Araştırma Makalesi
BibTex RIS Kaynak Göster

Manipülatif Destekli Üstbilişsel Planlamaya Dayalı Öğrenme Ortamı Tasarımı: Çarpanlar ve Katları Konusu Örneği

Yıl 2023, Cilt: 23 Sayı: 2, 559 - 584, 15.06.2023
https://doi.org/10.17240/aibuefd.2023..-1099309

Öz

Bu çalışma ortaokul 8. sınıf öğrencilerinin çarpanlar ve katları konusunu öğrenmelerinde, üstbilişsel planlamaya dayalı tasarlanan manipülatif destekli öğrenme ortamının değerlendirilmesi amacıyla yapılmıştır. Ortaokul 8. sınıf düzeyindeki 19 öğrencinin katıldığı çalışmada nitel araştırma yöntemlerinden durum çalışması modeli kullanılmıştır. Çalışma sürecinde ilk olarak üstbilişsel planlamaya dayalı sanal ve fiziksel manipülatif destekli bir öğrenme ortamı tasarlanmıştır. Ardından öğrenme ortamına uygun olarak hazırlanan etkinlikler altı haftalık süreçte katılımcılara uygulanmıştır. Uygulama sürecinin bitiminde araştırmacılar tarafından hazırlanan yarı yapılandırılmış görüşme formu yardımıyla görüşmeler yapılarak çalışmanın verileri toplanmıştır. Toplanan verilere içerik analizi yapılmıştır. İçerik analizi sonucunda katılımcıların görüşleri üstbiliş, manipülatif ve öğrenme ortamı temalarını oluşturmuştur. Çalışmada ulaşılan sonuçlar manipülatif destekli üstbilişsel planlamaya dayalı öğrenme ortamında öğrencilerin ilk haftalarda daha çok fiziksel manipülatiflerle çalışmayı, son haftalarda ise daha çok sanal manipülatiflerle çalışmayı tercih ettiğini göstermiştir. Bu nedenle uygulayıcılara üstbilişe dayalı öğrenme ortamlarının sanal manipülatif ve teknoloji etkinlikleriyle desteklenmesi önerilebilir.

Destekleyen Kurum

Bayburt Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

2019/02-69001-04

Teşekkür

Bu araştırma birinci yazarın yüksek lisans tezinden üretilmiştir.

Kaynakça

  • Akkan, Y., & Çakıroğlu, Ü. (2009). Öğrencilerin sanal ve fiziksel manipülatiflere yönelik tercihleri. P. Aşkar, B. Akkoyunlu, A. Altun, M. Erdem, S. Seferoğlu, Y. K. Usluel, H. Tüzün, A. Özkök, & H. Yurdugül (Eds.), 9th International Educational Technology Conference (s. 418-424). Ankara: Hacettepe Üniversitesi.
  • Artz, A., & Armour-Thomas, E. (1992). Development of a cognitive-metacognitive framework for protocol analysis of mathematical problem solving in small groups. Cognition and Instruction, 9(2), 137-175.
  • Aydurmuş, L. (2013). 8. sınıf öğrencilerinin problem çözme sürecinde kullandığı üstbiliş becerilerin incelenmesi (Yüksek lisans tezi). Yükseköğretim Kurulu Ulusal Tez Merkezi'nden edinilmiştir. (Tez No. 344467).
  • Bartolini, M., & Martignone, F. (2014). Manipulatives in mathematics education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (1st. ed., pp. 487-494). Dordrecht: Springer.
  • Baş, F., & Sağırlı, M. Ö. (2017). Türkiye’de eğitim alanında üstbiliş odaklı yapılan makalelere yönelik bir içerik analizi. Eğitim ve Bilim, 42(192), 1-33.
  • Belenky, D. M., & Nokes, T. J. (2009) Examining the role of manipulatives and metacognition on engagement, learning, and transfer. The Journal of Problem Solving, 2(2), 102-129.
  • Berardi-Coletta, B.-C., Buyer, L., Dominowski, R., & Rellinger, E. (1995). Metacognition and problem solving: A process-oriented approach. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(1), 205-223.
  • Burns, B. A., & Hamm, E. M. (2011). A comparison of concrete and virtual manipulative use in third- and fourth-grade mathematics. School Science and Mathematics, 111(6), 256-261.
  • Büyüköztürk, Ş., Çakmak, E. K., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2010). Bilimsel Araştırma Yöntemleri. Ankara: Pegem.
  • Clements, D. H. (2000). ‘Concrete’ manipulatives, concrete ideas. Contemporary Issues in Early Childhood, 1(1), 45-60.
  • Creswell, J. (2007) Qualitative inquiry & research design: Choosing among five approaches. USA: SAGE Publications.
  • Desoete, A. (2008). Multi-method assessment of metacognitive skills in elementary school children: How you test is what you get. Metacognition and Learning, 3(3), 189-206.
  • Dutemple, E., Hakimi, H., & Poulin-Dubois, D. (2023). Do I know what they know? Linking metacognition, theory of mind, and selective social learning. Journal of Experimental Child Psychology, 227, 105572.
  • Ferrari, P. L. (2003). Abstraction in mathematics. Philosophical Transactions of The Royal Society B, 358(1435), 1225-1230.
  • Flavell, J. (1987). Speculations about the nature and development of metacognition. In F. Weinert, & R. Kluwe (Eds.), Metacognition, Motivation and Understanding (pp. 21-29). Hillsdale, New Jersey: Lawrence Erlbaum Associates.
  • Furner, J. M., & Worrell, N. L. (2017). The importance of using manipulatives in teaching math today. Transformations, 3(1), 1-25.
  • Garofalo, J., & Lester, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics Education, 16(3), 163-176.
  • Georghiades, P. (2004). From the general to the situated: Three decades of metacognition. International Journal of Science Education, 26(3), 365-383.
  • Gülkılık, H. (2013). Matematiksel anlamda temsillerin rolü: Sanal ve fiziksel manipülatifler (Doktora tezi). Yükseköğretim Kurulu Ulusal Tez Merkezi’nden edinilmiştir. (Tez No. 339931)
  • Heddens, J. W. (1986). Bridging the gap between the concrete and the abstract. The Arithmetic Teacher, 33(6), 14-17.
  • Highfield, K., & Mulligan, J. (2007). The role of dynamic interactive technological tools in preschoolers’ mathematical patterning. In J. Watson, & K. Beswick (Eds.), 30th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 372-381). Adelaide: MERGA.
  • Huang, X., Xiao, Y., Webster, J. S., Howe, R. E., & Li, Y. (2022). Exploring Shanghai students’ mathematics learning as related to content presentation in textbooks: the case of the commutative property of addition. ZDM–Mathematics Education, 54(3), 595-609.
  • İşman, A. (2002). Sakarya ili öğretmenlerinin eğitim teknolojileri yönündeki yeterlilikleri. The Turkish Online Journal of Educational Technology, 1(1), 72-92.
  • Jiang, Y., Ma, L., & Gao, L. (2016). Assessing teachers' metacognition in teaching: The teacher metacognition inventory. Teaching and Teacher Education, 59, 403-413.
  • Kablan, Z. (2016). The effect of manipulatives on mathematics achievement across different learning styles. Educational Psychology, 36(2), 277-296.
  • Kamina, P., & Iyer, N. N. (2009). From concrete to abstract: Teaching for transfer of learning when using manipulatives. NERA Conference Proceedings 2009. Rocky Hill, Connecticut: UCONN Library.
  • Karakırık, E., & Aydın, E. (2011). Matematik nesneleri. E. Karakırık (Ed.), 16. ATCM Matematik Eğitiminde Teknoloji Çalıştayı içinde (s. 19-33). Bolu: Abant İzzet Baysal Üniversitesi.
  • Kelly, C. A. (2006). Using Manipulatives in mathematical problem solving: A performance-based analysis. The Mathematics Enthusiast, 3(2), 184-193.
  • Kılıç, M. A., & Öztürk, M. (2022). Üstbilişsel sorgulamaya dayalı tasarlanan öğrenme ortamında olasılık öğrenme süreci: Bir öğretim deneyi. Muğla Sıtkı Koçman Üniversitesi Eğitim Fakültesi Dergisi, 9(2), 768-787.
  • Kiili, K., Koskinen, A., Lindstedt, A., & Ninaus, M. (2019). Extending a digital fraction game piece by piece with physical manipulatives. In M. Gentile, M. Allegra, & H. Söbke (Eds.), International Conference on Games and Learning Alliance (pp. 157-166). Cham: Springer.
  • Kuhn, D. (2000). Metacognitive development. Current Directions in Psychological Science, 9(5), 178-181. Lester, F. K., Garofalo, J., & Kroll, D. L. (1989) The role of metacognition in mathematical problem solving: A study of two grade seven classes (Report No. 143). Washington: National science Foundation.
  • Li, J., Zhang, B., Du, H., Zhu, Z., & Li, Y. (2015). Metacognitive planning: Development and validation of an online measure. Psychological Assessment, 27(1), 260-271.
  • Magruder, R. (2012). Solving linear equations: A comparison of concrete and virtual manipulatives in middle school mathematics (Doctoral dissertation). Retrieved from ProQuest Dissertations & Theses Global. (UMI No. 3584151).
  • Martinez, M. E. (2006). What is metacognition? Phi Delta Kappan, 87(9), 696-699.
  • Mevarech, Z. R., & Kramarski, B. (1997). IMPROVE: A multidimensional method for teaching mathematics in heterogenous classrooms. American Educational Research Journal , 34(2), 365-395.
  • McNeil, N., & Jarvin, L. (2009). When theories don't add up: Disentangling he manipulatives debate. Theory Into Practice, 46(4), 309-316.
  • Miles, M, B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed). Thousand Oaks, CA: Sage.
  • Moyer, P. S., & Jones, M. G. (2004). Controlling choice: Teachers, students, and manipulatives in mathematics classrooms. School Science and Mathematics, 104(1), 16-31.
  • Moyer-Packenham, P. S., & Westenskow, A. (2013). Effects of virtual manipulatives on student achievement and mathematics learning. International Journal of Virtual and Personal Learning Environments, 4(3), 35-50. NCTM. (2000). Principals and Standards for School Mathematics. Retrieved from https://www.nctm.org/uploadedFiles/Standards_and_Positions/PSSM_ExecutiveSummary.pdf
  • Ormrod, J. E. (2020). Öğrenme psikolojisi. (M. Baloğlu, çev. ed.). Ankara: Nobel. (Çalışmanın orijinali 2012’de yayımlanmıştır.)
  • Önver, M. (2019). Matematik dersinde manipülatif kullanımının öğrenci başarısına ve motivasyonuna etkisi (Yüksek lisans tezi). Yükseköğretim Kurulu Ulusal Tez Merkezi’nden edinilmiştir. (Tez No. 574161).
  • Öztürk, M., Akkan, Y., & Kaplan, A. (2018). 6-8. sınıf üstün yetenekli öğrencilerin problem çözerken sergiledikleri üst bilişsel beceriler: Gümüşhane örneği. Ege Eğitim Dergisi, 19(2), 446–469.
  • Öztürk, M., & Kaplan, A. (2019). Cognitive analysis of constructing algebraic proof processes: A mixed method research. Education and Science, 44(197), 25–64.
  • Öztürk, M. (2021). An embedded mixed method study on teaching algebraic expressions using metacognition-based training. Thinking Skills and Creativity, 39, 1-15. https://doi.org/10.1016/j.tsc.2021.100787 Papleontiou-louca, E. (2003). The concept and instruction of metacognition. Teacher Development, 7(1), 9-30.
  • Pişkin-Tunç, M., Durmuş, S., & Akkaya, R. (2012). İlköğretim matematik öğretmen adaylarının matematik öğretiminde somut materyalleri ve sanal öğrenme nesnelerini kullanma yeterlikleri. MATDER Matematik Eğitimi Dergisi, 1(1), 13-20.
  • Pressley, M. (1986). The relevance of the good strategy user model to the teaching of mathematics. Educational Psychologist, 21, 139-161.
  • Reimer, K., & Moyer, P. (2005). Third-graders learn about fractions using virtual manipulatives: A classroom study. Journal of Computers in Mathematics and Science Teaching, 24(1), 5-25.
  • Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando: Academic Press, Inc.
  • Schoenfeld, A. H. (1987). What''s all the fuss about metacognition. In A. H. Schoenfeld (Ed.), Cognitive Science and Mathematics Education (1st ed., pp. 189-215). Hillsdale: New Jersey.
  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (1st ed., pp. 334–370). Macmillan Publishing Co, Inc.
  • Schoenfeld, A. H. (2016). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics (Reprint). Journal of Education, 196(2), 1-38.
  • Schraw, G. (1998). Promoting general metacognitive awareness. Instructional Science, 26(1-2), 113-125.
  • Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7(4), 351-371.
  • Slife, B. D., Weiss, J., & Bell, T. (1985). Separability of metacognition and cognition: Problem solving in learning disabled and regular students. Journal of Educational Psychology, 77(4), 437-445.
  • Sonay-Ay, Z., & Bulut, S. (2017). Üst bilişsel sorgulamaya dayalı problem çözme yaklaşımının öz-düzenleme becerilerine etkisinin araştırılması. İlköğretim Online, 16(2), 547-565.
  • Şahinkaya, T., Öztürk, M., & Albayrak, M. (2022). Üstbilişsel IMPROVE tekniğinin oran-orantının öğretimi ve orantısal akıl yürütme becerisinin geliştirilmesi üzerine etkisi. Kocaeli Üniversitesi Eğitim Dergisi, 5(2), 495-516.
  • Tzohar-Rozen, M., & Kramarski, B. (2014). Metacognition, motivation, and emotions: Contribution of self-regulated learning to solving mathematical problems. Global Education Review, 1(4), 76-95.
  • Ubuz, B., & Erdogan, B. (2019). Effects of physical manipulative instructions with or without explicit metacognitive questions on geometrical knowledge acquisition. International Journal of Science and Mathematics Education, 17(1), 129–151.
  • Ünlü, M. (2017). Pre-service mathematics teachers’ views about using instructional materials in mathematics lessons. Eğitimde Kuram ve Uygulama, 13(1), 10-34.
  • Veenman, M. (2011). Learning to self-monitor and self-regulate. In R. Mayer, & P. Alexander (Eds.), Handbook of Research on Learning and Instruction (1st ed., pp. 197-218). New York: Routledge.
  • Veenman, M. V., Hout-Wolters, B. H., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition Learning, 1, 3-14.
  • Yaman, H., & Şahin, T. (2014). Somut ve sanal manipülatif destekli geometri öğretiminin 5. sınıf öğrencilerinin geometrik yapıları inşa etme ve çizmedeki başarılarına etkisi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 14(1), 202 - 220.
  • Yetkin-Özdemir, E., & Sarı, S. (2016). Matematik öğrenme ve problem çözmede üstbilişin rolü. E. Bingölbali, S. Arslan, & İ. Ö. Zembat (Ed.), Matematik eğitiminde teoriler içinde (1. baskı, ss. 655-676). Ankara: Pegem Akademi.
  • Yin, R. K. (2011). Applications of case study research. Sage Publications Inc.

Learning Environment Design Based on Manipulative Supported Metacognitive Planning: An Example of Factors and Multiples

Yıl 2023, Cilt: 23 Sayı: 2, 559 - 584, 15.06.2023
https://doi.org/10.17240/aibuefd.2023..-1099309

Öz

This study was carried out in order to evaluate the manipulative supported learning environment designed based on metacognitive planning for middle school 8th grade students to learn the subject of multipliers and multiples. The case study model, one of the qualitative research methods, was used in the study in which 19 middle school 8th-grade students participated. In the study process, a virtual and physically manipulative supported learning environment based on metacognitive planning was designed first. Then, the activities prepared in accordance with the learning environment were applied to the participants in a six-week period. At the end of the intervention process, the data of the study were collected by conducting interviews with the help of a semi-structured interview form prepared by the researchers. Content analysis was performed on the collected data. As a result of the content analysis, the views of the participants were gathered under three themes: metacognition, manipulative and learning environment. The results of the study showed that in the learning environment based on metacognitive planning with manipulative support, students preferred to work more with physical manipulatives in the first weeks and more with virtual manipulatives in the last weeks. For this reason, it may be suggested to practitioners to support metacognitive learning environments with virtual manipulative and technology activities.

Proje Numarası

2019/02-69001-04

Kaynakça

  • Akkan, Y., & Çakıroğlu, Ü. (2009). Öğrencilerin sanal ve fiziksel manipülatiflere yönelik tercihleri. P. Aşkar, B. Akkoyunlu, A. Altun, M. Erdem, S. Seferoğlu, Y. K. Usluel, H. Tüzün, A. Özkök, & H. Yurdugül (Eds.), 9th International Educational Technology Conference (s. 418-424). Ankara: Hacettepe Üniversitesi.
  • Artz, A., & Armour-Thomas, E. (1992). Development of a cognitive-metacognitive framework for protocol analysis of mathematical problem solving in small groups. Cognition and Instruction, 9(2), 137-175.
  • Aydurmuş, L. (2013). 8. sınıf öğrencilerinin problem çözme sürecinde kullandığı üstbiliş becerilerin incelenmesi (Yüksek lisans tezi). Yükseköğretim Kurulu Ulusal Tez Merkezi'nden edinilmiştir. (Tez No. 344467).
  • Bartolini, M., & Martignone, F. (2014). Manipulatives in mathematics education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (1st. ed., pp. 487-494). Dordrecht: Springer.
  • Baş, F., & Sağırlı, M. Ö. (2017). Türkiye’de eğitim alanında üstbiliş odaklı yapılan makalelere yönelik bir içerik analizi. Eğitim ve Bilim, 42(192), 1-33.
  • Belenky, D. M., & Nokes, T. J. (2009) Examining the role of manipulatives and metacognition on engagement, learning, and transfer. The Journal of Problem Solving, 2(2), 102-129.
  • Berardi-Coletta, B.-C., Buyer, L., Dominowski, R., & Rellinger, E. (1995). Metacognition and problem solving: A process-oriented approach. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(1), 205-223.
  • Burns, B. A., & Hamm, E. M. (2011). A comparison of concrete and virtual manipulative use in third- and fourth-grade mathematics. School Science and Mathematics, 111(6), 256-261.
  • Büyüköztürk, Ş., Çakmak, E. K., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2010). Bilimsel Araştırma Yöntemleri. Ankara: Pegem.
  • Clements, D. H. (2000). ‘Concrete’ manipulatives, concrete ideas. Contemporary Issues in Early Childhood, 1(1), 45-60.
  • Creswell, J. (2007) Qualitative inquiry & research design: Choosing among five approaches. USA: SAGE Publications.
  • Desoete, A. (2008). Multi-method assessment of metacognitive skills in elementary school children: How you test is what you get. Metacognition and Learning, 3(3), 189-206.
  • Dutemple, E., Hakimi, H., & Poulin-Dubois, D. (2023). Do I know what they know? Linking metacognition, theory of mind, and selective social learning. Journal of Experimental Child Psychology, 227, 105572.
  • Ferrari, P. L. (2003). Abstraction in mathematics. Philosophical Transactions of The Royal Society B, 358(1435), 1225-1230.
  • Flavell, J. (1987). Speculations about the nature and development of metacognition. In F. Weinert, & R. Kluwe (Eds.), Metacognition, Motivation and Understanding (pp. 21-29). Hillsdale, New Jersey: Lawrence Erlbaum Associates.
  • Furner, J. M., & Worrell, N. L. (2017). The importance of using manipulatives in teaching math today. Transformations, 3(1), 1-25.
  • Garofalo, J., & Lester, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal for Research in Mathematics Education, 16(3), 163-176.
  • Georghiades, P. (2004). From the general to the situated: Three decades of metacognition. International Journal of Science Education, 26(3), 365-383.
  • Gülkılık, H. (2013). Matematiksel anlamda temsillerin rolü: Sanal ve fiziksel manipülatifler (Doktora tezi). Yükseköğretim Kurulu Ulusal Tez Merkezi’nden edinilmiştir. (Tez No. 339931)
  • Heddens, J. W. (1986). Bridging the gap between the concrete and the abstract. The Arithmetic Teacher, 33(6), 14-17.
  • Highfield, K., & Mulligan, J. (2007). The role of dynamic interactive technological tools in preschoolers’ mathematical patterning. In J. Watson, & K. Beswick (Eds.), 30th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 372-381). Adelaide: MERGA.
  • Huang, X., Xiao, Y., Webster, J. S., Howe, R. E., & Li, Y. (2022). Exploring Shanghai students’ mathematics learning as related to content presentation in textbooks: the case of the commutative property of addition. ZDM–Mathematics Education, 54(3), 595-609.
  • İşman, A. (2002). Sakarya ili öğretmenlerinin eğitim teknolojileri yönündeki yeterlilikleri. The Turkish Online Journal of Educational Technology, 1(1), 72-92.
  • Jiang, Y., Ma, L., & Gao, L. (2016). Assessing teachers' metacognition in teaching: The teacher metacognition inventory. Teaching and Teacher Education, 59, 403-413.
  • Kablan, Z. (2016). The effect of manipulatives on mathematics achievement across different learning styles. Educational Psychology, 36(2), 277-296.
  • Kamina, P., & Iyer, N. N. (2009). From concrete to abstract: Teaching for transfer of learning when using manipulatives. NERA Conference Proceedings 2009. Rocky Hill, Connecticut: UCONN Library.
  • Karakırık, E., & Aydın, E. (2011). Matematik nesneleri. E. Karakırık (Ed.), 16. ATCM Matematik Eğitiminde Teknoloji Çalıştayı içinde (s. 19-33). Bolu: Abant İzzet Baysal Üniversitesi.
  • Kelly, C. A. (2006). Using Manipulatives in mathematical problem solving: A performance-based analysis. The Mathematics Enthusiast, 3(2), 184-193.
  • Kılıç, M. A., & Öztürk, M. (2022). Üstbilişsel sorgulamaya dayalı tasarlanan öğrenme ortamında olasılık öğrenme süreci: Bir öğretim deneyi. Muğla Sıtkı Koçman Üniversitesi Eğitim Fakültesi Dergisi, 9(2), 768-787.
  • Kiili, K., Koskinen, A., Lindstedt, A., & Ninaus, M. (2019). Extending a digital fraction game piece by piece with physical manipulatives. In M. Gentile, M. Allegra, & H. Söbke (Eds.), International Conference on Games and Learning Alliance (pp. 157-166). Cham: Springer.
  • Kuhn, D. (2000). Metacognitive development. Current Directions in Psychological Science, 9(5), 178-181. Lester, F. K., Garofalo, J., & Kroll, D. L. (1989) The role of metacognition in mathematical problem solving: A study of two grade seven classes (Report No. 143). Washington: National science Foundation.
  • Li, J., Zhang, B., Du, H., Zhu, Z., & Li, Y. (2015). Metacognitive planning: Development and validation of an online measure. Psychological Assessment, 27(1), 260-271.
  • Magruder, R. (2012). Solving linear equations: A comparison of concrete and virtual manipulatives in middle school mathematics (Doctoral dissertation). Retrieved from ProQuest Dissertations & Theses Global. (UMI No. 3584151).
  • Martinez, M. E. (2006). What is metacognition? Phi Delta Kappan, 87(9), 696-699.
  • Mevarech, Z. R., & Kramarski, B. (1997). IMPROVE: A multidimensional method for teaching mathematics in heterogenous classrooms. American Educational Research Journal , 34(2), 365-395.
  • McNeil, N., & Jarvin, L. (2009). When theories don't add up: Disentangling he manipulatives debate. Theory Into Practice, 46(4), 309-316.
  • Miles, M, B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed). Thousand Oaks, CA: Sage.
  • Moyer, P. S., & Jones, M. G. (2004). Controlling choice: Teachers, students, and manipulatives in mathematics classrooms. School Science and Mathematics, 104(1), 16-31.
  • Moyer-Packenham, P. S., & Westenskow, A. (2013). Effects of virtual manipulatives on student achievement and mathematics learning. International Journal of Virtual and Personal Learning Environments, 4(3), 35-50. NCTM. (2000). Principals and Standards for School Mathematics. Retrieved from https://www.nctm.org/uploadedFiles/Standards_and_Positions/PSSM_ExecutiveSummary.pdf
  • Ormrod, J. E. (2020). Öğrenme psikolojisi. (M. Baloğlu, çev. ed.). Ankara: Nobel. (Çalışmanın orijinali 2012’de yayımlanmıştır.)
  • Önver, M. (2019). Matematik dersinde manipülatif kullanımının öğrenci başarısına ve motivasyonuna etkisi (Yüksek lisans tezi). Yükseköğretim Kurulu Ulusal Tez Merkezi’nden edinilmiştir. (Tez No. 574161).
  • Öztürk, M., Akkan, Y., & Kaplan, A. (2018). 6-8. sınıf üstün yetenekli öğrencilerin problem çözerken sergiledikleri üst bilişsel beceriler: Gümüşhane örneği. Ege Eğitim Dergisi, 19(2), 446–469.
  • Öztürk, M., & Kaplan, A. (2019). Cognitive analysis of constructing algebraic proof processes: A mixed method research. Education and Science, 44(197), 25–64.
  • Öztürk, M. (2021). An embedded mixed method study on teaching algebraic expressions using metacognition-based training. Thinking Skills and Creativity, 39, 1-15. https://doi.org/10.1016/j.tsc.2021.100787 Papleontiou-louca, E. (2003). The concept and instruction of metacognition. Teacher Development, 7(1), 9-30.
  • Pişkin-Tunç, M., Durmuş, S., & Akkaya, R. (2012). İlköğretim matematik öğretmen adaylarının matematik öğretiminde somut materyalleri ve sanal öğrenme nesnelerini kullanma yeterlikleri. MATDER Matematik Eğitimi Dergisi, 1(1), 13-20.
  • Pressley, M. (1986). The relevance of the good strategy user model to the teaching of mathematics. Educational Psychologist, 21, 139-161.
  • Reimer, K., & Moyer, P. (2005). Third-graders learn about fractions using virtual manipulatives: A classroom study. Journal of Computers in Mathematics and Science Teaching, 24(1), 5-25.
  • Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando: Academic Press, Inc.
  • Schoenfeld, A. H. (1987). What''s all the fuss about metacognition. In A. H. Schoenfeld (Ed.), Cognitive Science and Mathematics Education (1st ed., pp. 189-215). Hillsdale: New Jersey.
  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (1st ed., pp. 334–370). Macmillan Publishing Co, Inc.
  • Schoenfeld, A. H. (2016). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics (Reprint). Journal of Education, 196(2), 1-38.
  • Schraw, G. (1998). Promoting general metacognitive awareness. Instructional Science, 26(1-2), 113-125.
  • Schraw, G., & Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7(4), 351-371.
  • Slife, B. D., Weiss, J., & Bell, T. (1985). Separability of metacognition and cognition: Problem solving in learning disabled and regular students. Journal of Educational Psychology, 77(4), 437-445.
  • Sonay-Ay, Z., & Bulut, S. (2017). Üst bilişsel sorgulamaya dayalı problem çözme yaklaşımının öz-düzenleme becerilerine etkisinin araştırılması. İlköğretim Online, 16(2), 547-565.
  • Şahinkaya, T., Öztürk, M., & Albayrak, M. (2022). Üstbilişsel IMPROVE tekniğinin oran-orantının öğretimi ve orantısal akıl yürütme becerisinin geliştirilmesi üzerine etkisi. Kocaeli Üniversitesi Eğitim Dergisi, 5(2), 495-516.
  • Tzohar-Rozen, M., & Kramarski, B. (2014). Metacognition, motivation, and emotions: Contribution of self-regulated learning to solving mathematical problems. Global Education Review, 1(4), 76-95.
  • Ubuz, B., & Erdogan, B. (2019). Effects of physical manipulative instructions with or without explicit metacognitive questions on geometrical knowledge acquisition. International Journal of Science and Mathematics Education, 17(1), 129–151.
  • Ünlü, M. (2017). Pre-service mathematics teachers’ views about using instructional materials in mathematics lessons. Eğitimde Kuram ve Uygulama, 13(1), 10-34.
  • Veenman, M. (2011). Learning to self-monitor and self-regulate. In R. Mayer, & P. Alexander (Eds.), Handbook of Research on Learning and Instruction (1st ed., pp. 197-218). New York: Routledge.
  • Veenman, M. V., Hout-Wolters, B. H., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition Learning, 1, 3-14.
  • Yaman, H., & Şahin, T. (2014). Somut ve sanal manipülatif destekli geometri öğretiminin 5. sınıf öğrencilerinin geometrik yapıları inşa etme ve çizmedeki başarılarına etkisi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 14(1), 202 - 220.
  • Yetkin-Özdemir, E., & Sarı, S. (2016). Matematik öğrenme ve problem çözmede üstbilişin rolü. E. Bingölbali, S. Arslan, & İ. Ö. Zembat (Ed.), Matematik eğitiminde teoriler içinde (1. baskı, ss. 655-676). Ankara: Pegem Akademi.
  • Yin, R. K. (2011). Applications of case study research. Sage Publications Inc.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Alan Eğitimleri
Bölüm Makaleler
Yazarlar

Abdurrahim Erdem 0000-0003-2265-8543

Mesut Öztürk 0000-0002-2163-3769

Proje Numarası 2019/02-69001-04
Yayımlanma Tarihi 15 Haziran 2023
Gönderilme Tarihi 6 Nisan 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 23 Sayı: 2

Kaynak Göster

APA Erdem, A., & Öztürk, M. (2023). Manipülatif Destekli Üstbilişsel Planlamaya Dayalı Öğrenme Ortamı Tasarımı: Çarpanlar ve Katları Konusu Örneği. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 23(2), 559-584. https://doi.org/10.17240/aibuefd.2023..-1099309