antioxidant activity of wild edible fruits of the eastern Himalaya, India. Frontiers in Nutrition, 10, 1039965. [CrossRef]
  • Serradilla, M. J., Lozano, M., Bernalte, M. J., Ayuso, M. C., López-Corrales, M., & González-Gómez, D. (2011). Physicochemical and bioactive properties evolution during ripening of Ambrunés’ sweet cherry cultivar. LWT – Food Science and Technology, 44(1), 199–205. [CrossRef]
  • Sirbu, S., Oprica, L., Poroch, V., Iurea, E., Corneanu, M., & Grigore, M. N. (2018). Physical parameters, total phenolics, flavonoids and vitamin C content of nine sweet cherry cultivars. Revista de Chimie, 69(1), 125–129. [CrossRef]
  • Türkoglu, Z., Bilgener, S., Ercişli, S., & Yıldırım, N. (2012). Simple sequence repeat (SSR) analysis for assessment of genetic variability in wild cherry germplasm. Journal of Applied Botany and Food Quality, 85, 229–233.
  • Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., Emwas, A. H., & Jaremko, M. (2020). Important flavonoids and their role as a therapeutic agent. Molecules, 25(22), 5243. [CrossRef]
  • Ünsal, S. G., Çiftçi, Y. Ö., Eken, B. U., Velioğlu, E., Di Marco, G., Gismondi, A., & Canini, A. (2019). Intraspecific discrimination study of wild cherry populations from North-Western Turkey by DNA barcoding approach. Tree Genetics and Genomes, 15(2), 16. [CrossRef]
  • Wang, J., Ma, T., Wang, L., Lan, T., Fang, Y., & Sun, X. (2021). Research on the consumption trend, nutritional value, biological activity evaluation, and sensory properties of mini fruits and vegetables. Foods, 10(12), 2966. [CrossRef]
  • Yaman, B. (2003). Yabani kiraz (Cerasus avium (L.) Moench). Gazi Üniversitesi Orman Fakültesi Dergisi, 3(1), 1303–12399.

Wild Sweet Cherry (Prunus avium L.) Genotypes: Morphological, Biochemical, and Antioxidant Diversity

Yıl 2023, Cilt: 54 Sayı: 3 - Research in Agricultural Sciences, 124 - 129, 19.10.2023
https://doi.org/10.5152/AUAF.2023.23151

Öz

Türkiye is in the homeland of the sweet cherries, and especially the northeastern Anatolia region is very rich in terms of wild sweet cherry genotypes. There are numerous wild sweet cherry trees with different morphological characteristics in the region and contribute significantly to biological diversity. In this study, a total of 12 wild sweet cherry genotypes found in the Bağbaşı district of Erzurum province in Northeastern Türkiye were investigated in terms of some important fruit and tree characteristics. In morphological characterization, trees and fruits of the 12 genotypes were used for tree (tree vigor, tree habit, branching habit), fruit (taste, fruit skin color, fruit weight, soluble solid content, vitamin C, total phenolic, total flavonoid, total anthocyanin content), and antioxidant capacity (2,2-diphenyl-1-picryl-hydrazyl-hydrate and ferric reducing antioxidant powerassays). Results indicated high differences among genotypes for most of the tree, fruit, and antioxidant characteristics. In general, genotypes had medium tree vigor and semi-upright growth habit. Blackish, dark red, red, light red, and yellow fruit skin color are evident. The genotypes showed fruit weight between 1.19 and 2.06 g, soluble solid content between 19.23% and 22.10%, and total phenolic content between 135 and 249 mg gallic acid equivalent/100 g fresh weight base. Total anthocyanin and vitamin C content were found between 3.10 and 113.81 mg/100 g and 15.86 and 20.67 mg/100 g fresh weight base. Results showed that wild sweet cherry genotypes evaluated in this study have shown to be potential sources of bioactive compounds. Fruits have the potential to be explored in the scientific and technological scope, due to their high amounts of phenolic compounds and antioxidant activity.

Kaynakça

  • Ağlar, E., Saraçoğlu, O., Karakaya, O., Öztürk, B., & Gün, S. (2019). The relationship between fruit color and fruit quality of sweet cherry (Prunus avium L. cv. ‘0900 Ziraat’). Turkish Journal of Food and Agriculture Sciences, 1(1), 1–5.
  • Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M., & AlMssallem, M. Q. (2022). Flavonoids as potential anti-ınflammatory molecules: A review. Molecules, 27(9), 2901. [CrossRef]
  • Anonim. (2013, May 5). Doğa. http://www.coruhdogadernegi.org/doga.html.
  • Basile, B., Brown, N., Valdes, J. M., Cardarelli, M., Scognamiglio, P., Mataffo, A., Rouphael, Y., Bonini, P., & Colla, G. (2021). Plant based bio stimulant as sustainable alternative to synthetic growth regulators in two sweet cherry cultivars. Plants, 10(4), 619. [CrossRef]
  • Benzie, I. F. F., & Strain, J. J. (1996). Ferric reducing ability of plasma (FRAP)
  • as a measure of antioxidant power: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. [CrossRef]
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199–1200. [CrossRef]
  • Calle, A., Serradilla, M. J., & Wünsch, A. (2021). QTL mapping of phenolic compounds and fruit color in sweet cherry using a 6+9K SNP array genetic map. Scientia Horticulturae, 280, 109900. [CrossRef]
  • Cosme, F., Pinto, T., Aires, A., Morais, M. C., Bacelar, E., Anjos, R., FerreiraCardoso, J., Oliveira, I., Vilela, A., & Gonçalves, B. (2022). Red fruits composition and their health benefits—A review. Foods, 11(5), 644. [CrossRef]
  • del Rio-Celestino, M., & Font, R. (2020). The health benefits of fruits and vegetables. Foods, 9(3), 369. [CrossRef]
  • Demir, T., Demirsoy, L., Demirsoy, H., Kaçar, Y. A., Yılmaz, M., & Macit, I. (2011). Molecular characterization of sweet cherry genetic resources in Giresun, Turkey. Fruits, 66(1), 53–62. [CrossRef]
  • Eken, B. U., Kirdök, E., Velioğlu, E., & Çiftçi, Y. Ö. (2022). Assessment of genetic variation of natural populations of wild cherry (Prunus avium L.) via SSR markers. Turkish Journal of Botany, 46(1), 14–25. [CrossRef]
  • Ercişli, S. (2004). A short review of the fruit germplasm resources of Turkey. Genetic Resources and Crop Evolution, 51(4), 419–435. [CrossRef]
  • Ercişli, S., Ağar, G., Yıldırım, N., Duralija, B., Vokurka, A., & Karlıdağ, H. (2011). Genetic diversity in wild sweet cherries (Prunus avium) in Turkey revealed by SSR markers. Genetics and Molecular Research, 10(2), 1211–1219. [CrossRef]
  • Ercişli, S., Tosun, M., Karlıdağ, H., Dzubur, A., Hadziabulic, S., & Aliman, Y. (2012). Color and antioxidant characteristics of some fresh fig (Ficus carica L.) genotypes from Northeastern Turkey. Plant Foods for Human Nutrition, 67(3), 271–276. [CrossRef]
  • Eroğul, D. (2018). An Overview of sweet cherry fruit cultivation in Turkey. Trends in Horticulture, 1(2). [CrossRef]
  • Esti, M., Cinquanta, L., Sinesio, F., Moneta, E., & Di Matteo, M. (2002). Physicochemical and sensory fruit characteristics of two sweet cherry cultivars after cool storage. Food Chemistry, 76(4), 399–405. [CrossRef]
  • Gjamovski, V., Kiprijanovski, M., & Arsov, T. (2016). Evaluation of some cherry varieties grafted on Gisela 5 rootstock. Turkish Journal of Agriculture and Forestry, 40, 737–745. [CrossRef]
  • Gündoğdu, M., & Bilge, U. (2012). Determination of organics, phenolics, sugars and vitamin C contents of some cherry cultivars (Prunus avium). International Journal of Agriculture and Biology, 14(4), 595–599.
  • Hrotkó, K., Németh-Csigai, K., Magyar, L., & Ficzek, G. (2023). Growth and productivity of sweet cherry varieties on Hungarian clonal Prunus mahaleb (L.) rootstocks. Horticulturae, 9(2), 198. [CrossRef]
  • Jaglan, P., Buttar, H. S., Al-Bawareed, O. V., & Chibisov, S. (2022). Potential health benefits of selected fruits: Apples, blueberries, grapes, guavas, mangos, pomegranates, and tomatoes. In Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases, R. B. Singh, S. Watanabe, & A. A. Isaza (Eds.), Functional foods and nutraceuticals in metabolic and non-communicable diseases (pp. 359–370). Academic Press.
  • Jin, W., Wang, H., Li, M., Wang, J., Yang, Y., Zhang, X., Yan, G., Zhang, H., Liu, J., & Zhang, K. (2016). The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunus avium L.). Plant Biotechnology Journal, 14(11), 2120–2133. [CrossRef]
  • Kalajdžić, J., Milić, B., Petreš, M., Stankov, A., Grahovac, M., Magazin, N., & Keserović, Z. (2019). Postharvest quality of sweet cherry fruits as affected by bioregulators. Acta Scientiarum Polonorum Hortorum Cultus, 18(5), 189–199. [CrossRef]
  • Karlıdağ, H., Ercişli, S., Şengül, M., & Tosun, M. (2009). Physico-chemical diversity in fruits of wild-growing sweet cherries (Prunus avium L.). Biotechnology and Biotechnological Equipment, 23(3), 1325–1329. [CrossRef]
  • Kim, D. O., Heo, H. J., Kim, Y. J., Yang, H. S., & Lee, C. Y. (2005). Sweet and sour cherry phenolics and their protective effects on neuronal cells. Journal of Agricultural and Food Chemistry, 53(26), 9921–9927. [CrossRef]
  • Krawczyk, U., & Petri, G. (1992). Application of RP-HPLC and spectrophotometry in standardization of bilberry anthocyanin extract. Archiv Der Pharmazie, 325(3), 147–149. [CrossRef]
  • Magalhães, L. M., Santos, F., Segundo, M. A., Reis, S., & Lima, J. L. F. C. (2010). Rapid microplate high-throughput methodology for assessment of Folin–Ciocalteu reducing capacity. Talanta, 83(2), 441–447. [CrossRef]
  • Meda, A., Lamien, C. E., Romito, M., Millogo, J., & Nacoulma, O. G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91(3), 571–577. [CrossRef]
  • Mikulic-Petkovsek, M., Schmitzer, V., Slatnar, A., Stampar, F., & Veberic, R. (2012). Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. Journal of Food Science, 77(10), C1064–C1070. [CrossRef]
  • Mratinić, E., Fotirić-Akšić, M., & Jovković, R. (2012). Analysis of wild sweet cherry (Prunus avium L.) germplasm diversity in South-East Serbia. Genetika, 44(2), 259–268. [CrossRef] Olas, B. (2018). Berry phenolic antioxidants-Implications for human health? Frontiers in Pharmacology, 9, 78. [CrossRef]
  • Premier, R. (2002). Phytochemical composition: A paradigm shift for food-health considerations. Asia Pacific Journal of Clinical Nutrition, 11(6), S197–S201. [CrossRef]
  • Rymbai, H., Verma, V. K., Talang, H., Assumi, S. R., Devi, M. B., Vanlalruati, S., Sangma, R. H. C., Biam, K. P., Chanu, L. J., Makdoh, B., Singh, A. R., Mawleiñ, J., Hazarika, S., & Mishra, V. K. (2023). Biochemical and antioxidant activity of wild edible fruits of the eastern Himalaya, India. Frontiers in Nutrition, 10, 1039965. [CrossRef]
  • Serradilla, M. J., Lozano, M., Bernalte, M. J., Ayuso, M. C., López-Corrales, M., & González-Gómez, D. (2011). Physicochemical and bioactive properties evolution during ripening of Ambrunés’ sweet cherry cultivar. LWT – Food Science and Technology, 44(1), 199–205. [CrossRef]
  • Sirbu, S., Oprica, L., Poroch, V., Iurea, E., Corneanu, M., & Grigore, M. N. (2018). Physical parameters, total phenolics, flavonoids and vitamin C content of nine sweet cherry cultivars. Revista de Chimie, 69(1), 125–129. [CrossRef]
  • Türkoglu, Z., Bilgener, S., Ercişli, S., & Yıldırım, N. (2012). Simple sequence repeat (SSR) analysis for assessment of genetic variability in wild cherry germplasm. Journal of Applied Botany and Food Quality, 85, 229–233.
  • Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., Emwas, A. H., & Jaremko, M. (2020). Important flavonoids and their role as a therapeutic agent. Molecules, 25(22), 5243. [CrossRef]
  • Ünsal, S. G., Çiftçi, Y. Ö., Eken, B. U., Velioğlu, E., Di Marco, G., Gismondi, A., & Canini, A. (2019). Intraspecific discrimination study of wild cherry populations from North-Western Turkey by DNA barcoding approach. Tree Genetics and Genomes, 15(2), 16. [CrossRef]
  • Wang, J., Ma, T., Wang, L., Lan, T., Fang, Y., & Sun, X. (2021). Research on the consumption trend, nutritional value, biological activity evaluation, and sensory properties of mini fruits and vegetables. Foods, 10(12), 2966. [CrossRef]
  • Yaman, B. (2003). Yabani kiraz (Cerasus avium (L.) Moench). Gazi Üniversitesi Orman Fakültesi Dergisi, 3(1), 1303–12399.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Gülçe İlhan 0000-0003-2335-6846

Yayımlanma Tarihi 19 Ekim 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 54 Sayı: 3 - Research in Agricultural Sciences

Kaynak Göster

APA İlhan, G. (2023). Wild Sweet Cherry (Prunus avium L.) Genotypes: Morphological, Biochemical, and Antioxidant Diversity. Research in Agricultural Sciences, 54(3), 124-129. https://doi.org/10.5152/AUAF.2023.23151

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License


29919