Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of total phenolic and flavonoid contents and DPPH radical scavenging activity in Cotoneaster coriaceus Franch. extracts

Yıl 2025, Cilt: 9 Sayı: 2, 163 - 168
https://doi.org/10.30616/ajb.1755534

Öz

This study aimed to evaluate the total phenolic and flavonoid contents, as well as the antioxidant capacities, of Cotoneaster coriaceus Franch. fruit and leaf extracts obtained using different solvents (acetone, ethyl acetate, and water). The highest levels of total phenolics (996.41 ± 8.30 µg GAE/mg extract) and flavonoids (403.53 ± 2.04 µg QE/mg extract) were detected in the leaf acetone extract. The leaf water and fruit acetone extracts also exhibited substantial phenolic and flavonoid contents. Among fruit extracts, acetone extract showed the highest phenolic (773.41 ± 12.67 µg GAE/mg extract) and flavonoid (135.28 ± 3.55 µg QE/mg extract) concentrations. The leaf ethyl acetate extract had a notably high flavonoid content (339.95 ± 3.97 µg QE/mg extract) despite its lower phenolic level. The antioxidant capacities of the extracts were assessed using the DPPH radical scavenging assay at various concentrations (12.5–400 µg/mL). All extracts exhibited a concentration-dependent increase in antioxidant activity (p < 0.05), with the acetone extracts showing the highest scavenging capacity. The leaf acetone extract displayed >92% activity at 100 µg/mL. IC50 values further confirmed the antioxidant strength, with the lowest IC50 (10.55 µg/mL) observed in the leaf acetone extract, followed by the leaf water and fruit acetone extracts. Overall, these findings suggest that both plant part and solvent type significantly influence the extraction of bioactive compounds, with leaf acetone extracts offering the most promising antioxidant potential.

Kaynakça

  • Akbari B, Baghaei‐Yazdi N, Bahmaie M, Mahdavi Abhari F (2022). The role of plant‐derived natural antioxidants in reduction of oxidative stress. BioFactors 48(3): 611–633.
  • Ashraf MV, Khan S, Misri S, Gaira KS, Rawat S, Rawat B, Khan MAH, Shah AA, Asgher M, Ahmad S (2024). High-altitude medicinal plants as promising source of phytochemical antioxidants to combat lifestyle-associated oxidative stress-induced disorders. Pharmaceuticals 17(8): 975.
  • Asraoui F, Kounnoun A, Cadi H El, Cacciola F, Majdoub YO El, Alibrando F, Mandolfino F, Dugo P, Mondello L, Louajri A (2021). Phytochemical investigation and antioxidant activity of Globularia alypum L. Molecules 26(3): 759.
  • Awad AM, Kumar P, Ismail-Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ (2021). Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants 10(9): 1465.
  • Chatepa LEC, Mwamatope B, Chikowe I, Masamba KG (2024). Effects of solvent extraction on the phytoconstituents and in vitro antioxidant activity properties of leaf extracts of the two selected medicinal plants from Malawi. BMC Complementary Medicine and Therapies 24(1): 317.
  • Dahmouni S, Bengharbi Z, Benabdelmoumene D, Benamar N, Qadi WSM, Dawoud EAD, Al-Olayan E, Dahimi O, Moreno A, Zainudin MAM, Mediani A (2025). Assessment of the nutritional composition, antimicrobial potential, anticoccidial, and antioxidant activities of Arthospira platensis in Broilers. Biology-Basel 14(4): 379.
  • Doga Atıcı Y, Dogan M, Emsen B, Yıldırım H (2025). Machine learning-assisted evaluation of antioxidant and metal chelating capacities in in vitro propagated Ceratophyllum demersum L. under different LED light conditions. Plant Cell, Tissue and Organ Culture 161: 41.
  • Ed-Dahmani I, El Fadili M, Kandsi F, Conte R, El Atki Y, Kara M, Assouguem A, Touijer H, Lfitat A, Nouioura G (2024). Phytochemical, antioxidant activity, and toxicity of wild medicinal plant of Melitotus albus extracts, in vitro and in silico approaches. ACS Omega 9(8): 9236–9246.
  • Goura K, Legrifi I, Kallali NS, Taoussi M, Kenfaoui J, Meddich A, Esmaeel Q, Ait Barka E, Lahlali R (2025). Beyond survival: the role of secondary metabolites in plant defense mechanisms. Journal of Crop Health 77(4): 121.
  • Gutiérrez-del-Río I, López-Ibáñez S, Magadán-Corpas P, Fernández-Calleja L, Pérez-Valero Á, Tuñón-Granda M, Miguélez EM, Villar CJ, Lombó F (2021). Terpenoids and polyphenols as natural antioxidant agents in food preservation. Antioxidants 10(8): 1264.
  • Hajam YA, Lone R, Kumar R (2023). Role of plant phenolics against reactive oxygen species (ROS) induced oxidative stress and biochemical alterations. In: Plant Phenolics in Abiotic Stress Management. Springer, pp 125–147.
  • Hassanpour SH, Doroudi A (2023). Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. Avicenna Journal of Phytomedicine 13(4): 354–376.
  • Houldsworth A (2024). Role of oxidative stress in neurodegenerative disorders: a review of reactive oxygen species and prevention by antioxidants. Brain Communications 6(1): fcad356.
  • Ivesa N, Buric P, Bursic M, Kovacic I, Paliaga P, Pustijanac E, Segulja S, Modrusan A, Bilic J, Millotti G (2024). A review on nutrients, phytochemicals, health benefits and applications of the green seaweed Caulerpa racemosa (Forsskal) J. Agardh. Journal of Applied Phycology 36(6): 3451–3473.
  • Kicel A (2020). An overview of the genus Cotoneaster (Rosaceae): phytochemistry, biological activity, and toxicology. Antioxidants 9(10): 1002.
  • Kicel A, Kolodziejczyk-Czepas J, Owczarek A, Marchelak A, Sopinska M, Ciszewski P, Nowak P, Olszewska MA (2018a). Polyphenol-rich extracts from Cotoneaster leaves inhibit pro-inflammatory enzymes and protect human plasma components against oxidative stress in vitro. Molecules 23(10): 2472.
  • Kicel A, Kolodziejczyk-Czepas J, Owczarek A, Rutkowska M, Wajs-Bonikowska A, Granica S, Nowak P, Olszewska MA (2018b). Multifunctional phytocompounds in Cotoneaster fruits: phytochemical profiling, cellular safety, anti‐inflammatory and antioxidant effects in chemical and human plasma models in vitro. Oxidative Medicine and Cellular Longevity 2018(1): 3482521.
  • Kıran TR, Otlu O, Karabulut AB (2023). Oxidative stress and antioxidants in health and disease. Journal of Laboratory Medicine 47(1): 1–11.
  • Kok O, Emsen B, Surmen B (2023). Screening of in vitro cytotoxicity and antioxidant potential of selected endemic plants in Turkey. Journal of Taibah University for Science 17(1): 2217369.
  • Molnar M, Kovac MJ, Pavic V (2024). A comprehensive analysis of diversity, structure, biosynthesis and extraction of biologically active tannins from various plant-based materials using deep eutectic solvents. Molecules 29(11): 2615.
  • Mukherjee S, Chopra H, Goyal R, Jin S, Dong Z, Das T, Bhattacharya T (2024). Therapeutic effect of targeted antioxidant natural products. Discover Nano 19(1): 144.
  • Muscolo A, Mariateresa O, Giulio T, Mariateresa R (2024). Oxidative stress: the role of antioxidant phytochemicals in the prevention and treatment of diseases. International Journal of Molecular Sciences 25(6): 3264.
  • Palaiogiannis D, Chatzimitakos T, Athanasiadis V, Bozinou E, Makris DP, Lalas SI (2023). Successive solvent extraction of polyphenols and flavonoids from Cistus creticus L. leaves. Oxygen 3(3): 274–286.
  • Parcheta M, Swislocka R, Orzechowska S, Akimowicz M, Choinska R, Lewandowski W (2021). Recent developments in effective antioxidants: the structure and antioxidant properties. Materials 14(8): 1984.
  • Rajhard S, Hladnik L, Vicente FA, Srcic S, Grilc M, Likozar B (2021). Solubility of luteolin and other polyphenolic compounds in water, nonpolar, polar aprotic and protic solvents by applying FTIR/HPLC. Processes 9(11): 1952.
  • Rao MJ, Zheng B (2025). The role of polyphenols in abiotic stress tolerance and their antioxidant properties to scavenge reactive oxygen species and free radicals. Antioxidants 14(1): 74.
  • Sawicki T, Jabłońska M, Danielewicz A, Przybyłowicz KE (2024). Phenolic compounds profile and antioxidant capacity of plant-based protein supplements. Molecules 29(9): 2101.
  • Selvaraj NR, Nandan D, Nair BG, Nair VA, Venugopal P, Aradhya R (2025). Oxidative stress and redox imbalance: common mechanisms in cancer stem cells and neurodegenerative diseases. Cells 14(7): 511.
  • Stoia M, Oancea S (2022). Low-molecular-weight synthetic antioxidants: classification, pharmacological profile, effectiveness and trends. Antioxidants 11(4): 638.
  • Tumilaar SG, Hardianto A, Dohi H, Kurnia D (2024). A comprehensive review of free radicals, oxidative stress, and antioxidants: overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. Journal of Chemistry 2024: 5594386.
  • Yeshi K, Crayn D, Ritmejeryte E, Wangchuk P (2022). Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules 27(1): 313.
  • Zhao Y-S, Eweys AS, Zhang J-Y, Zhu Y, Bai J, Darwesh OM, Zhang H-B, Xiao X (2021). Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants 10(12): 2004.

Cotoneaster coriaceus Franch. ekstraktlarında toplam fenolik ve flavonoid içeriklerinin ve DPPH radikal temizleme aktivitesinin değerlendirilmesi

Yıl 2025, Cilt: 9 Sayı: 2, 163 - 168
https://doi.org/10.30616/ajb.1755534

Öz

Bu çalışma, Cotoneaster coriaceus Franch. meyve ve yaprak ekstraktlarının toplam fenolik ve flavonoid içerikleri ile antioksidan kapasitelerini farklı çözücüler (asetonu, etil asetat ve su) kullanarak değerlendirmeyi amaçlamıştır. En yüksek toplam fenolik (996.41 ± 8.30 µg GAE/mg ekstrakt) ve flavonoid (403.53 ± 2.04 µg QE/mg ekstrakt) düzeyleri yaprak aseton ekstraktında tespit edilmiştir. Yaprak su ekstraktı ve meyve aseton ekstraktı da kayda değer fenolik ve flavonoid içeriklerine sahipti. Meyve ekstraktları arasında, aseton ekstraktı en yüksek fenolik (773.41 ± 12.67 µg GAE/mg ekstrakt) ve flavonoid (135.28 ± 3.55 µg QE/mg ekstrakt) konsantrasyonlarını göstermiştir. Yaprak etil asetat ekstraktı düşük fenolik içeriğe rağmen oldukça yüksek flavonoid içeriği (339.95 ± 3.97 µg QE/mg ekstrakt) sergilemiştir. Ekstraktların antioksidan kapasiteleri, çeşitli konsantrasyonlarda (12.5–400 µg/mL) DPPH radikal giderme testi ile değerlendirilmiştir. Tüm ekstraktlar, konsantrasyona bağlı olarak artan antioksidan aktivite göstermiştir (p < 0.05) ve en yüksek radikal giderme kapasitesi aseton ekstraktlarında gözlenmiştir. Yaprak aseton ekstraktı, 100 µg/mL konsantrasyonda %92’nin üzerinde aktivite göstermiştir. IC50 değerleri de antioksidan etkinliği desteklemiş, en düşük IC50 değeri (10.55 µg/mL) yaprak aseton ekstraktında, ardından yaprak su ve meyve aseton ekstraktlarında gözlemlenmiştir. Genel olarak, bu bulgular bitki kısmı ve çözücü tipinin biyolojik olarak aktif bileşiklerin ekstraksiyonunda önemli rol oynadığını, özellikle yaprak aseton ekstraktının en yüksek antioksidan potansiyele sahip olduğunu göstermektedir.

Kaynakça

  • Akbari B, Baghaei‐Yazdi N, Bahmaie M, Mahdavi Abhari F (2022). The role of plant‐derived natural antioxidants in reduction of oxidative stress. BioFactors 48(3): 611–633.
  • Ashraf MV, Khan S, Misri S, Gaira KS, Rawat S, Rawat B, Khan MAH, Shah AA, Asgher M, Ahmad S (2024). High-altitude medicinal plants as promising source of phytochemical antioxidants to combat lifestyle-associated oxidative stress-induced disorders. Pharmaceuticals 17(8): 975.
  • Asraoui F, Kounnoun A, Cadi H El, Cacciola F, Majdoub YO El, Alibrando F, Mandolfino F, Dugo P, Mondello L, Louajri A (2021). Phytochemical investigation and antioxidant activity of Globularia alypum L. Molecules 26(3): 759.
  • Awad AM, Kumar P, Ismail-Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ (2021). Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants 10(9): 1465.
  • Chatepa LEC, Mwamatope B, Chikowe I, Masamba KG (2024). Effects of solvent extraction on the phytoconstituents and in vitro antioxidant activity properties of leaf extracts of the two selected medicinal plants from Malawi. BMC Complementary Medicine and Therapies 24(1): 317.
  • Dahmouni S, Bengharbi Z, Benabdelmoumene D, Benamar N, Qadi WSM, Dawoud EAD, Al-Olayan E, Dahimi O, Moreno A, Zainudin MAM, Mediani A (2025). Assessment of the nutritional composition, antimicrobial potential, anticoccidial, and antioxidant activities of Arthospira platensis in Broilers. Biology-Basel 14(4): 379.
  • Doga Atıcı Y, Dogan M, Emsen B, Yıldırım H (2025). Machine learning-assisted evaluation of antioxidant and metal chelating capacities in in vitro propagated Ceratophyllum demersum L. under different LED light conditions. Plant Cell, Tissue and Organ Culture 161: 41.
  • Ed-Dahmani I, El Fadili M, Kandsi F, Conte R, El Atki Y, Kara M, Assouguem A, Touijer H, Lfitat A, Nouioura G (2024). Phytochemical, antioxidant activity, and toxicity of wild medicinal plant of Melitotus albus extracts, in vitro and in silico approaches. ACS Omega 9(8): 9236–9246.
  • Goura K, Legrifi I, Kallali NS, Taoussi M, Kenfaoui J, Meddich A, Esmaeel Q, Ait Barka E, Lahlali R (2025). Beyond survival: the role of secondary metabolites in plant defense mechanisms. Journal of Crop Health 77(4): 121.
  • Gutiérrez-del-Río I, López-Ibáñez S, Magadán-Corpas P, Fernández-Calleja L, Pérez-Valero Á, Tuñón-Granda M, Miguélez EM, Villar CJ, Lombó F (2021). Terpenoids and polyphenols as natural antioxidant agents in food preservation. Antioxidants 10(8): 1264.
  • Hajam YA, Lone R, Kumar R (2023). Role of plant phenolics against reactive oxygen species (ROS) induced oxidative stress and biochemical alterations. In: Plant Phenolics in Abiotic Stress Management. Springer, pp 125–147.
  • Hassanpour SH, Doroudi A (2023). Review of the antioxidant potential of flavonoids as a subgroup of polyphenols and partial substitute for synthetic antioxidants. Avicenna Journal of Phytomedicine 13(4): 354–376.
  • Houldsworth A (2024). Role of oxidative stress in neurodegenerative disorders: a review of reactive oxygen species and prevention by antioxidants. Brain Communications 6(1): fcad356.
  • Ivesa N, Buric P, Bursic M, Kovacic I, Paliaga P, Pustijanac E, Segulja S, Modrusan A, Bilic J, Millotti G (2024). A review on nutrients, phytochemicals, health benefits and applications of the green seaweed Caulerpa racemosa (Forsskal) J. Agardh. Journal of Applied Phycology 36(6): 3451–3473.
  • Kicel A (2020). An overview of the genus Cotoneaster (Rosaceae): phytochemistry, biological activity, and toxicology. Antioxidants 9(10): 1002.
  • Kicel A, Kolodziejczyk-Czepas J, Owczarek A, Marchelak A, Sopinska M, Ciszewski P, Nowak P, Olszewska MA (2018a). Polyphenol-rich extracts from Cotoneaster leaves inhibit pro-inflammatory enzymes and protect human plasma components against oxidative stress in vitro. Molecules 23(10): 2472.
  • Kicel A, Kolodziejczyk-Czepas J, Owczarek A, Rutkowska M, Wajs-Bonikowska A, Granica S, Nowak P, Olszewska MA (2018b). Multifunctional phytocompounds in Cotoneaster fruits: phytochemical profiling, cellular safety, anti‐inflammatory and antioxidant effects in chemical and human plasma models in vitro. Oxidative Medicine and Cellular Longevity 2018(1): 3482521.
  • Kıran TR, Otlu O, Karabulut AB (2023). Oxidative stress and antioxidants in health and disease. Journal of Laboratory Medicine 47(1): 1–11.
  • Kok O, Emsen B, Surmen B (2023). Screening of in vitro cytotoxicity and antioxidant potential of selected endemic plants in Turkey. Journal of Taibah University for Science 17(1): 2217369.
  • Molnar M, Kovac MJ, Pavic V (2024). A comprehensive analysis of diversity, structure, biosynthesis and extraction of biologically active tannins from various plant-based materials using deep eutectic solvents. Molecules 29(11): 2615.
  • Mukherjee S, Chopra H, Goyal R, Jin S, Dong Z, Das T, Bhattacharya T (2024). Therapeutic effect of targeted antioxidant natural products. Discover Nano 19(1): 144.
  • Muscolo A, Mariateresa O, Giulio T, Mariateresa R (2024). Oxidative stress: the role of antioxidant phytochemicals in the prevention and treatment of diseases. International Journal of Molecular Sciences 25(6): 3264.
  • Palaiogiannis D, Chatzimitakos T, Athanasiadis V, Bozinou E, Makris DP, Lalas SI (2023). Successive solvent extraction of polyphenols and flavonoids from Cistus creticus L. leaves. Oxygen 3(3): 274–286.
  • Parcheta M, Swislocka R, Orzechowska S, Akimowicz M, Choinska R, Lewandowski W (2021). Recent developments in effective antioxidants: the structure and antioxidant properties. Materials 14(8): 1984.
  • Rajhard S, Hladnik L, Vicente FA, Srcic S, Grilc M, Likozar B (2021). Solubility of luteolin and other polyphenolic compounds in water, nonpolar, polar aprotic and protic solvents by applying FTIR/HPLC. Processes 9(11): 1952.
  • Rao MJ, Zheng B (2025). The role of polyphenols in abiotic stress tolerance and their antioxidant properties to scavenge reactive oxygen species and free radicals. Antioxidants 14(1): 74.
  • Sawicki T, Jabłońska M, Danielewicz A, Przybyłowicz KE (2024). Phenolic compounds profile and antioxidant capacity of plant-based protein supplements. Molecules 29(9): 2101.
  • Selvaraj NR, Nandan D, Nair BG, Nair VA, Venugopal P, Aradhya R (2025). Oxidative stress and redox imbalance: common mechanisms in cancer stem cells and neurodegenerative diseases. Cells 14(7): 511.
  • Stoia M, Oancea S (2022). Low-molecular-weight synthetic antioxidants: classification, pharmacological profile, effectiveness and trends. Antioxidants 11(4): 638.
  • Tumilaar SG, Hardianto A, Dohi H, Kurnia D (2024). A comprehensive review of free radicals, oxidative stress, and antioxidants: overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. Journal of Chemistry 2024: 5594386.
  • Yeshi K, Crayn D, Ritmejeryte E, Wangchuk P (2022). Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules 27(1): 313.
  • Zhao Y-S, Eweys AS, Zhang J-Y, Zhu Y, Bai J, Darwesh OM, Zhang H-B, Xiao X (2021). Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants 10(12): 2004.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Articles
Yazarlar

Yazgi Doga Atici 0009-0001-0239-1063

Buğrahan Emsen 0000-0002-9636-2596

Muhammet Doğan 0000-0003-3138-5903

Erken Görünüm Tarihi 13 Eylül 2025
Yayımlanma Tarihi 10 Ekim 2025
Gönderilme Tarihi 2 Ağustos 2025
Kabul Tarihi 8 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Atici, Y. D., Emsen, B., & Doğan, M. (2025). Evaluation of total phenolic and flavonoid contents and DPPH radical scavenging activity in Cotoneaster coriaceus Franch. extracts. Anatolian Journal of Botany, 9(2), 163-168. https://doi.org/10.30616/ajb.1755534
AMA Atici YD, Emsen B, Doğan M. Evaluation of total phenolic and flavonoid contents and DPPH radical scavenging activity in Cotoneaster coriaceus Franch. extracts. Ant J Bot. Eylül 2025;9(2):163-168. doi:10.30616/ajb.1755534
Chicago Atici, Yazgi Doga, Buğrahan Emsen, ve Muhammet Doğan. “Evaluation of total phenolic and flavonoid contents and DPPH radical scavenging activity in Cotoneaster coriaceus Franch. extracts”. Anatolian Journal of Botany 9, sy. 2 (Eylül 2025): 163-68. https://doi.org/10.30616/ajb.1755534.
EndNote Atici YD, Emsen B, Doğan M (01 Eylül 2025) Evaluation of total phenolic and flavonoid contents and DPPH radical scavenging activity in Cotoneaster coriaceus Franch. extracts. Anatolian Journal of Botany 9 2 163–168.
IEEE Y. D. Atici, B. Emsen, ve M. Doğan, “Evaluation of total phenolic and flavonoid contents and DPPH radical scavenging activity in Cotoneaster coriaceus Franch. extracts”, Ant J Bot, c. 9, sy. 2, ss. 163–168, 2025, doi: 10.30616/ajb.1755534.
ISNAD Atici, Yazgi Doga vd. “Evaluation of total phenolic and flavonoid contents and DPPH radical scavenging activity in Cotoneaster coriaceus Franch. extracts”. Anatolian Journal of Botany 9/2 (Eylül2025), 163-168. https://doi.org/10.30616/ajb.1755534.
JAMA Atici YD, Emsen B, Doğan M. Evaluation of total phenolic and flavonoid contents and DPPH radical scavenging activity in Cotoneaster coriaceus Franch. extracts. Ant J Bot. 2025;9:163–168.
MLA Atici, Yazgi Doga vd. “Evaluation of total phenolic and flavonoid contents and DPPH radical scavenging activity in Cotoneaster coriaceus Franch. extracts”. Anatolian Journal of Botany, c. 9, sy. 2, 2025, ss. 163-8, doi:10.30616/ajb.1755534.
Vancouver Atici YD, Emsen B, Doğan M. Evaluation of total phenolic and flavonoid contents and DPPH radical scavenging activity in Cotoneaster coriaceus Franch. extracts. Ant J Bot. 2025;9(2):163-8.

Anadolu Botanik Dergisi CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1 ile lisanslıdır.