Araştırma Makalesi
BibTex RIS Kaynak Göster

Astronomi Eğitimi Amacıyla Geliştirilen Fiziksel Modellerin Yeterliği Hakkındaki Öğretmen Görüşleri

Yıl 2025, Cilt: 25 Sayı: 1, 55 - 82
https://doi.org/10.17240/aibuefd.2025..-1413800

Öz

Bu makalede, bilim eğitimi alanındaki yeni yönelimlere odaklanılmakta ve Avrupa Birliği'nin bilim eğitimine yönelik tavsiyeleri, sorumlu araştırma ve yenilik vurgusuyla ele alınmaktadır. Sürdürülebilir Kalkınma Hedefleri çerçevesinde eğitimin rolü vurgulanarak, etkileşimli, eyleme dayalı ve öğrenci odaklı pedagojiyle bütünsel öğrenme hedeflenmektedir. Bilim eğitiminde dönüştürücü bir yaklaşımın gerekliliğine odaklanan bu çalışma, geleneksel yöntemlerin eleştirilmesiyle birlikte, belirsizlikle başa çıkma ve sorumluluk alabilme becerilerini geliştirecek uygulanabilir bilim eğitimini vurgulanmaktadır. Çalışma kapsamında astronomi kavramlarının öğrenimi için geliştirilen ekonomik, ulaşılabilir ve anlaşılır fiziksel modellerin etkililiğini değerlendirmek amacıyla öğretmen görüşlerine odaklanmaktadır. Bu amaçla, temel astronomi kavramlarının öğretiminde kullanılması amacıyla geliştirilen fiziksel modeller, bu kavramların öğrenimindeki zorlukların temel nedenlerini inceleyerek olası çözümleri geliştirmeyi hedeflemektedir. “Birim Yüzeye Düşen Enerji Miktarının Değişimi ve dolayısıyla mevsimlerin oluşumu”, “Tutulmaların doğası, “Ay’ın evrelerinin fiziksel nedenleri” ayrı ayrı irdelenmiş, fiziksel modeller geliştirilerek katılımcılara uygulanmış ve veriler toplanmıştır. Araştırma TÜBİTAK projesi kapsamında Türkiye genelinden başvuran öğretmenler arasından seçilen 29 katılımcı ile gerçekleştirilmiştir. Öğretmenlerden elde edilen verilerin NVIVO paket programı ile içerik analizi yapılmıştır. Verilerin analizi sonucunda anlamlı öğretiminde modellerin güçlü bir etkiye sahip olduğu belirlenmiştir. Elde edilen sonuçlar, literatür karşılaştırması yapılarak ayrıntılı bir şekilde değerlendirilmiştir. Bu makale, bilim eğitimindeki yeni yönelimlere ve öğrenme süreçlerinde modellerin rolüne dair önemli bir katkı sunmaktadır.

Etik Beyan

Bu çalışmada etik kurallara uyulduğunu beyan ederim

Destekleyen Kurum

TUBİTAK-MEB

Proje Numarası

Bu çalışma TÜBİTAK tarafından 218B518 numaralı proje ile desteklenmiştir.

Teşekkür

Araştırmama desteklerinden dolayı TÜBİTAK ve MEB'e teşekkür ederim.

Kaynakça

  • Bencze, L., Sperling, E. ve Carter, L. (2012). Students’ research-informed socio-scientific activism: re/ visions for a sustainable future. Research in Science Education, 42(1), https://doi.org/10.1007/ s11165-011-9260-3.
  • Brown, A. L., and Martin, T. J. (2023). Innovative models for enhancing science education: Cognitive and emotional benefits. Journal of Educational Psychology, 115(2), 310-325. https://doi.org/10.1037/edu0000607
  • Carabelli, G. ve Lyon, D. (2016). Young people’s orientations to the future: Navigating the present and imagining the future. Journal of Youth Studies, 19(8), https://doi.org/10.1080/ 13676261.2016.1145641.
  • Chiu, M.-H., Chiu, M.-H., and Lin, S.-S. (2023). Model-based reasoning in science education: Current research and future directions. International Journal of Science Education, 45(5), 768-788. https://doi.org/10.1080/09500693.2023.2007811
  • Chiu, M.H. ve Lin, J.W. (2019). Modeling competence in science education. Disciplinary and Interdisciplinary Science Education Research, 1(12). https://doi.org/10.1186/s43031-019-0012-y
  • Clement, J. J., ve Rea-Ramirez, M. A. (2008). Model based learning and instruction in science. vol 2. Dordrecht: Springer.
  • Emirbayer, M. ve Mische, A. (1998). What is agency? American Journal of Sociology, 103 (4), https://doi.org/doi: 10.1086/231294.
  • Erbas, A. K., and Demirtaş, H. (2021). The impact of advanced models on science education: A review. Journal of Science Education Research, 35(1), 55-70. https://doi.org/10.1007/s10956-020-09868-3
  • Frederiksen, J. R., White, B. Y. ve Gutwill, J. (1998). Dynamic mental models in learning science: the ımportance of constructing derivational linkages among models. Journal of Research in Science Teaching, 36(7), 806-836. https://doi.org/10.1002/(SICI)1098-2736(199909)36:7<806::AID- TEA5>3.0.CO;2-2
  • Gazit, E., Yair, Y. ve Chen, D. (2005). Emerging conceptual understanding of complex astronomical phenomena by using a virtual solar system. Journal of Science Education and Technology, 14(5), 459-470, https://doi.org/ 10.1007/s10956- 005-0221-3
  • Giere, R. N., Bickle, J., and Maudlin, R. F. (2006). Understanding scientific reasoning, (5th ed.). Belmont: Thomson/Wadsworth.
  • Gökçe, O. (2006). İçerik analizi kurumsal ve pratik bilgiler. Ankara: Siyasal Kitabevi.
  • Hodson, D. (2003). Time for action: science education for an alternative future. International Journal of Science Education, https://doi.org/doi: 10.1080/09500690305021.
  • Hodson, D. (2011a). Looking to the Future: Building a Curriculum for Social Activism, Sense Publishers, Rotterdam.
  • Hodson, D. (2011b). Moving towards more effective science teaching: The role of student-centered approaches. Science Education Review, 10(1), 35-50. https://www.scienceeducationreview.com/article/view/55
  • Hsu, P.-S., Ching, Y.-H., and Grabowski, B. L. (2020). Digital models in science education: Opportunities and challenges. Computers and Education, 152, 103875. https://doi.org/10.1016/j.compedu.2020.103875
  • Kay, R. H. (2022). Enhancing science learning through technology: The impact of digital models. Journal of Educational Technology and Society, 25(2), 75-88. https://www.jstor.org/stable/45259083
  • Kikas, E. (2004). Teachers’ conceptions and misconceptions concerning three natural phenomena. Journal of Research in Science Teaching., 41(5), https://doi.org/10.1002/tea.20012
  • Köseoğlu, F. (2010). Fen eğitiminde bilimin doğası ve öğretimi. TÜBİTAK BGDEB 2229, Kimya-I Çalıştayı, Çanakkale.
  • Laherto, A. ve Rasa, T. (2022). Facilitating transformative science education through futures thinking. The international journal of learning futures, 30(2). https://doi.org/doi: 10.1108/OTH-09-2021-0114
  • Laherto, A., Kampschulte, L., de Vocht, M., Blonder, R., Akaygun, S. veApotheker, J. (2018). Contextualizing the EU’s ‘responsible research and innovation’ policy in science education: a conceptual comparison with the nature of science concept and practical examples, Eurasia Journal of Mathematics, Science and Technology Education, 14(6), https://doi.org/10.29333/ejmste/89513.
  • Lotz-Sisitka, H., Eames, M., and Weaving, R. (2015). Transformative science education: Exploring new directions. Environmental Education Research, 21(4), 486-505. https://doi.org/10.1080/13504622.2014.990154
  • Lotz-Sisitka, H., Wals, A.E., Kronlid, D. ve McGarry, D. (2015). Transformative, transgressive social learning: rethinking higher education pedagogy in times of systemic global dysfunction. Current Opinion in Environmental Sustainability, 16 https://doi.org/10.1016/j.cosust.2015.07.018.
  • Matthews, M. R. (2007). Models in science and in science education: An introduction. Science and Education, 16, 647–652.
  • Metin, o ve Ünal, Ş. (2022). İçerik Analizi Tekniği: İletişim Bilimlerinde ve Sosyolojide Doktora Tezlerinde Kullanımı. Anadolu Üniversitei Sosyal Bilimler Dergisi, 22(Özel sayı 2), 275-294.
  • Miller, B. W. ve Brewer, W. F. (2010). Misconceptions of astronomical distances. International Journal of Science Education, 32(12), 1549–1560. https://doi.org/10.1080/09500690903144099
  • Nersessian, N. (2013). Mental Modeling in Conceptual Change. the Handbook of Conceptual Change, in Vosniadou, S. (Ed), Mahwah, NJ: Lawrence Erlbaum
  • Neuman, L. W. (2017). Toplumsal araştırma yöntemleri nitel ve nicel yaklaşımlar. (S. Özge, Çev.). Ankara:Yayınodası.
  • Parker, J. ve Heywood, D. (1998). The earth and beyond: Developing primary teachers' understanding of basic astronomical events. International Journal of Science Education, 20(5), 503-520. https://doi.org/10.1080/0950069980200501
  • Roberts, D.A. ve Bybee, R.W. (2014). Scientific literacy, science literacy, and science education, in Lederman, N.G. and Abel, S.K. (Eds), Handbook of Research on Science Education, Vol. II, Routledge, New York, NY, pp. 545-558.
  • Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walwerg-Heriksson, H. ve Hemmo, V. (2007). Science education now: a renewed pedagogy for the future of Europe, European Commission, Directorate- General for Research, Science, Economy and Society, Brussels, available at: https://ec.europa.eu/ research/science-society/document_library/pdf_06/report-rocard-on-science-education_en.pdf
  • Saban, A. (2009). Öğrenme öğretme süreci yeni teori ve yaklaşımlar. Ankara: Nobel yayın Dağıtım.
  • Schwarz, C. V., and White, B. Y. (2005a). The role of models in science education: A case study. Science Education, 89(6), 1070-1093. https://doi.org/10.1002/sce.20089
  • Schwarz, C. V., ve White, B. Y. (2005b). Metamodeling knowledge: Developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165–205.
  • Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Ache’r, A., Fortus, D., .ve Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654. https://doi.org/10.1002/tea.20311.
  • Sins, P. H. M., Savelsbergh, E. R., van Joolingen, W. R., ve Van Hout-Wolters, B. (2009). The relation between students’ epistemological understanding of computer models and their cognitive processing on a modeling task. International Journal of Science Education, 31(9), 1205–1229. https://doi.org/10.1080/09500690802192181.
  • Sjöström, J., Frerichs, N., Zuin, V. ve Eilks, I. (2017). Use of the concept of Bildung in the international science education literature, its potential, and implications for teaching and learning, Studies in Science Education, 53(2), https://doi.org/doi: 10.1080/03057267.2017.1384649.
  • Smith, M., Jones, L., and Wilson, R. (2023). Model-based learning in science: Enhancing cognitive and affective outcomes. Educational Researcher, 52(1), 40-55. https://doi.org/10.3102/0034654322110452
  • Treagust, D. F., Chittleborough, G., ve Mamiala, T. L. (2004). Students’ understanding of the descriptive and predictive nature of teaching models in organic chemistry. Research in Science Education, 34, 1–20. https://doi.org/ 10.1023/B:RISE.0000020885.41497.ed.
  • Tzou, C.-C. (2018). The effectiveness of model-based science education: Recent advances and future directions. International Journal of Science Education, 40(3), 251-274. https://doi.org/10.1080/09500693.2018.1430677
  • UNESCO (2017). Education for sustainable development goals: learning objectives” UNESCO, Paris, available at: https://unesdoc.unesco.org/ark:/48223/pf0000247444
  • Yıldırım, A. ve Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri (6. Baskı). Ankara: Şeçkin Yayıncılık
  • Zeidler, D.L. (2014). Socioscientific issues as a curriculum emphasis: theory, research and practice, in Lederman, N.G. and Abell, S.K. (Eds), Handbook of Research on Science Education, (2), Routledge, New York, NY, pp. 697-726.
  • Zhu, X., Zhang, Q., ve Yang, H. (2022). The effectiveness of dynamic models in science instruction: A meta-analysis. Review of Educational Research, 92(4), 620-645. https://doi.org/10.3102/0034654322110997

Teacher Views on the Adequacy of Physical Models Developed for Astronomy Education

Yıl 2025, Cilt: 25 Sayı: 1, 55 - 82
https://doi.org/10.17240/aibuefd.2025..-1413800

Öz

This article focuses on the new trends in science education, addressing the recommendations of the European Union regarding science education with an emphasis on responsible research and innovation. Emphasizing the role of education within the framework of Sustainable Development Goals, the study aims for holistic learning through interactive, action-based, and student-centered pedagogy. This work, which focuses on the necessity of a transformative approach in science education, highlights practical science education that enhances the ability to cope with uncertainty and take responsibility, along with the criticism of traditional methods. Within the scope of the study, the effectiveness of economic, accessible, and understandable physical models developed for the learning of astronomy concepts is evaluated by focusing on teacher opinions. For this purpose, physical models developed for the teaching of fundamental astronomy concepts aim to examine the fundamental reasons for the difficulties in learning these concepts and develop possible solutions. Concepts such as "Changes in the Amount of Energy Incident on a Unit Area and consequently the Formation of Seasons," "The Nature of Eclipses," and "Physical Causes of the Phases of the Moon" were separately examined. Physical models were developed, applied to participants, and data were collected. The research was conducted with 29 participants selected from teachers who applied from all over Turkey within the scope of a TÜBİTAK project. Content analysis of the data obtained from teachers was performed using the NVIVO package program. As a result of the analysis of the data, it was determined that models have a significant impact on effective teaching. The results obtained were evaluated in detail through a literature comparison. This article makes a significant contribution to the new trends in science education and the role of models in the learning process.

Proje Numarası

Bu çalışma TÜBİTAK tarafından 218B518 numaralı proje ile desteklenmiştir.

Kaynakça

  • Bencze, L., Sperling, E. ve Carter, L. (2012). Students’ research-informed socio-scientific activism: re/ visions for a sustainable future. Research in Science Education, 42(1), https://doi.org/10.1007/ s11165-011-9260-3.
  • Brown, A. L., and Martin, T. J. (2023). Innovative models for enhancing science education: Cognitive and emotional benefits. Journal of Educational Psychology, 115(2), 310-325. https://doi.org/10.1037/edu0000607
  • Carabelli, G. ve Lyon, D. (2016). Young people’s orientations to the future: Navigating the present and imagining the future. Journal of Youth Studies, 19(8), https://doi.org/10.1080/ 13676261.2016.1145641.
  • Chiu, M.-H., Chiu, M.-H., and Lin, S.-S. (2023). Model-based reasoning in science education: Current research and future directions. International Journal of Science Education, 45(5), 768-788. https://doi.org/10.1080/09500693.2023.2007811
  • Chiu, M.H. ve Lin, J.W. (2019). Modeling competence in science education. Disciplinary and Interdisciplinary Science Education Research, 1(12). https://doi.org/10.1186/s43031-019-0012-y
  • Clement, J. J., ve Rea-Ramirez, M. A. (2008). Model based learning and instruction in science. vol 2. Dordrecht: Springer.
  • Emirbayer, M. ve Mische, A. (1998). What is agency? American Journal of Sociology, 103 (4), https://doi.org/doi: 10.1086/231294.
  • Erbas, A. K., and Demirtaş, H. (2021). The impact of advanced models on science education: A review. Journal of Science Education Research, 35(1), 55-70. https://doi.org/10.1007/s10956-020-09868-3
  • Frederiksen, J. R., White, B. Y. ve Gutwill, J. (1998). Dynamic mental models in learning science: the ımportance of constructing derivational linkages among models. Journal of Research in Science Teaching, 36(7), 806-836. https://doi.org/10.1002/(SICI)1098-2736(199909)36:7<806::AID- TEA5>3.0.CO;2-2
  • Gazit, E., Yair, Y. ve Chen, D. (2005). Emerging conceptual understanding of complex astronomical phenomena by using a virtual solar system. Journal of Science Education and Technology, 14(5), 459-470, https://doi.org/ 10.1007/s10956- 005-0221-3
  • Giere, R. N., Bickle, J., and Maudlin, R. F. (2006). Understanding scientific reasoning, (5th ed.). Belmont: Thomson/Wadsworth.
  • Gökçe, O. (2006). İçerik analizi kurumsal ve pratik bilgiler. Ankara: Siyasal Kitabevi.
  • Hodson, D. (2003). Time for action: science education for an alternative future. International Journal of Science Education, https://doi.org/doi: 10.1080/09500690305021.
  • Hodson, D. (2011a). Looking to the Future: Building a Curriculum for Social Activism, Sense Publishers, Rotterdam.
  • Hodson, D. (2011b). Moving towards more effective science teaching: The role of student-centered approaches. Science Education Review, 10(1), 35-50. https://www.scienceeducationreview.com/article/view/55
  • Hsu, P.-S., Ching, Y.-H., and Grabowski, B. L. (2020). Digital models in science education: Opportunities and challenges. Computers and Education, 152, 103875. https://doi.org/10.1016/j.compedu.2020.103875
  • Kay, R. H. (2022). Enhancing science learning through technology: The impact of digital models. Journal of Educational Technology and Society, 25(2), 75-88. https://www.jstor.org/stable/45259083
  • Kikas, E. (2004). Teachers’ conceptions and misconceptions concerning three natural phenomena. Journal of Research in Science Teaching., 41(5), https://doi.org/10.1002/tea.20012
  • Köseoğlu, F. (2010). Fen eğitiminde bilimin doğası ve öğretimi. TÜBİTAK BGDEB 2229, Kimya-I Çalıştayı, Çanakkale.
  • Laherto, A. ve Rasa, T. (2022). Facilitating transformative science education through futures thinking. The international journal of learning futures, 30(2). https://doi.org/doi: 10.1108/OTH-09-2021-0114
  • Laherto, A., Kampschulte, L., de Vocht, M., Blonder, R., Akaygun, S. veApotheker, J. (2018). Contextualizing the EU’s ‘responsible research and innovation’ policy in science education: a conceptual comparison with the nature of science concept and practical examples, Eurasia Journal of Mathematics, Science and Technology Education, 14(6), https://doi.org/10.29333/ejmste/89513.
  • Lotz-Sisitka, H., Eames, M., and Weaving, R. (2015). Transformative science education: Exploring new directions. Environmental Education Research, 21(4), 486-505. https://doi.org/10.1080/13504622.2014.990154
  • Lotz-Sisitka, H., Wals, A.E., Kronlid, D. ve McGarry, D. (2015). Transformative, transgressive social learning: rethinking higher education pedagogy in times of systemic global dysfunction. Current Opinion in Environmental Sustainability, 16 https://doi.org/10.1016/j.cosust.2015.07.018.
  • Matthews, M. R. (2007). Models in science and in science education: An introduction. Science and Education, 16, 647–652.
  • Metin, o ve Ünal, Ş. (2022). İçerik Analizi Tekniği: İletişim Bilimlerinde ve Sosyolojide Doktora Tezlerinde Kullanımı. Anadolu Üniversitei Sosyal Bilimler Dergisi, 22(Özel sayı 2), 275-294.
  • Miller, B. W. ve Brewer, W. F. (2010). Misconceptions of astronomical distances. International Journal of Science Education, 32(12), 1549–1560. https://doi.org/10.1080/09500690903144099
  • Nersessian, N. (2013). Mental Modeling in Conceptual Change. the Handbook of Conceptual Change, in Vosniadou, S. (Ed), Mahwah, NJ: Lawrence Erlbaum
  • Neuman, L. W. (2017). Toplumsal araştırma yöntemleri nitel ve nicel yaklaşımlar. (S. Özge, Çev.). Ankara:Yayınodası.
  • Parker, J. ve Heywood, D. (1998). The earth and beyond: Developing primary teachers' understanding of basic astronomical events. International Journal of Science Education, 20(5), 503-520. https://doi.org/10.1080/0950069980200501
  • Roberts, D.A. ve Bybee, R.W. (2014). Scientific literacy, science literacy, and science education, in Lederman, N.G. and Abel, S.K. (Eds), Handbook of Research on Science Education, Vol. II, Routledge, New York, NY, pp. 545-558.
  • Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walwerg-Heriksson, H. ve Hemmo, V. (2007). Science education now: a renewed pedagogy for the future of Europe, European Commission, Directorate- General for Research, Science, Economy and Society, Brussels, available at: https://ec.europa.eu/ research/science-society/document_library/pdf_06/report-rocard-on-science-education_en.pdf
  • Saban, A. (2009). Öğrenme öğretme süreci yeni teori ve yaklaşımlar. Ankara: Nobel yayın Dağıtım.
  • Schwarz, C. V., and White, B. Y. (2005a). The role of models in science education: A case study. Science Education, 89(6), 1070-1093. https://doi.org/10.1002/sce.20089
  • Schwarz, C. V., ve White, B. Y. (2005b). Metamodeling knowledge: Developing students’ understanding of scientific modeling. Cognition and Instruction, 23(2), 165–205.
  • Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Ache’r, A., Fortus, D., .ve Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632–654. https://doi.org/10.1002/tea.20311.
  • Sins, P. H. M., Savelsbergh, E. R., van Joolingen, W. R., ve Van Hout-Wolters, B. (2009). The relation between students’ epistemological understanding of computer models and their cognitive processing on a modeling task. International Journal of Science Education, 31(9), 1205–1229. https://doi.org/10.1080/09500690802192181.
  • Sjöström, J., Frerichs, N., Zuin, V. ve Eilks, I. (2017). Use of the concept of Bildung in the international science education literature, its potential, and implications for teaching and learning, Studies in Science Education, 53(2), https://doi.org/doi: 10.1080/03057267.2017.1384649.
  • Smith, M., Jones, L., and Wilson, R. (2023). Model-based learning in science: Enhancing cognitive and affective outcomes. Educational Researcher, 52(1), 40-55. https://doi.org/10.3102/0034654322110452
  • Treagust, D. F., Chittleborough, G., ve Mamiala, T. L. (2004). Students’ understanding of the descriptive and predictive nature of teaching models in organic chemistry. Research in Science Education, 34, 1–20. https://doi.org/ 10.1023/B:RISE.0000020885.41497.ed.
  • Tzou, C.-C. (2018). The effectiveness of model-based science education: Recent advances and future directions. International Journal of Science Education, 40(3), 251-274. https://doi.org/10.1080/09500693.2018.1430677
  • UNESCO (2017). Education for sustainable development goals: learning objectives” UNESCO, Paris, available at: https://unesdoc.unesco.org/ark:/48223/pf0000247444
  • Yıldırım, A. ve Şimşek, H. (2008). Sosyal bilimlerde nitel araştırma yöntemleri (6. Baskı). Ankara: Şeçkin Yayıncılık
  • Zeidler, D.L. (2014). Socioscientific issues as a curriculum emphasis: theory, research and practice, in Lederman, N.G. and Abell, S.K. (Eds), Handbook of Research on Science Education, (2), Routledge, New York, NY, pp. 697-726.
  • Zhu, X., Zhang, Q., ve Yang, H. (2022). The effectiveness of dynamic models in science instruction: A meta-analysis. Review of Educational Research, 92(4), 620-645. https://doi.org/10.3102/0034654322110997
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fen Bilgisi Eğitimi
Bölüm Makaleler
Yazarlar

Melike Güzin Semercioğlu 0000-0002-3413-9575

Hüseyin Kalkan 0000-0003-3971-445X

Proje Numarası Bu çalışma TÜBİTAK tarafından 218B518 numaralı proje ile desteklenmiştir.
Erken Görünüm Tarihi 9 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 2 Ocak 2024
Kabul Tarihi 18 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 25 Sayı: 1

Kaynak Göster

APA Semercioğlu, M. G., & Kalkan, H. (2025). Astronomi Eğitimi Amacıyla Geliştirilen Fiziksel Modellerin Yeterliği Hakkındaki Öğretmen Görüşleri. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 25(1), 55-82. https://doi.org/10.17240/aibuefd.2025..-1413800