Araştırma Makalesi
BibTex RIS Kaynak Göster

Pelargonium quercetorum Agnew’in toplam flavonoid, fenolik ve antioksidan aktiviteleri: in vivo ve in vitro yetiştirilen bitkinin karşılaştırılması

Yıl 2022, , 69 - 74, 15.11.2022
https://doi.org/10.30616/ajb.1131225

Öz

Günümüzde, fitokimyasal özelliğe sahip doğal bileşikler yan etkilerinin olmaması nedeniyle insan dostu ilaçlar olarak kabul edilirler. Bu nedenle bitkilerde de bulunan antioksidan bileşiklere verilen önem her geçen gün artarak devam etmektedir. Pelargonium L'Hér. ex Aiton taksonları da solunum yolu enfeksiyonları, dizanteri, karaciğer şikayetleri ve ishal tedavisi gibi hastalıklarda iyileştirici olarak kullanılmaktadır. Bitki doku ve hücre kültürü yöntemleri, polifenoller gibi bazı aktif metabolitlerin üretilmesi için iyi bir araçtır. Bu yöntemler ile sekonder metabolit üretiminin teşvik edildiği ve antioksidan kapasitede değişikliklere neden olduğu da bilinmektedir. Bu kapsamda araştırmamızda, Pelargonium quercetorum Agnew bitkisi in vivo (rizom ve toprak üstü kısım) ve in vitro şartlarda yetiştirilerek toplam fenolik, flavonoit ve antioksidan kapasitelerinin belirlenmesi amaçlanmıştır. Elde edilen sonuçlar incelendiğinde, en yüksek fenolik ve flavonoit içerik in vitro sürgün ekstresinde; en düşük fenolik ve flavonoit içerik ise rizom ekstresinde tespit edilmiştir. Araştırmamızda toplam antioksidan aktiviteyi belirlemek amacıyla 3 farklı yöntem (DPPH, ABTS, CUPRAC) kullanılmıştır. Antioksidan aktivite sonuçları genel olarak değerlendirildiğinde, her üç yöntemde de aktivite sıralamasının “in vitro sürgün ˃ in vivo toprak üstü ˃ in vivo rizom” şeklinde olduğu gözlenmiştir. DPPH yönteminde bitki ekstreleri pozitif kontrol olarak kullanılan BHT’ye göre, ABTS yönteminde ise BHA’ya göre daha iyi aktivite göstermiştir. Ayrıca toplam fenolik-flavonoit içerik ile antioksidan aktivite arasında pozitif korelasyon olduğu görülmüştür. Bu çalışmadan elde edilen veriler, P. quercetorum bitkisinin antioksidan aktiviteye sahip olduğunu, doğal kaynaklı antioksidan madde arayışında çalışmamızın bir basamak olacağı düşünülmektedir.

Kaynakça

  • Apak R, Güçlü K, Ozyürek M, Karademir SE (2004). A novel total antioxidant capacity index for dietary polyphenols, vitamin C and E, using their cupric ion reducing capability in the presence of neocuproine: The CUPRAC method. Journal of Agriculture Food Chemistry 52: 7970-7981.
  • Barros L, Dueñas M, Dias MI, Sousa MJ, Santos-Buelga C, Ferreira ICFR (2012). Phenolic profiles of in vivo and in vitro grown Coriandrum sativum L. Food Chemistry 132: 841-848.
  • Blois MS (1958). Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200.
  • Bradt S, Wagner H (2007). From the Zulu medicine to the European phytomedicine Umkaloabo. Phytomedicine 14: 2-4.
  • Brendlera T, Van Wyk BE (2008). A historical, scientific and commercial perspective on the medicinal use of Pelargonium sidoides (Geraniaceae). Journal of Ethnopharmacology 119: 420-433.
  • Buruni B, Sahin O (2009). In vitro and in vivo germination of Cyclamen alpinum seeds. Turkish Journal of Botany 33: 277-83.
  • Esmaeili AK, Taha RM, Mohajer S, Banısalam B (2016). In vitro regeneration and comparison of phenolic content, antioxidant and antityrosinase activity of in vivo and in vitro grown Asparagus officinalis (Penjanaan Semula in vitro dan Perbandingan Kandungan Fenolik, Antioksida dan Aktiviti Antitirosinase Asparagus officinalis Ditanam Secara in vivo dan in vitro). Sains Malaysiana 45(3): 373-381.
  • Geissler C, Powers HJ (2017). Human nutrition. Oxford: Oxford University Press.
  • Hamilton A, Shengji P, Kessy J, Khan AA, Lagos-Witte S, Shinwari ZK (2003). The purposes and teaching of applied ethnobotany. Godalming: WWF.
  • Heinrich M, Barnes J, Prieto-Garcia J, Gibbons S, Williamson EM (2017). Fundamentals of pharmacognosy and phytotherapy e-book. UK: Elsevier Health Sciences.
  • Kanungo S, Sahoo SL (2011). Direct organogenesis of Withania somnifera L. from apical bud. International Research Journal of Biotechnology 2(3): 58-61.
  • Karatoprak GS, Fırat M, Koşar M (2018). Pelargonium quercetorum Agnew. bitkisinin antioksidan aktivitesinin belirlenmesi. Mersin Universitesi Sağlık Bilimleri Dergisi 11(2): 174-183.
  • Koley TK, Kaur C, Nagal S, Walia S, Jaggi, S (2016). Antioxidant activity and phenolic content in genotypes of Indian jujube (Zizyphus mauritiana Lamk.). Arabian Journal of Chemistry. 9: 1044-1052.
  • Matkowski A, Zielinska S, Oszmianski J, Lamer-Zarawska E (2008). Antioxidant activity of extracts from leaves and roots of Salvia miltiorrhiza Bunge, S. przewalskii Maxim., and S. verticillata L. Bioresource Technology 99: 7892-7896.
  • MEA (Millennium Ecosystem Assessment) (2005). Ecosystems and human well-being: synthesis. Washington: World Resources Institute.
  • Moreno MIN, Isla MI, Sampietro AR, Vattuone MA (2000). Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. Journal of Ethnopharmacology 71(1-2): 109-114.
  • Murthy HN, Lee EJ, Paek KY (2014). Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Culture 118: 1-16.
  • Patra B, Schluttenhofer C, Wu YM, Pattanaik S, Ling Y (2013). Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochimica et Biophysica Acta 1829 (11): 1236-1247.
  • Prance G, Nesbitt M (2012). The cultural history of plants. New York: Routledge.
  • Rahman, I. U., Afzal, A., Iqbal, Z., Ijaz, F., Ali, N., Shah, M., Bussmann, R. W. 2019. Historical perspectives of ethnobotany. Clinics in Dermatology 37(4): 382-388.
  • Ree R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999). Antioxidant activity applying an improved ABTS radical cation decolorizationassay. Free Radical Biology and Medicine 26: 1231-1237.
  • Slinkard K, Singleton VL (1977). Total phenol analyses: Automation and comparison with manual methods. American Journal of Enology and Viticulture 28: 49-55.
  • Stafussa AP, Maciel GM, Rampazzo V, Bona E, Makara CN, Junior BD, Haminiuk CWI (2018). Bioactive compounds of 44 traditional and exotic Brazilian fruit pulps: phenolic compounds and antioxidant activity. International Journal of Food Properties 21(1): 106-118.
  • Şahin Başak S, Candan F (2008). Lallemantia canescens (L) Fisch & Mey bitkisinin ve kallus doku kültürünün antioksidan aktivitesi. İTÜ Dergisi/C:Fen Bilimleri 6(1): 14-26.
  • Tepe B, Sokmen M, Akpulat HA, Yumrutas O, Sokmen A (2006). Screening of antioxidative properties of the methanolic extracts of Pelargonium endlicherianum Fenzl., Verbascum wiedemannianum Fisch. & Mey., Sideritis libanotica Labill. subsp. linearis (Bentham) Borm., Centaurea mucronifera DC. and Hieracium cappadocicum Freyn from Turkish flora. Food Chemistry 98(1): 9-13.
  • Tošić S, Stojičić D, Slavkovska V, MihailovKrstev T, Zlatković B, Budimir S, Uzelac B (2019). Phytochemical composition and biological activities of native and in vitro propagated Micromeria croatica (Pers.) Schott (Lamiaceae). Planta 249: 1365-1377.
  • Trun W, Kiderlen AF, Kolodziej H (2006). Nitric oxide synthase and cytokines gene expression analyses in Leishmania-infected RAW 264.7 cells treated with an extract of Pelargonium sidoides (Eps 7630). Phytomedicine 13: 570-575.
  • Uce İ, Tunçtürk M (2014). Hakkâri’de doğal olarak yetişen ve yaygın olarak kullanılan bazı yabani bitkiler. Biyoloji Bilimleri Araştırma Dergisi 7(2): 21-25.
  • Yaman C, Uranbey S, Er M, Başalma D (2020). In Vivo ve in vitro koşullarında bazı Alkanna taksonların sekonder metabolit içerikleri ve antioksidan aktiviteleri. Türk Tarım ve Doğa Bilimleri Dergisi. 7(3): 618-626.

Total flavonoid, phenolic and antioxidant activities of Pelargonium quercetorum Agnew: Comparison of in vivo and in vitro grown plant

Yıl 2022, , 69 - 74, 15.11.2022
https://doi.org/10.30616/ajb.1131225

Öz

Nowadays, natural compounds with phytochemical properties are considered human-friendly drugs because they do not have side effects. Therefore, the importance given to antioxidant compounds, which are also found in plants, continues to increase day by day. Pelargonium L'Hér. ex Aiton taxa are also used as curative in diseases such as respiratory tract infections, dysentery, liver complaints and diarrhea treatment. Plant tissue and cell culture techniques are a good tool for the production of some active metabolites such as polyphenols. It is also known that with these methods, secondary metabolite production is promoted and there are also changes in antioxidant capacity. In this context, it was aimed to determine the total phenolic, flavonoid and antioxidant capacities of Pelargonium quercetorum Agnew plant by growing in vivo (rhizome and above-ground part) and in vitro conditions. When the results obtained were examined, the highest phenolic and flavonoid content was found in the shoot extract in vitro; the lowest phenolic and flavonoid content was determined in the rhizome extract. In our study, 3 different methods (DPPH, ABTS, CUPRAC) were used to determine the total antioxidant activity. When the antioxidant activity results were evaluated in general, it was observed that the order of activity in all three methods was "in vitro shoot ˃ in vivo above ground ˃ in vivo rhizome". In the DPPH method, plant extracts showed better activity than BHT, which was used as a positive control, and better than BHA in the ABTS method. In addition, a positive correlation was observed between total phenolic-flavonoid content and antioxidant activity. The data obtained from this study, it is thought that the plant P. quercetorum has antioxidant activity, and our study will be a step in the search for natural origin antioxidants.

Kaynakça

  • Apak R, Güçlü K, Ozyürek M, Karademir SE (2004). A novel total antioxidant capacity index for dietary polyphenols, vitamin C and E, using their cupric ion reducing capability in the presence of neocuproine: The CUPRAC method. Journal of Agriculture Food Chemistry 52: 7970-7981.
  • Barros L, Dueñas M, Dias MI, Sousa MJ, Santos-Buelga C, Ferreira ICFR (2012). Phenolic profiles of in vivo and in vitro grown Coriandrum sativum L. Food Chemistry 132: 841-848.
  • Blois MS (1958). Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200.
  • Bradt S, Wagner H (2007). From the Zulu medicine to the European phytomedicine Umkaloabo. Phytomedicine 14: 2-4.
  • Brendlera T, Van Wyk BE (2008). A historical, scientific and commercial perspective on the medicinal use of Pelargonium sidoides (Geraniaceae). Journal of Ethnopharmacology 119: 420-433.
  • Buruni B, Sahin O (2009). In vitro and in vivo germination of Cyclamen alpinum seeds. Turkish Journal of Botany 33: 277-83.
  • Esmaeili AK, Taha RM, Mohajer S, Banısalam B (2016). In vitro regeneration and comparison of phenolic content, antioxidant and antityrosinase activity of in vivo and in vitro grown Asparagus officinalis (Penjanaan Semula in vitro dan Perbandingan Kandungan Fenolik, Antioksida dan Aktiviti Antitirosinase Asparagus officinalis Ditanam Secara in vivo dan in vitro). Sains Malaysiana 45(3): 373-381.
  • Geissler C, Powers HJ (2017). Human nutrition. Oxford: Oxford University Press.
  • Hamilton A, Shengji P, Kessy J, Khan AA, Lagos-Witte S, Shinwari ZK (2003). The purposes and teaching of applied ethnobotany. Godalming: WWF.
  • Heinrich M, Barnes J, Prieto-Garcia J, Gibbons S, Williamson EM (2017). Fundamentals of pharmacognosy and phytotherapy e-book. UK: Elsevier Health Sciences.
  • Kanungo S, Sahoo SL (2011). Direct organogenesis of Withania somnifera L. from apical bud. International Research Journal of Biotechnology 2(3): 58-61.
  • Karatoprak GS, Fırat M, Koşar M (2018). Pelargonium quercetorum Agnew. bitkisinin antioksidan aktivitesinin belirlenmesi. Mersin Universitesi Sağlık Bilimleri Dergisi 11(2): 174-183.
  • Koley TK, Kaur C, Nagal S, Walia S, Jaggi, S (2016). Antioxidant activity and phenolic content in genotypes of Indian jujube (Zizyphus mauritiana Lamk.). Arabian Journal of Chemistry. 9: 1044-1052.
  • Matkowski A, Zielinska S, Oszmianski J, Lamer-Zarawska E (2008). Antioxidant activity of extracts from leaves and roots of Salvia miltiorrhiza Bunge, S. przewalskii Maxim., and S. verticillata L. Bioresource Technology 99: 7892-7896.
  • MEA (Millennium Ecosystem Assessment) (2005). Ecosystems and human well-being: synthesis. Washington: World Resources Institute.
  • Moreno MIN, Isla MI, Sampietro AR, Vattuone MA (2000). Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. Journal of Ethnopharmacology 71(1-2): 109-114.
  • Murthy HN, Lee EJ, Paek KY (2014). Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Culture 118: 1-16.
  • Patra B, Schluttenhofer C, Wu YM, Pattanaik S, Ling Y (2013). Transcriptional regulation of secondary metabolite biosynthesis in plants. Biochimica et Biophysica Acta 1829 (11): 1236-1247.
  • Prance G, Nesbitt M (2012). The cultural history of plants. New York: Routledge.
  • Rahman, I. U., Afzal, A., Iqbal, Z., Ijaz, F., Ali, N., Shah, M., Bussmann, R. W. 2019. Historical perspectives of ethnobotany. Clinics in Dermatology 37(4): 382-388.
  • Ree R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999). Antioxidant activity applying an improved ABTS radical cation decolorizationassay. Free Radical Biology and Medicine 26: 1231-1237.
  • Slinkard K, Singleton VL (1977). Total phenol analyses: Automation and comparison with manual methods. American Journal of Enology and Viticulture 28: 49-55.
  • Stafussa AP, Maciel GM, Rampazzo V, Bona E, Makara CN, Junior BD, Haminiuk CWI (2018). Bioactive compounds of 44 traditional and exotic Brazilian fruit pulps: phenolic compounds and antioxidant activity. International Journal of Food Properties 21(1): 106-118.
  • Şahin Başak S, Candan F (2008). Lallemantia canescens (L) Fisch & Mey bitkisinin ve kallus doku kültürünün antioksidan aktivitesi. İTÜ Dergisi/C:Fen Bilimleri 6(1): 14-26.
  • Tepe B, Sokmen M, Akpulat HA, Yumrutas O, Sokmen A (2006). Screening of antioxidative properties of the methanolic extracts of Pelargonium endlicherianum Fenzl., Verbascum wiedemannianum Fisch. & Mey., Sideritis libanotica Labill. subsp. linearis (Bentham) Borm., Centaurea mucronifera DC. and Hieracium cappadocicum Freyn from Turkish flora. Food Chemistry 98(1): 9-13.
  • Tošić S, Stojičić D, Slavkovska V, MihailovKrstev T, Zlatković B, Budimir S, Uzelac B (2019). Phytochemical composition and biological activities of native and in vitro propagated Micromeria croatica (Pers.) Schott (Lamiaceae). Planta 249: 1365-1377.
  • Trun W, Kiderlen AF, Kolodziej H (2006). Nitric oxide synthase and cytokines gene expression analyses in Leishmania-infected RAW 264.7 cells treated with an extract of Pelargonium sidoides (Eps 7630). Phytomedicine 13: 570-575.
  • Uce İ, Tunçtürk M (2014). Hakkâri’de doğal olarak yetişen ve yaygın olarak kullanılan bazı yabani bitkiler. Biyoloji Bilimleri Araştırma Dergisi 7(2): 21-25.
  • Yaman C, Uranbey S, Er M, Başalma D (2020). In Vivo ve in vitro koşullarında bazı Alkanna taksonların sekonder metabolit içerikleri ve antioksidan aktiviteleri. Türk Tarım ve Doğa Bilimleri Dergisi. 7(3): 618-626.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Articles
Yazarlar

İbrahim Kuru 0000-0001-6179-3081

Pınar Orcan 0000-0001-8666-4542

Mehmet Fırat 0000-0001-5814-614X

Yayımlanma Tarihi 15 Kasım 2022
Kabul Tarihi 12 Temmuz 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Kuru, İ., Orcan, P., & Fırat, M. (2022). Total flavonoid, phenolic and antioxidant activities of Pelargonium quercetorum Agnew: Comparison of in vivo and in vitro grown plant. Anatolian Journal of Botany, 6(2), 69-74. https://doi.org/10.30616/ajb.1131225
AMA Kuru İ, Orcan P, Fırat M. Total flavonoid, phenolic and antioxidant activities of Pelargonium quercetorum Agnew: Comparison of in vivo and in vitro grown plant. Ant J Bot. Kasım 2022;6(2):69-74. doi:10.30616/ajb.1131225
Chicago Kuru, İbrahim, Pınar Orcan, ve Mehmet Fırat. “Total Flavonoid, Phenolic and Antioxidant Activities of Pelargonium Quercetorum Agnew: Comparison of in Vivo and in Vitro Grown Plant”. Anatolian Journal of Botany 6, sy. 2 (Kasım 2022): 69-74. https://doi.org/10.30616/ajb.1131225.
EndNote Kuru İ, Orcan P, Fırat M (01 Kasım 2022) Total flavonoid, phenolic and antioxidant activities of Pelargonium quercetorum Agnew: Comparison of in vivo and in vitro grown plant. Anatolian Journal of Botany 6 2 69–74.
IEEE İ. Kuru, P. Orcan, ve M. Fırat, “Total flavonoid, phenolic and antioxidant activities of Pelargonium quercetorum Agnew: Comparison of in vivo and in vitro grown plant”, Ant J Bot, c. 6, sy. 2, ss. 69–74, 2022, doi: 10.30616/ajb.1131225.
ISNAD Kuru, İbrahim vd. “Total Flavonoid, Phenolic and Antioxidant Activities of Pelargonium Quercetorum Agnew: Comparison of in Vivo and in Vitro Grown Plant”. Anatolian Journal of Botany 6/2 (Kasım 2022), 69-74. https://doi.org/10.30616/ajb.1131225.
JAMA Kuru İ, Orcan P, Fırat M. Total flavonoid, phenolic and antioxidant activities of Pelargonium quercetorum Agnew: Comparison of in vivo and in vitro grown plant. Ant J Bot. 2022;6:69–74.
MLA Kuru, İbrahim vd. “Total Flavonoid, Phenolic and Antioxidant Activities of Pelargonium Quercetorum Agnew: Comparison of in Vivo and in Vitro Grown Plant”. Anatolian Journal of Botany, c. 6, sy. 2, 2022, ss. 69-74, doi:10.30616/ajb.1131225.
Vancouver Kuru İ, Orcan P, Fırat M. Total flavonoid, phenolic and antioxidant activities of Pelargonium quercetorum Agnew: Comparison of in vivo and in vitro grown plant. Ant J Bot. 2022;6(2):69-74.

Anadolu Botanik Dergisi CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1 ile lisanslıdır.