Araştırma Makalesi
BibTex RIS Kaynak Göster

Lipoik asit, antioksidan savunma ve glioksalaz sistemlerinin enzimlerini artırarak mısır fidelerine ozmotik stres toleransı kazandırır

Yıl 2025, Cilt: 9 Sayı: 1, 20 - 29
https://doi.org/10.30616/ajb.1599595

Öz

Özel bir antioksidan madde olan lipoik asidin (LA) ekzojen uygulaması, bitkilerdeki abiyotik stres hasarını hafifletir. Bununla beraber, LA’nın stres toleransındaki etki mekanizması henüz tam olarak anlaşılamamıştır. Bu çalışmada, osmotik stres hasarını hafifletmek için antioksidan savunma ve glioksalaz sistemlerinin koordinasyonuna exojen LA uygulamasının etkisi incelenmiştir. 21 günlük fidelerin köklerine Hoagland besin solüsyonunda 8 saat süreyle LA (12 µM) uygulandı ve ardından fideler 3 gün süreyle %10'luk polietilen glikole (PEG6000) maruz bırakıldı. Kontrol grubu olarak 28 gün boyunca Hoagland besin solüsyonunda yetiştirilen fideler kullanıldı. Osmotik stres altında eksojen LA'nın, yaprakların taze ve kuru ağırlıklarını, yaprakların bağıl su içeriğini ve askorbat ve glutatyon (GSH) gibi enzimatik olmayan bileşenleri artırdığı, ayrıca hidrojen peroksit (H2O2) ve metilglioksal (MG) içeriklerini azalttığı bulunmuştur. LA uygulaması, askorbat peroksidaz (1.2 kat), glutatyon peroksidaz (1.3 kat), glutatyon redüktaz (1.4 kat) ve monodehidroaskorbat redüktaz (1.8 kat) gibi bazı antioksidan enzim aktivitelerini de artırmıştır. LA, antioksidan enzimlerin kodlayan genlerin bağıl ekspresyon seviyelerini de önemli derecede indüklemiştir. Ayrıca, LA, glioksalaz sistemi enzim aktivitelerini (glioksalaz I (Gly I) (1.3 kat) ve glioksalaz II (Gly II) (1.1 kat)) artırmıştır. Ayrıca, Gly I ve Gly II genlerinin bağıl ekspresyon seviyeleri, Gly I ve Gly II aktiviteleri ile tutarlıdır. Dahası, eksojen LA, Gly I'ye (1.3 kat) kıyasla Gly II'nin (1.4 kat) ekspresyon seviyesini daha fazla indüklemiştir. Sonuç olarak, LA, antioksidan ve glioksalaz sistemlerinin aktivitesini artırarak mısırdaki osmotik stres hasarını hafifletir, reaktif oksijen türlerinin ve toksik bileşik MG'nin hızla uzaklaştırılmasını sağlayarak koruyucu bir mekanizma sunar. LA'nın abiyotik streslere maruz kalan ürünler üzerindeki etkilerinin daha fazla araştırılması, stres toleransının iyileştirilmesine ve tarımsal verimin artırılmasına katkı sağlayacaktır.

Proje Numarası

123Z653.

Kaynakça

  • Altansambar N, Sezgin Muslu A, Kadıoglu A (2024). The combined application of rutin and silicon alleviates osmotic stress in maize seedlings by triggering accumulation of osmolytes and antioxidants’ defense mechanisms. Physiology and Molecular Biology of Plants 30(3): 513-525. https://doi.org/10.1007/s12298-024-01430-z.
  • Anjum SA, Ashraf U, Zohaib A, Tanveer M, Naeem M, Iftikhar ALI, Tabassum T, Nazir U (2017). Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture 104: 267-276.
  • Ansari WA, Atri N, Singh B, Pandey S (2017). Changes in antioxidant enzyme activities and gene expression in two muskmelon genotypes under progressive water stress. Biologia Plantarum 61(2): 333-341. https://doi.org/10.1007/s10535-016-0694-3.
  • Ashraf MFMR, Foolad MR (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59(2): 206-216.
  • Bookout AL, Mangelsdorf DJ (2003). Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nuclear Receptor Signal 1:1-7. doi:10.1621/nrs.01012.
  • Bradford MM (1976) A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
  • Castillo FJ (1996). Antioxidative protection in the inducible CAM plant Sedum album L. following the imposition of severe water stress and recovery. Oecologia 107: 469-477.
  • Daler S, Kaya O (2024). Exogenous alpha‐lipoic acid treatments reduce the oxidative damage caused by drought stress in two grapevine rootstocks. Physiologia Plantarum 176(4), e14437.
  • D’Amico ML, Navari-Izzo F, Sgherri C, Izzo R (2004). The role of lipoic acid in the regulation of the redox status of wheat irrigated with 20% sea water. Plant Physiolgy and Biochemistry 42(4): 329-334. doi: 10.1016/j.plaphy.2004.02.009.
  • Daudi A, O’brien JA (2012). Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio-Protocol 2(18): e263-e263.
  • Dwivedi S, Kumar A, Mishra S, Sharma P, Sinam G, Bahadur L, Tripathi RD (2020) Orthosilicic acid (OSA) reduced grain arsenic accumulation and enhanced yield by modulating the level of trace element, antioxidants, and thiols in rice. Environ Sci Pollut Res 27:24025-24038
  • Elkelish A, El-Mogy MM, Niedbała G, Piekutowska M, Atia MA, Hamada MM, Ibrahim, MF (2021). Roles of exogenous α-lipoic acid and cysteine in mitigation of drought stress and restoration of grain quality in wheat. Plants 10(11): 2318-2343.
  • Farhad W, Saleem MF, Cheema MA, Hammad HM (2009). Effect of poultry manure levels on the productivity of spring maize (Zea mays L.). Journal Animal and Plant Science 19: 122-125.
  • Flower DJ, Ludlow MM (1986). Contribution of osmotic adjustment to the dehydration tolerance of water stressed pigeonpea (Cajanus cajan L.) Millsp. leaves. Plant Cell Environment 9: 33-40.
  • Foyer CH, Halliwell B (1976). The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133: 21-25.
  • Goodarzian Ghahfarokhi M, Mansurifar S, Taghizadeh-Mehrjardi R, Saeidi M, Jamshidi AM, Ghasemi E (2015). Effects of drought stress and rewatering on antioxidant systems and relative water content in different growth stages of maize (Zea mays L.) hybrids. Archives of Agronomy and Soil Science 61(4): 493-506.
  • Gorcek Z, Erdal S (2015). Lipoic acid mitigates oxidative stress and recovers metabolic distortions in salt-stressed wheat seedlings by modulating ion homeostasis, the osmo-regulator level and antioxidant system. Journal of the Science of Food and Agriculture 95:2811-2817.
  • Gümrükçü Şimşek SD, Terzi R, Saruhan Güler N (2024). Lipoic acid can provide homeostasis of reactive oxygen species and induce ascorbate and glutathione biosynthesis in osmotic stressed maize. Russian Journal of Plant Physiology 71. https://doi.org/10.1134/S1021443724604373
  • Hamdia MA, Shaddad MAK (2010). Salt tolerance of crop plants. a review. Journal of Stress Physiology and Biochemistry 6:64-90.
  • Hasanuzzaman M, Hossain MA, Fujita M (2011). Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnology Reports 5: 353-365. https://doi.org/10.1007/s11816-011-0189-9.
  • Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M (2017). Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. International Journal of Molecular Science 18: 200-228. doi: 10.3390/ijms18010200.
  • Hasanuzzaman M, Bhuyan MB, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8(9): 384-434. https://doi.org/10.3390/antiox8090384.
  • Hoagland DR, Arnon DI (1950). The water-culture method for growing plants without soil. Circ Calif Agric Exp Stn 347(2nd edit):32
  • Hossain MA, Nakano Y, Asada K (1984). Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiology 25:385-95.
  • Hossain MA, Asada K (1984). Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiology 25: 85-92.
  • Hossain, MA, Hasanuzzaman M, Fujita M (2010). Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiology and Molecular Biology of Plants 16: 259-272.
  • Junaid MD, Öztürk ZN, Gökçe AF (2023). Drought stress effects on morphophysiological and quality characteristics of commercial carrot cultivars. Turkish Journal of Botany 47(2): 111-126.
  • Kadıoğlu A, Saruhan N, Sağlam A, Terzi R, Acet T (2011). Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regulation 64: 27-37.
  • Khan R, Ma X, Hussain Q, Asim M, Iqbal A, Ren X, Shah S, Shi Y (2022). Application of 2, 4-epibrassinolide improves drought tolerance in tobacco through physiological and biochemical mechanisms. Biology 11(8):1192-1213. doi: 10.3390/biology11081192.
  • Krasensky J, Jonak C (2012). Drought, salt and temperatures tress-induced metabolic rearrangements and regulatory networks. The Journal of Experimental Botany 63:1593-1608.
  • Liso R, Calabrese G, Bitonti MB, Arrigoni O (1984). Relationship between ascorbic acid and cell division. Experimental Cell Research 150:314-320.
  • Liu X, Williams, CE, Nemacheck JA, Wang H, Subramanyam S, Zheng C, Chen MS (2010). Reactive oxygen species are involved in plant defense against a gall midge. Plant physiology 152(2): 985-999.
  • Mohammadkhani N, Heidari R (2008). Water stress induced by polyethylene glycol 6000 and sodium chloride in two corn cultivars. Pakistan Journal of Biological Sciences 11(1): 92-97.
  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015a). Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environment Experimental Botany 112: 44- 54.
  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015b). Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB PLANTS 7: plv069. https://doi.org/10.1093/aobpla/plv069
  • Nahar K, Hasanuzzaman M, Alam MM, Fujita MJBP (2015c). Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean. Biologia plantarum 59: 745-756.
  • Nakano Y, Asada K (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology 22(5): 867-880.
  • Navari-Izzo F, Quartacci MF, Sgherri C (2002). Lipoic acid: a unique antioxidant in the detoxification of activated oxygen species. Plant Physiology and Biochemistry 40(6-8): 463-470.
  • Principato GB, Rosi G, Talesa V, Giovannini E, Uotila L (1987) . Purification and characterization of two forms of glyoxalase II from the liver and brain of wistar rats. Biochimica et Biophysica Acta 911: 349-355.
  • Ramadan KM, Alharbi MM, Alenzi AM, El-Beltagi HS, Darwish DBE, Aldaej MI, Ibrahim MF (2022). Alpha lipoic acid as a protective mediator for regulating the defensive responses of wheat plants against sodic alkaline stress: physiological, biochemical and molecular aspects Plants 11(6): 787-803. https://doi.org/10.3390/plants11060787.
  • Saruhan Guler N, Ozturk K, Sezgin A, Altuntas C, Kadioglu A, Terzi R (2021). Alpha lipoic acid application promotes water-deficit tolerance by modulating osmoprotectant metabolism-related genes in maize. Russian Journal of Plant Physiology 68(6): 1152-1160.
  • Sezgin A, Altuntaş C, Demiralay M, Cinemre S, Terzi R (2019). Exogenous alpha lipoic acid can stimulate photosystem II activity and the gene expressions of carbon fixation and chlorophyll metabolism enzymes in maize seedlings under drought. Journal of Plant Physiology 232: 65-73.
  • Sezgin Muslu A, Kadıoğlu A (2021). The antioxidant defense and glyoxalase systems contribute to the thermotolerance of Heliotropium thermophilum. Functional Plant Biology 48(12): 1241-1253.
  • Sezgin Muslu A (2024). Improving salt stress tolerance in Zea mays L. by modulating osmolytes accumulation and antioxidant capacity with Rutin. Anatolian Journal of Botany, 8(1): 21-29.
  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2011: 1-26. https://doi.org/10.1155/2012/217037.
  • Singh P, Dhaka N (2016). Glyoxalase system and salinity stress in plants. In Managing salt tolerance in plants: molecular and genomic perspectives (pp. 173-185). London: CRC Press.
  • Sudesh V, Linda L, Pawan S (2002). Nutrition and Hypertension. Journal Nutrition Research 22: 111-123.
  • Talaat NB, Ibrahim AS, Shawky BT (2022). Enhancement of the expression of ZmBZR1 and ZmBES1 regulatory genes and antioxidant defense genes triggers water stress mitigation in maize (Zea mays L.) plants treated with 24-epibrassinolide in combination with spermine. Agronomy 12(10): 2517.
  • Tanyolac D, Ekmekçi Y, Ünalan Ş (2007). Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere 67(1): 89-98.
  • Taylor NL, Day DA, Millar AH (2004). Targets of stress-induced oxidative damage in plant mitochondria and their impact on cell carbon/nitrogen metabolis. Journal of Experimental Botany 55: 1-10.
  • Terzi R, Saruhan GN, Güven FG, Kadioglu A (2018). Alpha lipoic acid treatment induces the antioxidant system and ameliorates lipid peroxidation in maize seedlings under osmotic stress. Archives of Biological Sciences 70(3): 503-511.
  • Tietze F (1969). Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Analytical Biochemistry 27(3): 502-522.
  • Turk H, Erdal S, Karayel U, Dumlupinar R (2018). Attenuation of lead toxicity by promotion of tolerance mechanism in wheat roots by lipoic acid. Cereal Research Communications 46: 424-435. https://doi.org/10.1556/0806.46.2018.020
  • Urbanek H, Kuzniak-Gebarowska E, Herka K (1991). Elicitation of defence responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiologia Plantarum 13(1): 43-50.
  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005). Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochemical and Biophysical Research Communications 337: 61-67.
  • Youssef MH, Raafat A, El-Yazied AA, Selim S, Azab E, Khojah E, El Nahhas N, Ibrahim MFM (2021). Exogenous application of alpha-lipoic acid mitigates salt-induced oxidative damage in sorghum plants through regulation growth, leaf pigments, ionic homeostasis, antioxidant enzymes, and expression of salt stress responsive genes, Plants (Basel) 10(11): 2519-2535. doi: 10.3390/plants10112519.
  • Zaid A, Mohammad F, Wani SH, Siddique KM (2019). Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. Ecotoxicology and Environmental Safety 180: 575-587.
  • Zhao L, Hu Q, Huang Y, Keller AA (2017). Response at genetic, metabolic, and physiological levels of maize (Zea mays) exposed to a Cu (OH)2 nanopesticide. ACS Sustainable Chemistry & Engineering 5(9): 8294-8301.

Lipoic acid confers osmotic stress tolerance to maize seedlings by upregulating the enzymes of antioxidant defense and glyoxalase systems

Yıl 2025, Cilt: 9 Sayı: 1, 20 - 29
https://doi.org/10.30616/ajb.1599595

Öz

Exogenous application of lipoic acid (LA), which is a special antioxidant substance, alleviates abiotic stress damage in plants. However, the mechanism of action of LA in stress tolerance is still not fully understood. Here, the effect of exogenous LA on the coordination of antioxidant defense and glyoxalase systems to alleviate osmotic stress damage was investigated. LA (12µM) was applied to the roots of 21-day-old seedlings in Hoagland nutrient solution for 8 hours and then the seedlings were exposed to 10% polyethylene glycol (PEG6000) for 3 days. Seedlings grown in Hoagland nutrient solution for 28 days were used as the control group. Exogenous LA under osmotic stress was found to increase the fresh and dry weights of the leaves, leaf relative water content, and non-enzymatic compounds such as ascorbate and glutathione (GSH) while significantly decreasing the contents of hydrogen peroxide (H2O2) and methylglyoxal (MG). LA application also increased some antioxidant enzyme activities such as ascorbate peroxidase (1.2-fold), glutathione peroxidase (1.3-fold), glutathione reductase (1.4-fold), and monodehydroascorbate reductase (1.8-fold). LA significantly induced the relative expression levels of the genes coding the antioxidant enzymes. Furthermore, LA stimulated the enzyme activities of the glyoxalase system (glyoxalase I (Gly I) (1.3-fold) and glyoxalase II (Gly II) (1.1-fold). Additionally, the relative expression levels of the Gly I and Gly II genes were consistent with the findings of the Gly I and Gly II activities. Moreover, exogenous LA induced the expression level of Gly II (1.4-fold) more than that of Gly I (1.3-fold). As a result, LA mitigates osmotic stress damage in maize by enhancing the activity of antioxidant and glyoxalase systems, enabling the rapid removal of reactive oxygen species and the toxic compound MG, thereby providing a protective mechanism. Further investigation of the effects of LA on crops exposed to abiotic stresses will contribute to improve the stress tolerance and increase agricultural yields.

Destekleyen Kurum

Scientific and Technological Research Council of Turkey (TUBITAK)

Proje Numarası

123Z653.

Kaynakça

  • Altansambar N, Sezgin Muslu A, Kadıoglu A (2024). The combined application of rutin and silicon alleviates osmotic stress in maize seedlings by triggering accumulation of osmolytes and antioxidants’ defense mechanisms. Physiology and Molecular Biology of Plants 30(3): 513-525. https://doi.org/10.1007/s12298-024-01430-z.
  • Anjum SA, Ashraf U, Zohaib A, Tanveer M, Naeem M, Iftikhar ALI, Tabassum T, Nazir U (2017). Growth and developmental responses of crop plants under drought stress: a review. Zemdirbyste-Agriculture 104: 267-276.
  • Ansari WA, Atri N, Singh B, Pandey S (2017). Changes in antioxidant enzyme activities and gene expression in two muskmelon genotypes under progressive water stress. Biologia Plantarum 61(2): 333-341. https://doi.org/10.1007/s10535-016-0694-3.
  • Ashraf MFMR, Foolad MR (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59(2): 206-216.
  • Bookout AL, Mangelsdorf DJ (2003). Quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nuclear Receptor Signal 1:1-7. doi:10.1621/nrs.01012.
  • Bradford MM (1976) A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254.
  • Castillo FJ (1996). Antioxidative protection in the inducible CAM plant Sedum album L. following the imposition of severe water stress and recovery. Oecologia 107: 469-477.
  • Daler S, Kaya O (2024). Exogenous alpha‐lipoic acid treatments reduce the oxidative damage caused by drought stress in two grapevine rootstocks. Physiologia Plantarum 176(4), e14437.
  • D’Amico ML, Navari-Izzo F, Sgherri C, Izzo R (2004). The role of lipoic acid in the regulation of the redox status of wheat irrigated with 20% sea water. Plant Physiolgy and Biochemistry 42(4): 329-334. doi: 10.1016/j.plaphy.2004.02.009.
  • Daudi A, O’brien JA (2012). Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio-Protocol 2(18): e263-e263.
  • Dwivedi S, Kumar A, Mishra S, Sharma P, Sinam G, Bahadur L, Tripathi RD (2020) Orthosilicic acid (OSA) reduced grain arsenic accumulation and enhanced yield by modulating the level of trace element, antioxidants, and thiols in rice. Environ Sci Pollut Res 27:24025-24038
  • Elkelish A, El-Mogy MM, Niedbała G, Piekutowska M, Atia MA, Hamada MM, Ibrahim, MF (2021). Roles of exogenous α-lipoic acid and cysteine in mitigation of drought stress and restoration of grain quality in wheat. Plants 10(11): 2318-2343.
  • Farhad W, Saleem MF, Cheema MA, Hammad HM (2009). Effect of poultry manure levels on the productivity of spring maize (Zea mays L.). Journal Animal and Plant Science 19: 122-125.
  • Flower DJ, Ludlow MM (1986). Contribution of osmotic adjustment to the dehydration tolerance of water stressed pigeonpea (Cajanus cajan L.) Millsp. leaves. Plant Cell Environment 9: 33-40.
  • Foyer CH, Halliwell B (1976). The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133: 21-25.
  • Goodarzian Ghahfarokhi M, Mansurifar S, Taghizadeh-Mehrjardi R, Saeidi M, Jamshidi AM, Ghasemi E (2015). Effects of drought stress and rewatering on antioxidant systems and relative water content in different growth stages of maize (Zea mays L.) hybrids. Archives of Agronomy and Soil Science 61(4): 493-506.
  • Gorcek Z, Erdal S (2015). Lipoic acid mitigates oxidative stress and recovers metabolic distortions in salt-stressed wheat seedlings by modulating ion homeostasis, the osmo-regulator level and antioxidant system. Journal of the Science of Food and Agriculture 95:2811-2817.
  • Gümrükçü Şimşek SD, Terzi R, Saruhan Güler N (2024). Lipoic acid can provide homeostasis of reactive oxygen species and induce ascorbate and glutathione biosynthesis in osmotic stressed maize. Russian Journal of Plant Physiology 71. https://doi.org/10.1134/S1021443724604373
  • Hamdia MA, Shaddad MAK (2010). Salt tolerance of crop plants. a review. Journal of Stress Physiology and Biochemistry 6:64-90.
  • Hasanuzzaman M, Hossain MA, Fujita M (2011). Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnology Reports 5: 353-365. https://doi.org/10.1007/s11816-011-0189-9.
  • Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M (2017). Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. International Journal of Molecular Science 18: 200-228. doi: 10.3390/ijms18010200.
  • Hasanuzzaman M, Bhuyan MB, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8(9): 384-434. https://doi.org/10.3390/antiox8090384.
  • Hoagland DR, Arnon DI (1950). The water-culture method for growing plants without soil. Circ Calif Agric Exp Stn 347(2nd edit):32
  • Hossain MA, Nakano Y, Asada K (1984). Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiology 25:385-95.
  • Hossain MA, Asada K (1984). Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiology 25: 85-92.
  • Hossain, MA, Hasanuzzaman M, Fujita M (2010). Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiology and Molecular Biology of Plants 16: 259-272.
  • Junaid MD, Öztürk ZN, Gökçe AF (2023). Drought stress effects on morphophysiological and quality characteristics of commercial carrot cultivars. Turkish Journal of Botany 47(2): 111-126.
  • Kadıoğlu A, Saruhan N, Sağlam A, Terzi R, Acet T (2011). Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regulation 64: 27-37.
  • Khan R, Ma X, Hussain Q, Asim M, Iqbal A, Ren X, Shah S, Shi Y (2022). Application of 2, 4-epibrassinolide improves drought tolerance in tobacco through physiological and biochemical mechanisms. Biology 11(8):1192-1213. doi: 10.3390/biology11081192.
  • Krasensky J, Jonak C (2012). Drought, salt and temperatures tress-induced metabolic rearrangements and regulatory networks. The Journal of Experimental Botany 63:1593-1608.
  • Liso R, Calabrese G, Bitonti MB, Arrigoni O (1984). Relationship between ascorbic acid and cell division. Experimental Cell Research 150:314-320.
  • Liu X, Williams, CE, Nemacheck JA, Wang H, Subramanyam S, Zheng C, Chen MS (2010). Reactive oxygen species are involved in plant defense against a gall midge. Plant physiology 152(2): 985-999.
  • Mohammadkhani N, Heidari R (2008). Water stress induced by polyethylene glycol 6000 and sodium chloride in two corn cultivars. Pakistan Journal of Biological Sciences 11(1): 92-97.
  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015a). Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environment Experimental Botany 112: 44- 54.
  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015b). Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB PLANTS 7: plv069. https://doi.org/10.1093/aobpla/plv069
  • Nahar K, Hasanuzzaman M, Alam MM, Fujita MJBP (2015c). Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean. Biologia plantarum 59: 745-756.
  • Nakano Y, Asada K (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology 22(5): 867-880.
  • Navari-Izzo F, Quartacci MF, Sgherri C (2002). Lipoic acid: a unique antioxidant in the detoxification of activated oxygen species. Plant Physiology and Biochemistry 40(6-8): 463-470.
  • Principato GB, Rosi G, Talesa V, Giovannini E, Uotila L (1987) . Purification and characterization of two forms of glyoxalase II from the liver and brain of wistar rats. Biochimica et Biophysica Acta 911: 349-355.
  • Ramadan KM, Alharbi MM, Alenzi AM, El-Beltagi HS, Darwish DBE, Aldaej MI, Ibrahim MF (2022). Alpha lipoic acid as a protective mediator for regulating the defensive responses of wheat plants against sodic alkaline stress: physiological, biochemical and molecular aspects Plants 11(6): 787-803. https://doi.org/10.3390/plants11060787.
  • Saruhan Guler N, Ozturk K, Sezgin A, Altuntas C, Kadioglu A, Terzi R (2021). Alpha lipoic acid application promotes water-deficit tolerance by modulating osmoprotectant metabolism-related genes in maize. Russian Journal of Plant Physiology 68(6): 1152-1160.
  • Sezgin A, Altuntaş C, Demiralay M, Cinemre S, Terzi R (2019). Exogenous alpha lipoic acid can stimulate photosystem II activity and the gene expressions of carbon fixation and chlorophyll metabolism enzymes in maize seedlings under drought. Journal of Plant Physiology 232: 65-73.
  • Sezgin Muslu A, Kadıoğlu A (2021). The antioxidant defense and glyoxalase systems contribute to the thermotolerance of Heliotropium thermophilum. Functional Plant Biology 48(12): 1241-1253.
  • Sezgin Muslu A (2024). Improving salt stress tolerance in Zea mays L. by modulating osmolytes accumulation and antioxidant capacity with Rutin. Anatolian Journal of Botany, 8(1): 21-29.
  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2011: 1-26. https://doi.org/10.1155/2012/217037.
  • Singh P, Dhaka N (2016). Glyoxalase system and salinity stress in plants. In Managing salt tolerance in plants: molecular and genomic perspectives (pp. 173-185). London: CRC Press.
  • Sudesh V, Linda L, Pawan S (2002). Nutrition and Hypertension. Journal Nutrition Research 22: 111-123.
  • Talaat NB, Ibrahim AS, Shawky BT (2022). Enhancement of the expression of ZmBZR1 and ZmBES1 regulatory genes and antioxidant defense genes triggers water stress mitigation in maize (Zea mays L.) plants treated with 24-epibrassinolide in combination with spermine. Agronomy 12(10): 2517.
  • Tanyolac D, Ekmekçi Y, Ünalan Ş (2007). Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere 67(1): 89-98.
  • Taylor NL, Day DA, Millar AH (2004). Targets of stress-induced oxidative damage in plant mitochondria and their impact on cell carbon/nitrogen metabolis. Journal of Experimental Botany 55: 1-10.
  • Terzi R, Saruhan GN, Güven FG, Kadioglu A (2018). Alpha lipoic acid treatment induces the antioxidant system and ameliorates lipid peroxidation in maize seedlings under osmotic stress. Archives of Biological Sciences 70(3): 503-511.
  • Tietze F (1969). Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Analytical Biochemistry 27(3): 502-522.
  • Turk H, Erdal S, Karayel U, Dumlupinar R (2018). Attenuation of lead toxicity by promotion of tolerance mechanism in wheat roots by lipoic acid. Cereal Research Communications 46: 424-435. https://doi.org/10.1556/0806.46.2018.020
  • Urbanek H, Kuzniak-Gebarowska E, Herka K (1991). Elicitation of defence responses in bean leaves by Botrytis cinerea polygalacturonase. Acta Physiologia Plantarum 13(1): 43-50.
  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK (2005). Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochemical and Biophysical Research Communications 337: 61-67.
  • Youssef MH, Raafat A, El-Yazied AA, Selim S, Azab E, Khojah E, El Nahhas N, Ibrahim MFM (2021). Exogenous application of alpha-lipoic acid mitigates salt-induced oxidative damage in sorghum plants through regulation growth, leaf pigments, ionic homeostasis, antioxidant enzymes, and expression of salt stress responsive genes, Plants (Basel) 10(11): 2519-2535. doi: 10.3390/plants10112519.
  • Zaid A, Mohammad F, Wani SH, Siddique KM (2019). Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. Ecotoxicology and Environmental Safety 180: 575-587.
  • Zhao L, Hu Q, Huang Y, Keller AA (2017). Response at genetic, metabolic, and physiological levels of maize (Zea mays) exposed to a Cu (OH)2 nanopesticide. ACS Sustainable Chemistry & Engineering 5(9): 8294-8301.
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Fizyolojisi, Bitki Hücresi ve Moleküler Biyoloji
Bölüm Articles
Yazarlar

Asiye Sezgin Muslu 0000-0003-0899-0742

Rabiye Terzi 0000-0002-9328-166X

Proje Numarası 123Z653.
Erken Görünüm Tarihi 15 Şubat 2025
Yayımlanma Tarihi
Gönderilme Tarihi 11 Aralık 2024
Kabul Tarihi 2 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

APA Sezgin Muslu, A., & Terzi, R. (2025). Lipoic acid confers osmotic stress tolerance to maize seedlings by upregulating the enzymes of antioxidant defense and glyoxalase systems. Anatolian Journal of Botany, 9(1), 20-29. https://doi.org/10.30616/ajb.1599595
AMA Sezgin Muslu A, Terzi R. Lipoic acid confers osmotic stress tolerance to maize seedlings by upregulating the enzymes of antioxidant defense and glyoxalase systems. Ant J Bot. Şubat 2025;9(1):20-29. doi:10.30616/ajb.1599595
Chicago Sezgin Muslu, Asiye, ve Rabiye Terzi. “Lipoic Acid Confers Osmotic Stress Tolerance to Maize Seedlings by Upregulating the Enzymes of Antioxidant Defense and Glyoxalase Systems”. Anatolian Journal of Botany 9, sy. 1 (Şubat 2025): 20-29. https://doi.org/10.30616/ajb.1599595.
EndNote Sezgin Muslu A, Terzi R (01 Şubat 2025) Lipoic acid confers osmotic stress tolerance to maize seedlings by upregulating the enzymes of antioxidant defense and glyoxalase systems. Anatolian Journal of Botany 9 1 20–29.
IEEE A. Sezgin Muslu ve R. Terzi, “Lipoic acid confers osmotic stress tolerance to maize seedlings by upregulating the enzymes of antioxidant defense and glyoxalase systems”, Ant J Bot, c. 9, sy. 1, ss. 20–29, 2025, doi: 10.30616/ajb.1599595.
ISNAD Sezgin Muslu, Asiye - Terzi, Rabiye. “Lipoic Acid Confers Osmotic Stress Tolerance to Maize Seedlings by Upregulating the Enzymes of Antioxidant Defense and Glyoxalase Systems”. Anatolian Journal of Botany 9/1 (Şubat 2025), 20-29. https://doi.org/10.30616/ajb.1599595.
JAMA Sezgin Muslu A, Terzi R. Lipoic acid confers osmotic stress tolerance to maize seedlings by upregulating the enzymes of antioxidant defense and glyoxalase systems. Ant J Bot. 2025;9:20–29.
MLA Sezgin Muslu, Asiye ve Rabiye Terzi. “Lipoic Acid Confers Osmotic Stress Tolerance to Maize Seedlings by Upregulating the Enzymes of Antioxidant Defense and Glyoxalase Systems”. Anatolian Journal of Botany, c. 9, sy. 1, 2025, ss. 20-29, doi:10.30616/ajb.1599595.
Vancouver Sezgin Muslu A, Terzi R. Lipoic acid confers osmotic stress tolerance to maize seedlings by upregulating the enzymes of antioxidant defense and glyoxalase systems. Ant J Bot. 2025;9(1):20-9.

Anadolu Botanik Dergisi CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1 ile lisanslıdır.