Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı zımparalama parametreleri ile ısıl işlem uygulanmış Sarıçam’ın (Pinus sylvestris L.) yüzey pürüzlülüğünün Response Surface Methodology ile modellenmesi

Yıl 2025, Cilt: 11 Sayı: 2, 250 - 257, 31.12.2025
https://doi.org/10.53516/ajfr.1646979

Öz

Giriş ve Hedefler Bu çalışma, termal olarak modifiye edilmiş Sarıçam (Pinus sylvestris L.) odununun farklı zımparalama parametreleri ile yüzey pürüzlülüğünde meydana gelen değişimleri incelemeyi amaçlamaktadır.
Yöntemler Sarıçam odununa düşük sıcaklıkta 150°C’de ve yüksek sıcaklıkta 200°C’de 3 Atm sıcak buhar basıncında 2 saat ısıl işlem uygulanmıştır. Termal olarak değiştirilen örnekler 15, 30 ve 60 saniye boyunca 80, 150 ve 220 kum zımparalar ile zımparalanarak Ra (Ortalama pürüzlülük) ve Rz (Tepe-vadi yüksekliği) yüzey pürüzlülüğü değerleri iğne uçlu profilometre ile ölçülmüştür. Deney sayısını azaltmak ve matematiksel modeller üretmek için 3 faktörlü ve 3 seviyeli Central Composite Response Surface Metodology (RSM) tasarımı kullanılmıştır.
Bulgular En düşük yüzey pürüzlülüğü değerleri kontrol ve 220 kum ile zımparalanan örneklerde bulunmuştur. Zımpara kum büyüklüğünün yüzey pürüzlülüğünü en çok etkiyen parametre olduğu, fakat zımparalama süresinin pürüzlülüğü diğer parametreler kadar önemli ölçüde etkilemediği anlaşılmıştır.
Sonuçlar Ra ve Rz değerleri için oluşturulan matematiksel modellerin R2 değerleri sırasıyla %98,4 ve %98,2 olarak hesaplanmıştır. Bu sayede model ile yüzey pürüzlülük değerlerinin yüksek doğruluk oranında tahmin edileceği anlaşılmıştır.

Kaynakça

  • Baharoğlu, M., Nemli, G., Sarı, B., Bardak, S., Ayrılmış, N., 2012. The influence of moisture content of raw material on the physical and mechanical properties, surface roughness, wettability, and formaldehyde emission of particleboard composite. Composites Part B: Engineering, 43(5), 2448-2451.
  • Bakar, B. F. A., Hiziroglu, S., Tahir, P. M., 2013. Properties of some thermally modified wood species. Materials and Design, 43, 348-355.
  • Barlović, N., Čavlović, A. O., Pervan, S., Klarić, M., Prekrat, S., Španić, N., 2022. Chemical changes and environmental issues of heat treatment of wood. Drvna Industrija, 73(2), 245-251.
  • Baysal, E., Degirmentepe, S., Toker, H., Turkoglu, T., 2014. Some mechanical and physical properties of AD-KD 5 impregnated and thermally modified Scots pine wood. Wood Research, 59(2), 283-296.
  • Bekhta, P., Krystofiak, T., Lis, B., Bekhta, N., 2022. The impact of sanding and thermal compression of wood, varnish type and artificial aging in indoor conditions on the varnished surface color. Forests, 13(2), 300.
  • Bekhta, P., Lis, B., Krystofiak, T., Bekhta, N., 2022. Surface Roughness of Varnished Wood Pre-Treated Using Sanding and Thermal Compression. Forests, 13(5), 777.
  • Brahmia, F. Z., Alpar, T., Horváth, P. G., Csiha, C., 2020. Comparative analysis of wettability with fire retardants of Poplar (Populus cv. euramericana) and Scots pine (Pinus sylvestris L.). Surfaces and Interfaces, 18, 1-6.
  • Contuzzi, N., Morvayová, A., Fabbiano, L., Casalino, G., 2024. Comparison of the performances of Statistical and Artificial Neural Network models in the prediction of geometry and density of PLA/wood biocomposite cubes manufactured by FDM. The International Journal of Advanced Manufacturing Technology, 133(11), 5849-5870.
  • Croitoru, C., Spirchez, C., Lunguleasa, A., Cristea, D., Roata, I. C., Pop, M. A., Bedo, T., Stanciu, E. M., Pascu, A., 2018. Surface properties of thermally treated composite wood panels. Applied Surface Science, 438, 114-126.
  • Esteves, B., Pereira, H. M., 2009. Wood modification by heat treatment: A review. BioResources, 4(1), 370-404.
  • Gurau, L., Irle, M., Buchner, J., 2019. Surface roughness of heat treated and untreated beech (Fagus sylvatica L.) wood after sanding. BioResources, 14(2), 4512-4531.
  • Gurleyen, L., Ayata, U., Esteves, B., Cakicier, N., 2017. Effects of heat treatment on the adhesion strength, pendulum hardness, surface roughness, color and glossiness of Scots pine laminated parquet with two different types of UV varnish application. Maderas. Ciencia y tecnología, 19(2), 213-224.
  • Hanincová, L., Pędzik, M., Majka, J., Sydor, M., Rogoziński, T., 2024. Influence of thermal modification and sanding parameters on finest particle content in pinewood dust. Wood Material Science and Engineering, 19(4), 887-895.
  • Huang, W., Chen, H., Jin, Q., Shi, J., Guo, X., Na, B., 2025. Prediction of milling performance of thermally modified wood based on machine learning. European Journal of Wood and Wood Products, 83(63), 1-11.
  • İmirzi, H. Ö., Ülker, O., Burdurlu, E., 2014. Effect of densification temperature and some surfacing techniques on the surface roughness of densified Scots pine (Pinus sylvestris L.). BioResources, 9(1). 191-209.
  • Kačík, F., Kúdela, J., Výbohová, E., Jurczyková, T., Čabalová, I., Adamčík, L., Kmeťová, E., Kačíková, D., 2025. Impact of thermal treatment and accelerated aging on the chemical composition, morphology, and properties of spruce wood. Forests, 16(1), 180.
  • Korkut, S., Budakci, M., 2010. The effects of high-temperature heat-treatment on physical properties and surface roughness of rowan (Sorbus aucuparia L.) wood. Wood Research, 55(1), 67-78.
  • Kozakiewicz, P., Laskowska, A., Drożdżek, M., Zawadzki, J., 2022. Influence of thermal modification in nitrogen atmosphere on physical and technological properties of European wood species with different structural features. Coatings, 12(11), 1663.
  • Li, R., He, C., Xu, W., Wang, X. A., 2022. Prediction of surface roughness of CO2 laser modified poplar wood via response surface methodology. Maderas. Ciencia y tecnología, 42(24), 1-12.
  • Neyses, B., Scharf, A., 2022. Using machine learning to predict the density profiles of surface-densified wood based on cross-sectional images. European Journal of Wood and Wood Products, 80(5), 1121-1133.
  • Obataya, E., Higashihara, T., 2017. Reversible and irreversible dimensional changes of heat-treated wood during alternate wetting and drying. Wood Science and Technology, 51, 739-749.
  • Olek, W., Bonarski, J. T., 2014. Effects of thermal modification on wood ultrastructure analyzed with crystallographic texture. Holzforschung, 68(6), 721-726.
  • Pelit, H., Arısüt, U., 2023. Roughness, wettability, and morphological properties of impregnated and densified wood materials. BioResources, 18(1), 429-446.
  • Ramamoorthy, S. K., 2025. Modelling of surface roughness and delamination in drilling PB panels with coated carbide spade drills-RSM approach. Journal of Materials Science Research and Reviews, 8(1), 64-77.
  • Salca, E. A., 2023. Effects of heat treatment applied to wood and veneers of various wood species. Advanced Research in Biological Science, 2, 74-101.
  • Salca, E. A., Hiziroglu, S., 2014. Evaluation of hardness and surface quality of different wood species as function of heat treatment. Materials and Design, 62, 416-423.
  • Sandberg, D., Kutnar, A., Mantanis, G., 2017. Wood modification technologies-a review. iForest-Biogeosciences and Forestry, 10(6), 895. Selvamuthu, D., Das, D., 2024. Introduction to Probability, Statistical Methods, Design of Experiments and Statistical Quality Control. University Text in the Mathematical Science Springer, India, 2024.
  • Soares, L. R. L., Almeida, C. C., Alves, M. C. S., Ferreira, B. S., Silva, A. C., 2019. Effects of Thermal Treatment before Plane Sanding on the Surface Quality of Corymbia citriodora Wood. BioResources, 14(2), 2576-2591.
  • Ulker, O., 2023. Properties of thermally modified Scots pine (Pinus sylvestris L.), Kazdağı fir (Abies equi-trojani Asch. et Sint.), and Eastern beech (Fagus orientalis L). BioResources, 18(3), 5351.
  • Vančo, M., Mazáň, A., Barcík, Š., Rajko, L., Koleda, P., Vyhnáliková, Z., Safin, R. R., 2017. Impact of selected technological, technical, and material factors on the quality of machined surface at face milling of thermally modified pine wood. BioResources, 12(3), 5140-5154.
  • Vidholdová, Z., Reinprecht, L., Pánek, M., 2023. The effect of outdoor weathering of thermally modified spruce and pine woods on their surface properties. Acta Facultatis Xylologiae Zvolen, 65(1), 23-34.

Modeling the surface roughness of Scots pine (Pinus sylvestris L.) heat treated with different sanding parameters with Response Surface Methodology

Yıl 2025, Cilt: 11 Sayı: 2, 250 - 257, 31.12.2025
https://doi.org/10.53516/ajfr.1646979

Öz

Background and aims This study aimed to investigate the changes in surface roughness of thermally modified Scots pine (Pinus sylvestris L.) wood with different sanding parameters. Methods Scots pine wood was heat treated at low temperature of 150°C and at high temperature of 200°C at 3 Atm hot steam pressure for 2 hours. Thermally modified samples were sanded with 80, 150 and 220 grit abrasives for 15, 30 and 60 seconds and the surface roughness values Ra (average roughness) and Rz (Peak-to-valley height) were measured with a needle-tip profilometer. To reduce the number of experiments and to produce mathematical models, 3 factors and 3 level central composite Response Surface Methodology (RSM) design was used.
Results The lowest surface roughness values were found in the control and 220 grit sanded samples. It was found that sandpaper grit size was the parameter that most significantly impacted surface roughness, but sanding time did not affect roughness as significantly as the other parameters.
Conclusion The R2 values of the mathematical models for Ra and Rz values were calculated as 98.4% and 98.2% respectively. This demonstrated that the model could predict surface roughness values with high accuracy.

Kaynakça

  • Baharoğlu, M., Nemli, G., Sarı, B., Bardak, S., Ayrılmış, N., 2012. The influence of moisture content of raw material on the physical and mechanical properties, surface roughness, wettability, and formaldehyde emission of particleboard composite. Composites Part B: Engineering, 43(5), 2448-2451.
  • Bakar, B. F. A., Hiziroglu, S., Tahir, P. M., 2013. Properties of some thermally modified wood species. Materials and Design, 43, 348-355.
  • Barlović, N., Čavlović, A. O., Pervan, S., Klarić, M., Prekrat, S., Španić, N., 2022. Chemical changes and environmental issues of heat treatment of wood. Drvna Industrija, 73(2), 245-251.
  • Baysal, E., Degirmentepe, S., Toker, H., Turkoglu, T., 2014. Some mechanical and physical properties of AD-KD 5 impregnated and thermally modified Scots pine wood. Wood Research, 59(2), 283-296.
  • Bekhta, P., Krystofiak, T., Lis, B., Bekhta, N., 2022. The impact of sanding and thermal compression of wood, varnish type and artificial aging in indoor conditions on the varnished surface color. Forests, 13(2), 300.
  • Bekhta, P., Lis, B., Krystofiak, T., Bekhta, N., 2022. Surface Roughness of Varnished Wood Pre-Treated Using Sanding and Thermal Compression. Forests, 13(5), 777.
  • Brahmia, F. Z., Alpar, T., Horváth, P. G., Csiha, C., 2020. Comparative analysis of wettability with fire retardants of Poplar (Populus cv. euramericana) and Scots pine (Pinus sylvestris L.). Surfaces and Interfaces, 18, 1-6.
  • Contuzzi, N., Morvayová, A., Fabbiano, L., Casalino, G., 2024. Comparison of the performances of Statistical and Artificial Neural Network models in the prediction of geometry and density of PLA/wood biocomposite cubes manufactured by FDM. The International Journal of Advanced Manufacturing Technology, 133(11), 5849-5870.
  • Croitoru, C., Spirchez, C., Lunguleasa, A., Cristea, D., Roata, I. C., Pop, M. A., Bedo, T., Stanciu, E. M., Pascu, A., 2018. Surface properties of thermally treated composite wood panels. Applied Surface Science, 438, 114-126.
  • Esteves, B., Pereira, H. M., 2009. Wood modification by heat treatment: A review. BioResources, 4(1), 370-404.
  • Gurau, L., Irle, M., Buchner, J., 2019. Surface roughness of heat treated and untreated beech (Fagus sylvatica L.) wood after sanding. BioResources, 14(2), 4512-4531.
  • Gurleyen, L., Ayata, U., Esteves, B., Cakicier, N., 2017. Effects of heat treatment on the adhesion strength, pendulum hardness, surface roughness, color and glossiness of Scots pine laminated parquet with two different types of UV varnish application. Maderas. Ciencia y tecnología, 19(2), 213-224.
  • Hanincová, L., Pędzik, M., Majka, J., Sydor, M., Rogoziński, T., 2024. Influence of thermal modification and sanding parameters on finest particle content in pinewood dust. Wood Material Science and Engineering, 19(4), 887-895.
  • Huang, W., Chen, H., Jin, Q., Shi, J., Guo, X., Na, B., 2025. Prediction of milling performance of thermally modified wood based on machine learning. European Journal of Wood and Wood Products, 83(63), 1-11.
  • İmirzi, H. Ö., Ülker, O., Burdurlu, E., 2014. Effect of densification temperature and some surfacing techniques on the surface roughness of densified Scots pine (Pinus sylvestris L.). BioResources, 9(1). 191-209.
  • Kačík, F., Kúdela, J., Výbohová, E., Jurczyková, T., Čabalová, I., Adamčík, L., Kmeťová, E., Kačíková, D., 2025. Impact of thermal treatment and accelerated aging on the chemical composition, morphology, and properties of spruce wood. Forests, 16(1), 180.
  • Korkut, S., Budakci, M., 2010. The effects of high-temperature heat-treatment on physical properties and surface roughness of rowan (Sorbus aucuparia L.) wood. Wood Research, 55(1), 67-78.
  • Kozakiewicz, P., Laskowska, A., Drożdżek, M., Zawadzki, J., 2022. Influence of thermal modification in nitrogen atmosphere on physical and technological properties of European wood species with different structural features. Coatings, 12(11), 1663.
  • Li, R., He, C., Xu, W., Wang, X. A., 2022. Prediction of surface roughness of CO2 laser modified poplar wood via response surface methodology. Maderas. Ciencia y tecnología, 42(24), 1-12.
  • Neyses, B., Scharf, A., 2022. Using machine learning to predict the density profiles of surface-densified wood based on cross-sectional images. European Journal of Wood and Wood Products, 80(5), 1121-1133.
  • Obataya, E., Higashihara, T., 2017. Reversible and irreversible dimensional changes of heat-treated wood during alternate wetting and drying. Wood Science and Technology, 51, 739-749.
  • Olek, W., Bonarski, J. T., 2014. Effects of thermal modification on wood ultrastructure analyzed with crystallographic texture. Holzforschung, 68(6), 721-726.
  • Pelit, H., Arısüt, U., 2023. Roughness, wettability, and morphological properties of impregnated and densified wood materials. BioResources, 18(1), 429-446.
  • Ramamoorthy, S. K., 2025. Modelling of surface roughness and delamination in drilling PB panels with coated carbide spade drills-RSM approach. Journal of Materials Science Research and Reviews, 8(1), 64-77.
  • Salca, E. A., 2023. Effects of heat treatment applied to wood and veneers of various wood species. Advanced Research in Biological Science, 2, 74-101.
  • Salca, E. A., Hiziroglu, S., 2014. Evaluation of hardness and surface quality of different wood species as function of heat treatment. Materials and Design, 62, 416-423.
  • Sandberg, D., Kutnar, A., Mantanis, G., 2017. Wood modification technologies-a review. iForest-Biogeosciences and Forestry, 10(6), 895. Selvamuthu, D., Das, D., 2024. Introduction to Probability, Statistical Methods, Design of Experiments and Statistical Quality Control. University Text in the Mathematical Science Springer, India, 2024.
  • Soares, L. R. L., Almeida, C. C., Alves, M. C. S., Ferreira, B. S., Silva, A. C., 2019. Effects of Thermal Treatment before Plane Sanding on the Surface Quality of Corymbia citriodora Wood. BioResources, 14(2), 2576-2591.
  • Ulker, O., 2023. Properties of thermally modified Scots pine (Pinus sylvestris L.), Kazdağı fir (Abies equi-trojani Asch. et Sint.), and Eastern beech (Fagus orientalis L). BioResources, 18(3), 5351.
  • Vančo, M., Mazáň, A., Barcík, Š., Rajko, L., Koleda, P., Vyhnáliková, Z., Safin, R. R., 2017. Impact of selected technological, technical, and material factors on the quality of machined surface at face milling of thermally modified pine wood. BioResources, 12(3), 5140-5154.
  • Vidholdová, Z., Reinprecht, L., Pánek, M., 2023. The effect of outdoor weathering of thermally modified spruce and pine woods on their surface properties. Acta Facultatis Xylologiae Zvolen, 65(1), 23-34.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ahşap İşleme
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Güneş 0000-0002-1222-7590

Gönderilme Tarihi 25 Şubat 2025
Kabul Tarihi 18 Eylül 2025
Erken Görünüm Tarihi 4 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 2

Kaynak Göster

APA Güneş, M. (2025). Farklı zımparalama parametreleri ile ısıl işlem uygulanmış Sarıçam’ın (Pinus sylvestris L.) yüzey pürüzlülüğünün Response Surface Methodology ile modellenmesi. Anadolu Orman Araştırmaları Dergisi, 11(2), 250-257. https://doi.org/10.53516/ajfr.1646979
AMA Güneş M. Farklı zımparalama parametreleri ile ısıl işlem uygulanmış Sarıçam’ın (Pinus sylvestris L.) yüzey pürüzlülüğünün Response Surface Methodology ile modellenmesi. AOAD. Aralık 2025;11(2):250-257. doi:10.53516/ajfr.1646979
Chicago Güneş, Mehmet. “Farklı zımparalama parametreleri ile ısıl işlem uygulanmış Sarıçam’ın (Pinus sylvestris L.) yüzey pürüzlülüğünün Response Surface Methodology ile modellenmesi”. Anadolu Orman Araştırmaları Dergisi 11, sy. 2 (Aralık 2025): 250-57. https://doi.org/10.53516/ajfr.1646979.
EndNote Güneş M (01 Aralık 2025) Farklı zımparalama parametreleri ile ısıl işlem uygulanmış Sarıçam’ın (Pinus sylvestris L.) yüzey pürüzlülüğünün Response Surface Methodology ile modellenmesi. Anadolu Orman Araştırmaları Dergisi 11 2 250–257.
IEEE M. Güneş, “Farklı zımparalama parametreleri ile ısıl işlem uygulanmış Sarıçam’ın (Pinus sylvestris L.) yüzey pürüzlülüğünün Response Surface Methodology ile modellenmesi”, AOAD, c. 11, sy. 2, ss. 250–257, 2025, doi: 10.53516/ajfr.1646979.
ISNAD Güneş, Mehmet. “Farklı zımparalama parametreleri ile ısıl işlem uygulanmış Sarıçam’ın (Pinus sylvestris L.) yüzey pürüzlülüğünün Response Surface Methodology ile modellenmesi”. Anadolu Orman Araştırmaları Dergisi 11/2 (Aralık2025), 250-257. https://doi.org/10.53516/ajfr.1646979.
JAMA Güneş M. Farklı zımparalama parametreleri ile ısıl işlem uygulanmış Sarıçam’ın (Pinus sylvestris L.) yüzey pürüzlülüğünün Response Surface Methodology ile modellenmesi. AOAD. 2025;11:250–257.
MLA Güneş, Mehmet. “Farklı zımparalama parametreleri ile ısıl işlem uygulanmış Sarıçam’ın (Pinus sylvestris L.) yüzey pürüzlülüğünün Response Surface Methodology ile modellenmesi”. Anadolu Orman Araştırmaları Dergisi, c. 11, sy. 2, 2025, ss. 250-7, doi:10.53516/ajfr.1646979.
Vancouver Güneş M. Farklı zımparalama parametreleri ile ısıl işlem uygulanmış Sarıçam’ın (Pinus sylvestris L.) yüzey pürüzlülüğünün Response Surface Methodology ile modellenmesi. AOAD. 2025;11(2):250-7.