Araştırma Makalesi
BibTex RIS Kaynak Göster

Assessment of the UV-B absorbing compounds' absorbance levels in pollen grains of hazelnut genotypes

Yıl 2025, Cilt: 9 Sayı: 2, 176 - 181
https://doi.org/10.30616/ajb.1730224

Öz

Pollen grains, as highly sensitive reproductive units, rely on structural and biochemical mechanisms to withstand environmental stressors, particularly UV-B radiation. This study evaluated the UV-B absorbance capacity of UV-B absorbing compounds extracted from cytoplasmic, wall-bound, and sporopollenin-associated fractions of pollen grains from four Corylus avellana genotypes (Sarı, Palaz, Kara, Yomra). Spectral analyses revealed distinct fraction-specific absorbance patterns, showing a general decrease between 280–315 nm in the cytoplasmic and wall-bound fractions, whereas the sporopollenin fraction exhibited an increasing trend. Spectrophotometric analyses revealed that the cytoplasmic fraction exhibited the highest UV-B absorbance across all genotypes, followed by the sporopollenin and wall-bound fractions. Genotype-specific patterns were evident, with Palaz showing the highest cytoplasmic absorbance and Sarı displaying superior sporopollenin-associated absorbance, while Kara consistently recorded the lowest across all fractions. Multivariate analyses, including principal component analysis and heatmap clustering, confirmed distinct groupings among genotypes and UV-B absorbing compounds fractions. These findings suggest that inherent variability in UV-B absorbing compounds distribution contributes to differential photoprotection potential among genotypes. Identifying hazelnut genotypes with stronger inherent UV-B defense capacity may inform breeding strategies aimed at improving reproductive resilience under increasing UV-B exposure.

Kaynakça

  • Blackmore S (2007). Pollen and spores: Microscopic keys to understanding the earth's biodiversity. Plant Systematics and Evolution 263:3-12. DOI: https://doi.org/10.1007/s00606-006-0464-3
  • Demchik SM, Day TA (1996). Effect of enhanced UV‐B radiation on pollen quantity, quality, and seed yield in Brassica rapa (Brassicaceae). American Journal of Botany 83(5):573-579. DOI: https://doi.org/10.1002/j.1537-2197.1996.tb12741.x
  • Feng H, An L, Tan L, Hou Z, Wang X (2000). Effect of enhanced ultraviolet-B radiation on pollen germination and tube growth of 19 taxa in vitro. Environmental and Experimental Botany. 43:45–53. DOI: https://doi.org/10.1016/S0098-8472(99)00042-8
  • Fraser WT, Lomax BH, Jardine PE, Gosling WD, Sephton MA (2014) Pollen and spores as a passive monitor of ultraviolet radiation. Frontiers in Ecology and Evolution. 2:12. DOI: https://doi.org/10.3389/fevo.2014.00012
  • Fraser WT, Scott AC, Forbs AES, Glasspool IJ, Plotnick RE, Kenig F, Lomax BH (2012). Evolutionary stasis of sporopollenin biochemistry revealed by unaltered Pennsylvanian spores. New Phytologist 196:397–401. https://doi.org/10.1111/j.1469-8137.2012.04301.x
  • Hegedüs K, Fehér C, Jalsovszky I, Kristóf Z, Rohonczy J, Vass E, Farkas A, Csizmadia T, Friedbacher G, Hantz P (2021). Facile isolation and analysis of sporopollenin exine from bee pollen. Scientific Reports 11(1): 1-16. DOI: https://doi.org/10.1038/s41598-021-87619-8
  • Llorens L, Badenes-Pérez FR, Julkunen-Tiitto R, Zidorn C, Fereres A, Jansen MA (2015) The role of UV-B radiation in plant sexual reproduction. Perspectives in Plant Ecology, Evolution and Systematics 17:243–254. DOI: https://doi.org/10.1016/j.ppees.2015.03.001
  • Musil CF, Wand SJE (1994) Differential stimulation of an arid-environment winter ephemeral Dimorphotheca pluvialis (L.) Moench by ultraviolet-B radiation under nutrient limitation. Plant Cell Environment 17:245–255. DOI: https://doi.org/10.1111/j.1365-3040.1994.tb00290.x
  • Muthreich F, Zimmermann B, Birks HJB, Vila-Viçosa CM, Seddon AW (2020) Chemical variations in Quercus pollen as a tool for taxonomic identification: Implications for long-term ecological and biogeographical research. Journal of Biogeography 47:1298–1309. DOI: https://doi.org/10.1111/jbi.13817
  • Paradinas A, Ramade L, Mulot-Greffeuille C, Hamidi R, Thomas M, Toillon J (2022). Phenological growth stages of ‘Barcelona’hazelnut (Corylus avellana L.) described using an extended BBCH scale. Scientia Horticulturae, 296:110902. DOI: https://doi.org/10.1016/j.scienta.2022.110902
  • Rozema J, Noordijk AJ, Broekman RA, Van Beem A, Meijkamp BM, De Bakker NVJ, van de Staaij JWM, Stroetenga M, Bohncke SJP, Konert M, Kars S, Peat H, Smith RIL, Convey P (2001). (Poly) phenolic compounds in pollen and spores of Antarctic plants as indicators of solar UV-B–A new proxy for the reconstruction of past solar UV-B?. Plant Ecology 154(1):9-26. DOI: https://doi.org/10.1007/978-94-017-2892-8_2
  • Ruhland CT, Day TA (2000). Effects of ultraviolet-B radiation on leaf elongation, production and phenylpropanoid concentrations of Deschampsia antarctica and Colobanthus quitensis in Antarctica. Physiologia Plantarum 109:244–251. DOI: https://doi.org/10.1034/j.1399-3054.2000.100304.x
  • Seddon AW, Festi D, Robson TM, Zimmermann B (2019). Fossil pollen and spores as a tool for reconstructing ancient solar-ultraviolet irradiance received by plants: An assessment of prospects and challenges using proxy-system modelling. Photochemical & Photobiological Sciences 18:275–294. DOI: https://doi.org/10.1039/C8PP00490K
  • Sugioka N, Kawakami M, Hirai N, Osakabe M (2018). A pollen diet confers ultraviolet-B resistance in phytoseiid mites by providing antioxidants. Frontiers in Ecology and Evolution 6:133. DOI: https://doi.org/10.3389/fevo.2018.00133
  • Yadav A, Singh D, Lingwan M, Yadukrishnan P, Masakapalli SK, Datta S (2020). Light signaling and UV‐B‐mediated plant growth regulation. Journal of Integrative Plant Biology 62(9):1270-1292. DOI: https://doi.org/10.1111/jipb.12932

Fındık genotiplerine ait polen tanelerinde UV-B absorplayıcı bileşiklerin absorbsiyon düzeylerinin değerlendirilmesi

Yıl 2025, Cilt: 9 Sayı: 2, 176 - 181
https://doi.org/10.30616/ajb.1730224

Öz

Polen taneleri oldukça hassas üreme yapılarıdır ve UV-B radyasyonu da dahil olmak üzere çevresel streslere karşı dayanım için yapısal ve biyokimyasal mekanizmaları kullanırlar. Bu çalışmada, dört farklı Corylus avellana genotipine (Sarı, Palaz, Kara, Yomra) ait polen tanelerinin sitoplazmik, hücre duvarına bağlı ve sporopolleninle ilişkili fraksiyonlardan izole edilen UV-B absorplayıcı bileşiklerin UV-B absorbsiyon kapasitesi değerlendirilmiştir. Çalışmada, spektral analizler, sitoplazmik ve duvar bağlı fraksiyonlarda 280–315 nm arasında genel bir azalma, sporopollenin fraksiyonunda ise artış eğilimi göstererek fraksiyonlara özgü farklı absorbans paternlerini ortaya koymuştur. Tüm genotipler içerisinde en yüksek UV-B absorbsiyonunun sitoplazmik fraksiyonda gerçekleştiği, bunu sırasıyla sporopollenin ve duvar bağlı fraksiyonların izlediği belirlenmiştir. Genotipe özgü örüntüler belirgin olup, Palaz genotipi sitoplazmik absorbsiyonda en yüksek değeri gösterirken, Sarı genotipi sporopolleninle ilişkili absorbsiyonda öne çıkmış, Kara ise tüm fraksiyonlarda en düşük değerlere sahip olmuştur. Temel bileşenler ve ısı haritası kümeleme dahil çok değişkenli analizler, genotipler ve UV-B absorplayıcı bileşik fraksiyonları arasında belirgin ayrışmaları doğrulamıştır. Bu bulgular, UV-B absorplayıcı bileşiklerin dağılımındaki kalıtsal farklılıkların genotipler arası fotokoruyucu potansiyel farklılıklarına katkıda bulunduğunu göstermektedir. UV-B’ye karşı doğal savunma kapasitesi yüksek olan fındık genotiplerinin belirlenmesi, artan UV-B maruziyeti altında üreme dayanıklılığını artırmaya yönelik ıslah stratejilerine yol gösterebilir.

Kaynakça

  • Blackmore S (2007). Pollen and spores: Microscopic keys to understanding the earth's biodiversity. Plant Systematics and Evolution 263:3-12. DOI: https://doi.org/10.1007/s00606-006-0464-3
  • Demchik SM, Day TA (1996). Effect of enhanced UV‐B radiation on pollen quantity, quality, and seed yield in Brassica rapa (Brassicaceae). American Journal of Botany 83(5):573-579. DOI: https://doi.org/10.1002/j.1537-2197.1996.tb12741.x
  • Feng H, An L, Tan L, Hou Z, Wang X (2000). Effect of enhanced ultraviolet-B radiation on pollen germination and tube growth of 19 taxa in vitro. Environmental and Experimental Botany. 43:45–53. DOI: https://doi.org/10.1016/S0098-8472(99)00042-8
  • Fraser WT, Lomax BH, Jardine PE, Gosling WD, Sephton MA (2014) Pollen and spores as a passive monitor of ultraviolet radiation. Frontiers in Ecology and Evolution. 2:12. DOI: https://doi.org/10.3389/fevo.2014.00012
  • Fraser WT, Scott AC, Forbs AES, Glasspool IJ, Plotnick RE, Kenig F, Lomax BH (2012). Evolutionary stasis of sporopollenin biochemistry revealed by unaltered Pennsylvanian spores. New Phytologist 196:397–401. https://doi.org/10.1111/j.1469-8137.2012.04301.x
  • Hegedüs K, Fehér C, Jalsovszky I, Kristóf Z, Rohonczy J, Vass E, Farkas A, Csizmadia T, Friedbacher G, Hantz P (2021). Facile isolation and analysis of sporopollenin exine from bee pollen. Scientific Reports 11(1): 1-16. DOI: https://doi.org/10.1038/s41598-021-87619-8
  • Llorens L, Badenes-Pérez FR, Julkunen-Tiitto R, Zidorn C, Fereres A, Jansen MA (2015) The role of UV-B radiation in plant sexual reproduction. Perspectives in Plant Ecology, Evolution and Systematics 17:243–254. DOI: https://doi.org/10.1016/j.ppees.2015.03.001
  • Musil CF, Wand SJE (1994) Differential stimulation of an arid-environment winter ephemeral Dimorphotheca pluvialis (L.) Moench by ultraviolet-B radiation under nutrient limitation. Plant Cell Environment 17:245–255. DOI: https://doi.org/10.1111/j.1365-3040.1994.tb00290.x
  • Muthreich F, Zimmermann B, Birks HJB, Vila-Viçosa CM, Seddon AW (2020) Chemical variations in Quercus pollen as a tool for taxonomic identification: Implications for long-term ecological and biogeographical research. Journal of Biogeography 47:1298–1309. DOI: https://doi.org/10.1111/jbi.13817
  • Paradinas A, Ramade L, Mulot-Greffeuille C, Hamidi R, Thomas M, Toillon J (2022). Phenological growth stages of ‘Barcelona’hazelnut (Corylus avellana L.) described using an extended BBCH scale. Scientia Horticulturae, 296:110902. DOI: https://doi.org/10.1016/j.scienta.2022.110902
  • Rozema J, Noordijk AJ, Broekman RA, Van Beem A, Meijkamp BM, De Bakker NVJ, van de Staaij JWM, Stroetenga M, Bohncke SJP, Konert M, Kars S, Peat H, Smith RIL, Convey P (2001). (Poly) phenolic compounds in pollen and spores of Antarctic plants as indicators of solar UV-B–A new proxy for the reconstruction of past solar UV-B?. Plant Ecology 154(1):9-26. DOI: https://doi.org/10.1007/978-94-017-2892-8_2
  • Ruhland CT, Day TA (2000). Effects of ultraviolet-B radiation on leaf elongation, production and phenylpropanoid concentrations of Deschampsia antarctica and Colobanthus quitensis in Antarctica. Physiologia Plantarum 109:244–251. DOI: https://doi.org/10.1034/j.1399-3054.2000.100304.x
  • Seddon AW, Festi D, Robson TM, Zimmermann B (2019). Fossil pollen and spores as a tool for reconstructing ancient solar-ultraviolet irradiance received by plants: An assessment of prospects and challenges using proxy-system modelling. Photochemical & Photobiological Sciences 18:275–294. DOI: https://doi.org/10.1039/C8PP00490K
  • Sugioka N, Kawakami M, Hirai N, Osakabe M (2018). A pollen diet confers ultraviolet-B resistance in phytoseiid mites by providing antioxidants. Frontiers in Ecology and Evolution 6:133. DOI: https://doi.org/10.3389/fevo.2018.00133
  • Yadav A, Singh D, Lingwan M, Yadukrishnan P, Masakapalli SK, Datta S (2020). Light signaling and UV‐B‐mediated plant growth regulation. Journal of Integrative Plant Biology 62(9):1270-1292. DOI: https://doi.org/10.1111/jipb.12932
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Gelişim ve Üreme Biyolojisi
Bölüm Articles
Yazarlar

Özkan Kilin 0000-0002-9283-4576

Orçun Toksöz 0000-0002-4863-3232

Aslıhan Çetinbaş Genç 0000-0001-5125-9395

Erken Görünüm Tarihi 2 Ekim 2025
Yayımlanma Tarihi 5 Ekim 2025
Gönderilme Tarihi 30 Haziran 2025
Kabul Tarihi 23 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Kilin, Ö., Toksöz, O., & Çetinbaş Genç, A. (2025). Assessment of the UV-B absorbing compounds’ absorbance levels in pollen grains of hazelnut genotypes. Anatolian Journal of Botany, 9(2), 176-181. https://doi.org/10.30616/ajb.1730224
AMA Kilin Ö, Toksöz O, Çetinbaş Genç A. Assessment of the UV-B absorbing compounds’ absorbance levels in pollen grains of hazelnut genotypes. Ant J Bot. Ekim 2025;9(2):176-181. doi:10.30616/ajb.1730224
Chicago Kilin, Özkan, Orçun Toksöz, ve Aslıhan Çetinbaş Genç. “Assessment of the UV-B absorbing compounds’ absorbance levels in pollen grains of hazelnut genotypes”. Anatolian Journal of Botany 9, sy. 2 (Ekim 2025): 176-81. https://doi.org/10.30616/ajb.1730224.
EndNote Kilin Ö, Toksöz O, Çetinbaş Genç A (01 Ekim 2025) Assessment of the UV-B absorbing compounds’ absorbance levels in pollen grains of hazelnut genotypes. Anatolian Journal of Botany 9 2 176–181.
IEEE Ö. Kilin, O. Toksöz, ve A. Çetinbaş Genç, “Assessment of the UV-B absorbing compounds’ absorbance levels in pollen grains of hazelnut genotypes”, Ant J Bot, c. 9, sy. 2, ss. 176–181, 2025, doi: 10.30616/ajb.1730224.
ISNAD Kilin, Özkan vd. “Assessment of the UV-B absorbing compounds’ absorbance levels in pollen grains of hazelnut genotypes”. Anatolian Journal of Botany 9/2 (Ekim2025), 176-181. https://doi.org/10.30616/ajb.1730224.
JAMA Kilin Ö, Toksöz O, Çetinbaş Genç A. Assessment of the UV-B absorbing compounds’ absorbance levels in pollen grains of hazelnut genotypes. Ant J Bot. 2025;9:176–181.
MLA Kilin, Özkan vd. “Assessment of the UV-B absorbing compounds’ absorbance levels in pollen grains of hazelnut genotypes”. Anatolian Journal of Botany, c. 9, sy. 2, 2025, ss. 176-81, doi:10.30616/ajb.1730224.
Vancouver Kilin Ö, Toksöz O, Çetinbaş Genç A. Assessment of the UV-B absorbing compounds’ absorbance levels in pollen grains of hazelnut genotypes. Ant J Bot. 2025;9(2):176-81.

Anadolu Botanik Dergisi CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1 ile lisanslıdır.