Araştırma Makalesi
BibTex RIS Kaynak Göster

Dünyada Yapay Hafif Agregalı Yapısal Beton Uygulamaları ve Doğal Pomza Agreganın Kullanılabılırlığı = Expanded Lightweight Aggregates In The Worldwide Structural Concrete Applications And The Usability Of Natural Pumice Aggregates

Yıl 2017, Cilt: 1 Sayı: 2, 59 - 67, 01.02.2018

Öz

Özet

20. yüzyılın başlarından itibaren yapay hafif agreganın üretilmesi ve gitgide yaygınlaşması; antik zamanlardan

beri kullanılan doğal hafif agregaların uygulama alanlarının daralmasına neden olmuştur. Yapay hafif agregaların

betonda kullanımı ile, betonarme veya ön üretimli beton yapılarda ağırlıktan tasarruf sağlanırken, istenen

performans kriterleri de daha kolaylıkla yerine getirilebilmektedir. Doğal hafif agrega kullanımına ilginin azalması,

araştırma ve üretimin düşük dayanımlı taşıyıcı olmayan yapı elemanlarına (blok vb) doğru değişimine neden olmuştur.

Bu çalışmada, hafif agregalı betonun tarihçesi ve betondan beklenen mekanik özelliklere ilave olarak; iri

agreganın tamamının hafif agrega olarak seçilmesi durumunda, yüksek dayanım ve yüksek performans kriterlerinin

karşılanabilirliği literatürdeki güncel deneysel veriler ile incelenmiştir. Ayrıca, Türkiye’nin önemli bir doğal

kaynağı olan, iri agrega olarak ancak bloklarda değerlendirilen bims (pomza) agreganın, dünyadaki örnekler ışığında,

taşıyıcı sistem elemanlarında kullanılabilirliği yorumlanmak-tadır.

Abstract

Artificial lightweight production since the early 20th century and its commonly utilization caused to consumption

reduction of natural lightweight aggregates used since ancient times. The usage of lightweight aggregates in concrete

lead the saving in dead weight and to provide the performance criteria more easily. The demand decrease

in natural lightweight aggregate tended their consumptions to the nonstructural lightweight masonry blocks.

The history of lightweight-aggregate concrete and mechanical properties to be anticipated are presented in this

study. From the current literature, the requirements of high strength and high performance criteria were investigated

for the case of supplying the coarse aggregates fully from lightweight aggregates. In addition, pumice,

which is an important natural source of Turkey, is examined in view of usability in structural concrete.

Kaynakça

  • ACI 201.2 R-01. 2001. Guide to durable concrete. American Concrete Institute, Farmington Hills, Michigan.
  • ACI 213R-03. 2003. Guide for structural lightweight-aggregate concrete. ACI Manual of Concrete Practice, Part 1: Materials and General Properties of Concrete. American Concrete Institute, Farmington Hills, Michigan.
  • Field reference manual 2005. Specification for Structural Concrete ACI 301-05 with selected ACI references, American Concrete Institute, Farmington Hills, Michigan.
  • ASTM C330/C330M-17a. Specification for lightweight aggregates for structural concrete, Annual Book of ASTM Standards, Philadelphia.
  • Castrodale, R.W. 2006. Lightweight high performance concrete for bridge decks. Presentation in Virginia Concrete Conference.
  • Elmastaş, N. 2012. Türkiye ekonomisi için önemi giderek artan bir maden: pomza (sünger taşı). Uluslararası Sosyal Araştırmalar Dergisi 5(23), 197-206.
  • Fiorato, A.E. 1981. “Inspection guide for reinforced concrete vessels” Final Report, Vol.2, No. CG-M-11-81, Portland Cement Association, Commentary, U.S. Department of Transportation.
  • Girgin, Z.C. 2017. Hafif agregalı yüksek performanslı beton ve prefabrikasyon uygulamaları. Beton Prefabrikasyon, (121-122), 5-12.
  • Gündüz, L. 2008. The effects of pumice aggregate/cement ratios on the low-strength concrete properties. Construction and Building Materials (22), 721–728.
  • Gündüz, L. ve N. Şapcı 2005. Türkiye pomza madenciliği, endüstrisi ve Türkiye açısından önemi (gelişen yeni bir sektör), 19. Uluslararası Madencilik Kongresi ve Fuarı, IMCET2005, İzmir, Türkiye.
  • Hossain, K.M.A. 2004. Properties of volcanic pumice based cement and lightweight concrete. Cement and Concrete Research (34), 283-291.
  • Hossain, K.M.A, S. Ahmed and M.Lachemi. 2011. Lightweight concrete incorporating pumice based blended cement and aggregate: Mechanical and durability characteristics. Construction and Building Materials (25), 1186–1195.
  • Ji, T., Zhang,B., Y.Z.Zhuang, and H.C Wu 2015. Effect of Lightweight Aggregate on Early-Age Autogenous Shrinkage of Concrete. ACI Materials Journal 112(3), 355-364.
  • McSaveney, L.G. 2000. The Wellington stadium: New Zealand’s first use of high strength lightweight precast concrete. Proceedings 2nd Int. Symposium on Structural Lightweight Aggregate Concrete, Oslo, Norvege.
  • Neville, A. M., and J.J. Brooks. 2010. Concrete Technology (2nd ed.) Prentice Hall Harlow, England.
  • Ries, J.P., J.Speck and K.S.Harmon. 2010. Lightweight aggregate optimizes the sustainability of concrete, through weight reduction, internal curing, extended service life, and lower carbon footprint. Concrete Sustainability Conference. National Ready Mixed Concrete Association, Tempe, AZ.
  • Özkan, Ş.G., ve G.Tuncer. 2001. Pomza madenciliğine genel bir bakış. 4.Endüstriyel Hammaddeler Sempozyumu,İzmir, Türkiye.
  • Zuritz C., Y.H.Chai and et.al. 2006. Health monitoring of the New Benicia-Martinez Bridge instrumentation plan and preliminary results. Caltrans Bridge Research Conference.
  • Yeginobali, A., K.G.Sobolev, S.V. Soboleva and M.Tokyay. High strength natural lightweight aggregate concrete with silica fume. ACI SP-178-38, 739-758.
  • Green, S.M.F., N.J.Brooke, L.G. McSaveney and J.M. Ingham. 2011 Mixture Design Development and Performance Verification of Structural Lightweight Pumice Aggregate Concrete. Journal of Materials in Civil Engineering 23 (8), 1211-1219.
  • Yolcu, C. 2017. Sürdürülebilir taşıyıcı sistem tasarımında pomza agregaların kullanılabilirliği, mekanik büyüklükler ve uygulama kriterleri. Yayınlanmamış Yüksek Lisans Tezi, YTÜ Fen Bilimleri Enstitüsü, İstanbul.
Yıl 2017, Cilt: 1 Sayı: 2, 59 - 67, 01.02.2018

Öz

Kaynakça

  • ACI 201.2 R-01. 2001. Guide to durable concrete. American Concrete Institute, Farmington Hills, Michigan.
  • ACI 213R-03. 2003. Guide for structural lightweight-aggregate concrete. ACI Manual of Concrete Practice, Part 1: Materials and General Properties of Concrete. American Concrete Institute, Farmington Hills, Michigan.
  • Field reference manual 2005. Specification for Structural Concrete ACI 301-05 with selected ACI references, American Concrete Institute, Farmington Hills, Michigan.
  • ASTM C330/C330M-17a. Specification for lightweight aggregates for structural concrete, Annual Book of ASTM Standards, Philadelphia.
  • Castrodale, R.W. 2006. Lightweight high performance concrete for bridge decks. Presentation in Virginia Concrete Conference.
  • Elmastaş, N. 2012. Türkiye ekonomisi için önemi giderek artan bir maden: pomza (sünger taşı). Uluslararası Sosyal Araştırmalar Dergisi 5(23), 197-206.
  • Fiorato, A.E. 1981. “Inspection guide for reinforced concrete vessels” Final Report, Vol.2, No. CG-M-11-81, Portland Cement Association, Commentary, U.S. Department of Transportation.
  • Girgin, Z.C. 2017. Hafif agregalı yüksek performanslı beton ve prefabrikasyon uygulamaları. Beton Prefabrikasyon, (121-122), 5-12.
  • Gündüz, L. 2008. The effects of pumice aggregate/cement ratios on the low-strength concrete properties. Construction and Building Materials (22), 721–728.
  • Gündüz, L. ve N. Şapcı 2005. Türkiye pomza madenciliği, endüstrisi ve Türkiye açısından önemi (gelişen yeni bir sektör), 19. Uluslararası Madencilik Kongresi ve Fuarı, IMCET2005, İzmir, Türkiye.
  • Hossain, K.M.A. 2004. Properties of volcanic pumice based cement and lightweight concrete. Cement and Concrete Research (34), 283-291.
  • Hossain, K.M.A, S. Ahmed and M.Lachemi. 2011. Lightweight concrete incorporating pumice based blended cement and aggregate: Mechanical and durability characteristics. Construction and Building Materials (25), 1186–1195.
  • Ji, T., Zhang,B., Y.Z.Zhuang, and H.C Wu 2015. Effect of Lightweight Aggregate on Early-Age Autogenous Shrinkage of Concrete. ACI Materials Journal 112(3), 355-364.
  • McSaveney, L.G. 2000. The Wellington stadium: New Zealand’s first use of high strength lightweight precast concrete. Proceedings 2nd Int. Symposium on Structural Lightweight Aggregate Concrete, Oslo, Norvege.
  • Neville, A. M., and J.J. Brooks. 2010. Concrete Technology (2nd ed.) Prentice Hall Harlow, England.
  • Ries, J.P., J.Speck and K.S.Harmon. 2010. Lightweight aggregate optimizes the sustainability of concrete, through weight reduction, internal curing, extended service life, and lower carbon footprint. Concrete Sustainability Conference. National Ready Mixed Concrete Association, Tempe, AZ.
  • Özkan, Ş.G., ve G.Tuncer. 2001. Pomza madenciliğine genel bir bakış. 4.Endüstriyel Hammaddeler Sempozyumu,İzmir, Türkiye.
  • Zuritz C., Y.H.Chai and et.al. 2006. Health monitoring of the New Benicia-Martinez Bridge instrumentation plan and preliminary results. Caltrans Bridge Research Conference.
  • Yeginobali, A., K.G.Sobolev, S.V. Soboleva and M.Tokyay. High strength natural lightweight aggregate concrete with silica fume. ACI SP-178-38, 739-758.
  • Green, S.M.F., N.J.Brooke, L.G. McSaveney and J.M. Ingham. 2011 Mixture Design Development and Performance Verification of Structural Lightweight Pumice Aggregate Concrete. Journal of Materials in Civil Engineering 23 (8), 1211-1219.
  • Yolcu, C. 2017. Sürdürülebilir taşıyıcı sistem tasarımında pomza agregaların kullanılabilirliği, mekanik büyüklükler ve uygulama kriterleri. Yayınlanmamış Yüksek Lisans Tezi, YTÜ Fen Bilimleri Enstitüsü, İstanbul.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Cihan Yolcu Bu kişi benim

Z. Canan Girgin

Yayımlanma Tarihi 1 Şubat 2018
Gönderilme Tarihi 1 Şubat 2018
Yayımlandığı Sayı Yıl 2017 Cilt: 1 Sayı: 2

Kaynak Göster

APA Yolcu, C., & Girgin, Z. C. (2018). Dünyada Yapay Hafif Agregalı Yapısal Beton Uygulamaları ve Doğal Pomza Agreganın Kullanılabılırlığı = Expanded Lightweight Aggregates In The Worldwide Structural Concrete Applications And The Usability Of Natural Pumice Aggregates. AURUM Journal of Engineering Systems and Architecture, 1(2), 59-67.