Araştırma Makalesi
BibTex RIS Kaynak Göster

Titanium dioksit nano partiküllerinin ayçiçeği fide çıkışı üzerine olumlu etkileri

Yıl 2023, , 108 - 111, 15.11.2023
https://doi.org/10.30616/ajb.1270434

Öz

Tohum çimlenmesi ve tarla çıkışı, ekimin ana adımıdır ve bunları geliştirmek tarla veriminde yüksek performans sağlayabilir. Geliştirilmiş fide tarla çıkışı, biyotik ve abiyotik stres faktörlerine daha az duyarlılık anlamına gelir. Farklı teknolojiler yoluyla fide çıkışını arttırmak mümkündür. Nanopartiküller gelişen teknolojilerden biridir ve bunların bitki yetiştiriciliği üzerindeki etkileri her geçen gün artmaktadır. Bu deneyde hibrid-çerezlik ayçiçeği çeşidi Ahmetbey ve tohuma ön uygulama materyali olarak titanyum dioksit (TiO₂) nanoparçacıkları kullanıldı. Bu çalışmada, ayçiçeği fide çıkışı ve fide büyüme performansını gözlemleyebilmek amacıyla, 8 saat boyunca 20-50 nm boyutlarında farklı titanyum dioksit (TiO₂) nanoparçacıkları (NPS) konsantrasyonlarında (6, 12 ve 24 mg L-1) bekletilen tohumlar kullanılmıştır. Tohumlar her tekerrürde 50 tohum olacak şekilde (50 × 4 = 200) plastik çıkış kaplarına 4 cm derinliğinde ekilmiştir. Çıkış performansını ölçebilmek amacıyla 20 ± 2 ° C 45 μm foton M-¹ ışıkta 16 saat boyunca bir büyüme odasına yerleştirildi. Ortalama çıkış süresi (MET), çıkış yüzdesi, fide canlılığı, kök-fide boyu uzunluğu oranı, fide uzunluğu ve kök uzunluğu fide yaş ve kuru ağırlıkları ölçüldü. TiO₂ NP'leri tohum uygulamaları ile çıkış yüzdesi, sürgün uzunluğu, kök uzunluğu ve yaş ve kuru ağırlıkta artış gözlenmiştir. Sonuçlar, tohumların 8 saat suda bekletilmesi uygulamasının TiO₂ NP'leri ile yapılan uygulamalara kıyasla Ahmetbey ayçiçeği çeşidi tohumları üzerinde düşük bir etkiye sahip olduğunu ortaya koymuştur. Sonuçlar ayçiçeği tohumlarının TiO₂ nanopartikülleri ile 8 saat ıslatılmalarının ayçiçeği fide çıkışı için olumlu etkileri olduğunu kanıtlamıştır.

Kaynakça

  • Akgur O, Aasim M (2022). Deciphering the iPBS retrotransposons based genetic diversity of nanoarticles induced in vitro seedlings of industrail hemp (Cannabis sativa L.). Molecular Biology Reports 49: 7135-7143.
  • Acharya P, Jayaprakasha GK, Crosby KM, Jifon JL, Patil BS (2020). Nanoparticle-mediated seed priming ımproves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multilocations in Texas. Scientific Reports 10(1): 5037.
  • Bourioug M, Ezzaza K, Bouabid R, Alaoui-Mhamdi M, Bungau S, Bourgeade P, Alaoui- Sossé L, Alaoui- Sossé B, Aleya L (2020). Influence of hydro- and osmo-priming on sunflower seeds to break dormancy and improve crop performance under water stress. Environmental Science and Pollution Research 27: 13215-13226.
  • Clément L, Hurel C, Marmier N (2013). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants-effects of size andcrystalline structure. Chemosphere 90: 1083-1090.
  • Day S (2022). Impact of seed priming on germination performance of fresh and aged seeds of Canola. International Journal of Agriculture Environment and Food Sciences 6(1): 37-40.
  • Day S, Kaya M, Kolsarici O (2008). Effects of NaCl levels on germination of some confectionary sunflower (Helianthus annuus L.) genotypes. Journal of Agricultural Sciences-Tarım Bilimleri Dergisi 14(3): 230-236.
  • Day S (2016). Determining the impact of excessive boron on some growth characters and some nutrients at the early growth stage of sunflower (Helianthus annuus L.). Fresenius Environmental Bulletin 25: 4294-4298.
  • Day S, Çıkılı Y, Aasim M (2017). Screening of three safflower (Carthamus tinctorius L.) cultivars under boron stress. Acta Scientarum Polonorum Hortorum Cultus 16: 109-116.
  • Devika OS, Singh S, Sarkar D, Barnwal P, Suman J, Rakshit A (2021). Seed Priming: A potential supplement in integrated resource management under fragile intensive ecosystems. Frontiers in Sustainable Food Systems 5: 654001.
  • Faraji J, Sepehri A (2019). Ameliorative effects of TiO₂ nanoparticles and sodium nitroprusside on seed germination and seedling growth of wheat under PEG-stimulated drought stress. Journal of Seed Science 41: 309-317.
  • Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour MR, Fotopoulos V, Kimura S (2020). Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports 10(1): 1-14.
  • Hao Y, Yuan W, Ma C, White JC, Zhang Z, Adeel M, Zou T, Rui Y, Xing B (2018). Engineered nanomaterials suppress Turnip mosaic virus infection in tobacco (Nicotiana benthamiana). Environmental Science: Nano 5(7): 1685-1693.
  • Haghighi M, Teixeira da Silva JA (2014). The effect of N-TiO2 on tomato, onion, and radish seed germination. Journal of Crop Science and Biotechnology 17: 221-227.
  • ISTA (2017). International Rules for Seed Testing. Basserdorf, Switzerland: International Seed Testing Association.
  • Kandasamy S, Weerasuriya N, Gritsiouk D, Patterson G, Saldias S, Ali S, Lazarovits G (2020). Size variability in seed lot impact seed nutritional balance, seedling vigor, microbial composition and plant performance of common corn Hybrids. Agronomy 10(2): 157.
  • Kaya MD, Ozcan F, Day S, Bayramin S, Akdogan G, Ipek A (2013). Allelopathic role of essential oils in sunflower stubble on germination and seedling growth of the subsequent crop. International Journal of Agriculture and Biology 15(2): 337-341.
  • Khatun M, Hafiz MHR, Hasan MA, Hakim MA, Siddiqui MN (2013). Responses of wheat genotypes to salt stress in relation to germination and seedling growth. International Journal of Bio-resource and Stress Management 4(4): 635-640.
  • Marchiol L, Mattiello A, Pošćić F, Fellet G, Zavalloni C, Carlino E, Musetti R (2016). Changes in physiological and agronomical parameters of barley (Hordeum vulgare) exposed to cerium and titanium dioxide nanoparticles. International Journal of Environmental Research and Public Health 13(3): 332.
  • Prasad R, Bhattacharyya A, Nguyen QD (2017). Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Frontiers in Microbiology 20: 1014.
  • Raskar S, Laware SL (2013). Effect of titanium dioxide nano particles on seed germination and germination indices in onion. Plant Sciences Feed 3(9): 103-107.
  • Shah T, Latif S, Saeed F, Ali I, Ullah S, Alsahli AA, Jan S, Ahmad P (2021). Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University-Science 33(1): 101207.
  • Shrestha A, Pradhan S, Shrestha J, Subedi M (2019). Role of seed priming in improving seed germination and seedling growth of maize (Zea mays L.) under rain fed condition. Journal of Agriculture and Natural Resources 2(1): 265-273.
  • TUIK (2023). Türkiye İstatistik Kurumu. http://www.tuik.gov.tr / [accessed 20 February 2022].
  • Zahra Z, Maqbool T, Arshad M, Badshah MA, Choi HK, Hur J (2019). Changes in fluorescent dissolved organic matter and their association with phyto available phosphorus in soil amended with TiO₂ nanoparticles. Chemosphere 227: 17-25.

Titanium dioxide nano particles improving impact on sunflower seedling’s emergence performance

Yıl 2023, , 108 - 111, 15.11.2023
https://doi.org/10.30616/ajb.1270434

Öz

Seed germination and seedling emergence is the main step of cultivation and improving them could yield high performance in the field. Improved seedling emergence means less sensitivity to biotic and abiotic stress factors. It is possible to enhance seedling emergence via different technologies. Nanoparticles are one of the improving technology and their impact on crop cultivation are improving day by day. The seeds of hybrid-snack type cultivar Ahmetbey and for seed treatment agent TiO₂ nanoparticles were used in this experiment. This study was conducted to observe the impact of seed treatment with different titanium dioxide (TiO₂) nanoparticles (NPs) concentrations (6, 12, and 24 mg Lˉ¹) with dimensions of 20-50 nm during 8 hours on the emergence and seedling growth performance of snack-type sunflower cultivar Ahmetbey. Four replicates of 50 seeds in each treatment were sown in plastic trays 4 cm deep and placed in a growth chamber at 20 ± 2 °C 45 μM photons m-² s-¹ light for 16 h. Mean emergence time (MET), emergence percentage, seedling vigor, root-to-shoot length ratio, shoot length, and root length seedling fresh and dry weight were measured. Emergence percentage, shoot length, root length, and fresh and dry weight of seedlings increased with TiO₂ NPs treatments. The results revealed that 8-hour priming with water has a low impact on seeds of cv. Ahmetbey compared to any treatment of TiO₂ NPs. In conclusion, it is proved that the improving effects of 8 hour priming of sunflower seeds with TiO₂ NPs solutions on sunflower seedling emergence.

Kaynakça

  • Akgur O, Aasim M (2022). Deciphering the iPBS retrotransposons based genetic diversity of nanoarticles induced in vitro seedlings of industrail hemp (Cannabis sativa L.). Molecular Biology Reports 49: 7135-7143.
  • Acharya P, Jayaprakasha GK, Crosby KM, Jifon JL, Patil BS (2020). Nanoparticle-mediated seed priming ımproves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multilocations in Texas. Scientific Reports 10(1): 5037.
  • Bourioug M, Ezzaza K, Bouabid R, Alaoui-Mhamdi M, Bungau S, Bourgeade P, Alaoui- Sossé L, Alaoui- Sossé B, Aleya L (2020). Influence of hydro- and osmo-priming on sunflower seeds to break dormancy and improve crop performance under water stress. Environmental Science and Pollution Research 27: 13215-13226.
  • Clément L, Hurel C, Marmier N (2013). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants-effects of size andcrystalline structure. Chemosphere 90: 1083-1090.
  • Day S (2022). Impact of seed priming on germination performance of fresh and aged seeds of Canola. International Journal of Agriculture Environment and Food Sciences 6(1): 37-40.
  • Day S, Kaya M, Kolsarici O (2008). Effects of NaCl levels on germination of some confectionary sunflower (Helianthus annuus L.) genotypes. Journal of Agricultural Sciences-Tarım Bilimleri Dergisi 14(3): 230-236.
  • Day S (2016). Determining the impact of excessive boron on some growth characters and some nutrients at the early growth stage of sunflower (Helianthus annuus L.). Fresenius Environmental Bulletin 25: 4294-4298.
  • Day S, Çıkılı Y, Aasim M (2017). Screening of three safflower (Carthamus tinctorius L.) cultivars under boron stress. Acta Scientarum Polonorum Hortorum Cultus 16: 109-116.
  • Devika OS, Singh S, Sarkar D, Barnwal P, Suman J, Rakshit A (2021). Seed Priming: A potential supplement in integrated resource management under fragile intensive ecosystems. Frontiers in Sustainable Food Systems 5: 654001.
  • Faraji J, Sepehri A (2019). Ameliorative effects of TiO₂ nanoparticles and sodium nitroprusside on seed germination and seedling growth of wheat under PEG-stimulated drought stress. Journal of Seed Science 41: 309-317.
  • Gohari G, Mohammadi A, Akbari A, Panahirad S, Dadpour MR, Fotopoulos V, Kimura S (2020). Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports 10(1): 1-14.
  • Hao Y, Yuan W, Ma C, White JC, Zhang Z, Adeel M, Zou T, Rui Y, Xing B (2018). Engineered nanomaterials suppress Turnip mosaic virus infection in tobacco (Nicotiana benthamiana). Environmental Science: Nano 5(7): 1685-1693.
  • Haghighi M, Teixeira da Silva JA (2014). The effect of N-TiO2 on tomato, onion, and radish seed germination. Journal of Crop Science and Biotechnology 17: 221-227.
  • ISTA (2017). International Rules for Seed Testing. Basserdorf, Switzerland: International Seed Testing Association.
  • Kandasamy S, Weerasuriya N, Gritsiouk D, Patterson G, Saldias S, Ali S, Lazarovits G (2020). Size variability in seed lot impact seed nutritional balance, seedling vigor, microbial composition and plant performance of common corn Hybrids. Agronomy 10(2): 157.
  • Kaya MD, Ozcan F, Day S, Bayramin S, Akdogan G, Ipek A (2013). Allelopathic role of essential oils in sunflower stubble on germination and seedling growth of the subsequent crop. International Journal of Agriculture and Biology 15(2): 337-341.
  • Khatun M, Hafiz MHR, Hasan MA, Hakim MA, Siddiqui MN (2013). Responses of wheat genotypes to salt stress in relation to germination and seedling growth. International Journal of Bio-resource and Stress Management 4(4): 635-640.
  • Marchiol L, Mattiello A, Pošćić F, Fellet G, Zavalloni C, Carlino E, Musetti R (2016). Changes in physiological and agronomical parameters of barley (Hordeum vulgare) exposed to cerium and titanium dioxide nanoparticles. International Journal of Environmental Research and Public Health 13(3): 332.
  • Prasad R, Bhattacharyya A, Nguyen QD (2017). Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Frontiers in Microbiology 20: 1014.
  • Raskar S, Laware SL (2013). Effect of titanium dioxide nano particles on seed germination and germination indices in onion. Plant Sciences Feed 3(9): 103-107.
  • Shah T, Latif S, Saeed F, Ali I, Ullah S, Alsahli AA, Jan S, Ahmad P (2021). Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. Journal of King Saud University-Science 33(1): 101207.
  • Shrestha A, Pradhan S, Shrestha J, Subedi M (2019). Role of seed priming in improving seed germination and seedling growth of maize (Zea mays L.) under rain fed condition. Journal of Agriculture and Natural Resources 2(1): 265-273.
  • TUIK (2023). Türkiye İstatistik Kurumu. http://www.tuik.gov.tr / [accessed 20 February 2022].
  • Zahra Z, Maqbool T, Arshad M, Badshah MA, Choi HK, Hur J (2019). Changes in fluorescent dissolved organic matter and their association with phyto available phosphorus in soil amended with TiO₂ nanoparticles. Chemosphere 227: 17-25.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Articles
Yazarlar

Sibel Day 0000-0003-4955-7291

Yasin Özgen 0000-0002-1317-1031

Erken Görünüm Tarihi 4 Temmuz 2023
Yayımlanma Tarihi 15 Kasım 2023
Kabul Tarihi 19 Mayıs 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Day, S., & Özgen, Y. (2023). Titanium dioxide nano particles improving impact on sunflower seedling’s emergence performance. Anatolian Journal of Botany, 7(2), 108-111. https://doi.org/10.30616/ajb.1270434
AMA Day S, Özgen Y. Titanium dioxide nano particles improving impact on sunflower seedling’s emergence performance. Ant J Bot. Kasım 2023;7(2):108-111. doi:10.30616/ajb.1270434
Chicago Day, Sibel, ve Yasin Özgen. “Titanium Dioxide Nano Particles Improving Impact on Sunflower seedling’s Emergence Performance”. Anatolian Journal of Botany 7, sy. 2 (Kasım 2023): 108-11. https://doi.org/10.30616/ajb.1270434.
EndNote Day S, Özgen Y (01 Kasım 2023) Titanium dioxide nano particles improving impact on sunflower seedling’s emergence performance. Anatolian Journal of Botany 7 2 108–111.
IEEE S. Day ve Y. Özgen, “Titanium dioxide nano particles improving impact on sunflower seedling’s emergence performance”, Ant J Bot, c. 7, sy. 2, ss. 108–111, 2023, doi: 10.30616/ajb.1270434.
ISNAD Day, Sibel - Özgen, Yasin. “Titanium Dioxide Nano Particles Improving Impact on Sunflower seedling’s Emergence Performance”. Anatolian Journal of Botany 7/2 (Kasım 2023), 108-111. https://doi.org/10.30616/ajb.1270434.
JAMA Day S, Özgen Y. Titanium dioxide nano particles improving impact on sunflower seedling’s emergence performance. Ant J Bot. 2023;7:108–111.
MLA Day, Sibel ve Yasin Özgen. “Titanium Dioxide Nano Particles Improving Impact on Sunflower seedling’s Emergence Performance”. Anatolian Journal of Botany, c. 7, sy. 2, 2023, ss. 108-11, doi:10.30616/ajb.1270434.
Vancouver Day S, Özgen Y. Titanium dioxide nano particles improving impact on sunflower seedling’s emergence performance. Ant J Bot. 2023;7(2):108-11.

Anadolu Botanik Dergisi CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1 ile lisanslıdır.