Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye’de Anemone coronaria L.’nin günümüz ve gelecekteki potansiyel dağılım alanlarının modellenmesi ve haritalanması

Yıl 2025, Cilt: 11 Sayı: 2, 290 - 301, 31.12.2025
https://doi.org/10.53516/ajfr.1779655

Öz

Giriş ve Hedefler Bu çalışmada, Türkiye’de doğal yayılış gösteren önemli bir geofit türü olan Anemone coronaria L.’nin, mevcut ve gelecekteki potansiyel dağılım alanlarının tahmin edilmesi amaçlanmaktadır.
Yöntemler Türün potansiyel dağılım modellemesi ve haritalaması, MaxEnt (Maximum Entropy) yöntemi kullanılarak değerlendirilmiştir. Analizlerde güncel iklim verileri WorldClim veri tabanından, geleceğe yönelik projeksiyonlar ise 2100 yılına ait dört farklı SSP (Sosyo-Ekonomik Yollar) senaryosuna göre UKESM1 0LL küresel iklim modeli çıktılarından elde edilmiştir. Türün var verileri, Küresel Biyoçeşitlilik Bilgi Tesisi (GBIF) veri tabanından temin edilmiştir.
Bulgular Modelleme sonuçlarına göre, modelin eğitim veri seti AUC değeri 0.938, test veri seti AUC değeri ise 0.933 olarak belirlenmiş ve model “mükemmel” kategorisinde yer almıştır. Türün potansiyel dağılımını etkileyen çevresel değişkenler, yıllık Yağış (BIO12), en sıcak çeyreğin yağışı (BIO18), yıllık sıcaklık aralığı (BIO7), engebe ve yükselti olmuştur. Günümüzde A. coronaria’nın Ege, Akdeniz ve Güney Marmara kıyı kuşağında yüksek uygunluk gösteren alanlarda yoğunlaştığı ortaya koyulmuştur. Geleceğe yönelik projeksiyonlarda ise, iklim değişikliğinin şiddetine bağlı olarak potansiyel dağılım alanlarında farklı oranlarda daralmalar öngörülmüştür.
Sonuçlar A. coronaria’nın iklim değişikliğine yüksek duyarlılık gösterdiğini ve gelecekte potansiyel dağılım alanlarının olası daralmasının türün ekolojik, estetik ve kültürel değerlerini olumsuz yönde etkileyebileceğini göstermektedir. Çalışma, hem A. coronaria’nın sürdürülebilir yönetimine katkı sağlamakta hem de Akdeniz florasına özgü hassas türlerin korunmasına yönelik model niteliğinde bir yaklaşım sunmaktadır.

Kaynakça

  • Acarer, A., 2024. Response of Black Pine (Pinus nigra) in Southwestern Anatolia to Climate Change. BioResources, 19(4), 8594-8607.
  • Acarer, A., 2025. The Extinction Trajectory of the Crimean Juniper (Juniperus excelsa) Species in Central Anatolia Under Global Climate Change. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 21(1), 646-672. https://doi.org/10.58816/duzceod.1694206
  • Aertsen, W., Kint, V., Van Orshoven, J., Özkan, K., Muys, B., 2010. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling, 221(8), 1119-1130. https://doi.org/10.1016/j.ecolmodel.2010.01.007
  • Adedeji, O., Reuben, O., Olatoye, O. 2014. Global climate change. Journal of Geoscience and Environment Protection, 2(2), 114-122. https://doi.org/10.4236/gep.2014.22016
  • Alarcón, D., Santos, D., Arroyo, M. T., 2023. Evidencia a nivel poblacional de adaptación al cambio climático en una planta en peligro y endémica de un hotspot de biodiversidad. Plants, 12, 2017.
  • Alves-de-Lima, L., Alves, D. F. R., Anjos, D. V., Valdivia, F. A., Torezan-Silingardi, H. M., 2025. Predicting the Impact of Global Climate Change on the Geographic Distribution of Anemochoric Species in Protected Areas. Atmosphere, 16(4), 453. https://doi.org/10.3390/atmos16040453
  • Atalay, İ., 2008. Ekosistem ekolojisi ve coğrafyası. Çevre ve Orman Bakanlığı Yayınları.
  • Babarabie, M., Sardoei, A. S., Jamali, B., Hatami, M., Nicola, S., Devecchi, M., 2023. Compatibility and possibility of new ornamental geophytes for their utilization in landscape architecture. Horticulturae, 10(1), 3. https://doi.org/10.3390/horticulturae10010003
  • Baldwin, R. A., 2009. Use of maximum entropy modeling in wildlife research. Entropy, 11(4), 854-866. https://doi.org/10.3390/e11040854
  • Ben-Hod, G., Kigel, J., Steinitz, B., 1988. Dormancy and flowering in Anemone coronaria L. as affected by photoperiod and temperature. Annals of Botany, 61(5), 623-633. https://doi.org/10.1093/oxfordjournals.aob.a087596
  • Çakmakçı, R., Aslanataş, R., Erdoğan, Y., Erdoğan, Ü., 2017. Flowers of Çoruh Valley. Turkish Journal of Agriculture-Food Science and Technology, 5(13), 1785-1791. https://doi.org/10.24925/turjaf.v5i13.1785-1791.1688
  • Çelik, A., Çiçek, M., Semiz, G., Karıncalı, M., 2004. Taxonomical and ecological investigations on some geophytes growing around Denizli Province (Turkey). Turkish Journal of Botany, 28(1), 205-211.
  • Dafni, A., Bernhardt, P., Shmida, A., Ivri, Y., Greenbaum, S., O'Toole, C., Losito, L., 1990. Red bowl-shaped flowers: convergence for beetle pollination in the Mediterranean region. Israel Journal of Plant Sciences, 39(1-2), 81-92.
  • Dafni, A., Tzohari, H., Ben-Shlomo, R., Vereecken, N. J., Ne’eman, G., 2020. Flower colour polymorphism, pollination modes, breeding system and gene flow in Anemone coronaria. Plants, 9(3), 397. https://doi.org/10.3390/plants9030397.
  • Düdükçü Tekeş, A., Acarer, A., 2025. Current and Future Olive (Olea europaea L.) Distribution Mapping in Türkiye Based on Climate Scenarios. Turkish Journal of Agriculture-Food Science and Technology, 13(9), 2774-2783.
  • Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., E. Zimmermann, N., 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
  • Ergüner, Y., Kumar, J., Hoffman, F. M., Dalfes, H. N., Hargrove, W. W., 2019. Mapping ecoregions under climate change: a case study from the biological ‘crossroads’ of three continents, Turkey. Landscape Ecology, 34(1), 35-50. https://doi.org/10.1007/s10980-018-0743-8
  • Feng, X., Park, D. S., Liang, Y., Pandey, R., Papeş, M., 2019. Collinearity in ecological niche modeling: Confusions and challenges. Ecology and evolution, 9(18), 10365-10376. https://doi.org/10.1002/ece3.5555
  • Fick, S. E., Hijmans, R. J., 2017. WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. https://doi.org/10.1002/joc.5086
  • Foden, W. B., Young, B. E., Akçakaya, H. R., Garcia, R. A., Hoffmann, A. A., Stein, B. A., Huntley, B., 2019. Climate change vulnerability assessment of species. Wiley interdisciplinary reviews: climate change, 10(1). https://doi.org/10.1002/wcc.551
  • GBIF, 2025. Global Biodiversity Information Facility, GBIF.org (03 February 2025) GBIF Occurrence Download https://doi.org/10.15468/dl.5up2sz
  • Gorsuch, R. L. (1974). Factor analysis Philadelphia: Saunders.
  • Grimm, N. B., Chapin III, F. S., Bierwagen, B., Gonzalez, P., Groffman, P. M., Luo, Y., Williamson, C. E., 2013. The impacts of climate change on ecosystem structure and function. Frontiers in Ecology and the Environment, 11(9), 474-482. https://doi.org/10.1890/120282
  • Gül, E., 2025. On the Edge of Survival: The Fragile Fate of Scots Pine (Pinus sylvestris L.) in Central Anatolia, Türkiye Under Climate Change. BioResources, 20(2).
  • Gül, E., Dölarslan, M., 2021. Çölleşme Riski ile Bitki Tür Dağılımı Arasındaki İlişkilerin İncelenmesi: Çankırı Kavra Örneği. Anadolu Orman Araştırmaları Dergisi, 7(2), 193-199.
  • Güner, A., Aslan, S. (Eds.)., 2012. Türkiye bitkileri listesi:(damarlı bitkiler). Nezahat Gökyiǧit Botanik Bahçesi Yayınları.
  • Hannah, L., Midgley, G. F., Millar, D., 2002. Climate change‐integrated conservation strategies. Global Ecology and Biogeography, 11(6), 485-495. https://doi.org/10.1046/j.1466-822X.2002.00306.x
  • Hertig, E., Jahn, S., Kaspar‐Ott, I., 2023. Future local ground‐level ozone in the European area from statistical downscaling projections considering climate and emission changes. Earth's Future, 11(2). https://doi.org/10.1029/2022EF003317
  • Kaiser, H. F., 1960. The application of electronic computers to factor analysis. Educational and psychological measurement, 20(1), 141-151. https://doi.org/10.1177/001316446002000116
  • Kamenetsky, R., 2004. Production of flower bulbs in regions with warm climates. In IX International Symposium on Flower Bulbs 673(pp. 59-66). https://doi.org/10.17660/ActaHortic.2005.673.4
  • Karl, T. R., Trenberth, K. E., 2003. Modern global climate change. science, 302(5651), 1719-1723. https://doi.org/10.1126/science.1090228
  • Koçak, A., Koçak, G., Deniz, İ., 2022. Molecular Phylogeny of Some Geophytes Taxa from Turkey; Systematic Approaches. Turkish Journal of Agricultural and Natural Sciences, 9(1), 217-226. https://doi.org/10.30910/turkjans.970894
  • Kumar, A., Rajwar, N., Tonk, T., 2024. Climate change effects on plant-pollinator interactions, reproductive biology and ecosystem services. In Forests and climate change: biological perspectives on impact, adaptation, and mitigation strategies (pp. 97-117). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-3905-9_5
  • Laura, M., Copetta, A., Savona, M., 2025. Biotechnological Approaches in Anemone coronaria L. In Breeding of Ornamental Crops: Bulbous Flowers (pp. 221-239). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-77900-8_5
  • Lloret, F., Escudero, A., Iriondo, J. M., Martínez‐Vilalta, J., Valladares, F., 2012. Extreme climatic events and vegetation: the role of stabilizing processes. Global Change Biology, 18(3), 797-805. https://doi.org/10.1111/j.1365-2486.2011.02624.x
  • Mathe, A., Turgut, K., 2023. Introduction to medicinal and aromatic plants in Türkiye. In Medicinal and Aromatic Plants of Turkey (pp. 1-30). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-43312-2_1
  • McCune, B., Keon, D., 2002. Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science, 13(4), 603-606. https://doi.org/10.1111/j.1654-1103.2002.tb02087.x
  • Medail, F., Quezel, P., 1997. Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Annals of the Missouri Botanical Garden, 112-127. https://doi.org/10.2307/2399957
  • Medail, F., Quezel, P., 1999. Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conservation biology, 13(6), 1510-1513. https://doi.org/10.1046/j.1523-1739.1999.98467.x
  • Miranda, A., Syphard, A. D., Berdugo, M., Carrasco, J., Gómez-González, S., Ovalle, J. F., Garreaud, R., 2023. Widespread synchronous decline of Mediterranean-type forest driven by accelerated aridity. Nature Plants, 9(11), 1810-1817. https://doi.org/10.1038/s41477-023-01541-7
  • Mondoni, A., Probert, R., Rossi, G., Hay, F., 2009. Habitat-related germination behaviour and emergence phenology in the woodland geophyte Anemone ranunculoides L.(Ranunculaceae) from northern Italy. Seed Science Research, 19(3), 137-144. https://doi.org/10.1017/S0960258509990067
  • Moisen, G. G., Frescino, T. S., 2002. Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling, 157(2-3), 209-225. https://doi.org/10.1016/S0304-3800(02)00197-7
  • Nissim, Y., Jinggui, F., Arik, S., Neta, P., Uri, L., Avner, C., 2004. Phenotypic and genotypic analysis of a commercial cultivar and wild populations of Anemone coronaria. Euphytica, 136(1), 51-62. https://doi.org/10.1023/B:EUPH.0000019520.19707.59
  • Özdemir, S., 2022. Distribution Modeling of the Main Forest Tree Species under Climate Change in West Mediterranean [Doctoral dissertation (PhD thesis)], Isparta University of Applied Sciences.
  • Parker, K. C., 1988. Environmental relationships and vegetation associates of columnar cacti in the northern Sonoran Desert. Vegetatio, 78, 125-140. https://doi.org/10.1007/BF00033422
  • Peñuelas, J., Filella, I., Comas, P., 2002. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology, 8(6), 531-544. https://doi.org/10.1046/j.1365-2486.2002.00489.x
  • Perevolotsky, A., Schwartz-Tzachor, R., Yonathan, R., Ne’eman, G., 2011. Geophytes–herbivore interactions: reproduction and population dynamics of Anemone coronaria L. Plant ecology, 212(4), 563-571. https://doi.org/10.1007/s11258-010-9846-2
  • Phillips, S. J., Dudík, M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  • Phillips, S. J., Anderson, R. P., Schapire, R. E., 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., Blair, M. E., 2017. Opening the black box: An open‐source release of Maxent. Ecography, 40(7), 887-893. https://doi.org/10.1111/ecog.03049
  • Read, M., 1989. The bulb trade—a threat to wild plant populations. Oryx, 23(3), 127-134. https://doi.org/10.1017/S0030605300022833
  • Saabna, N., Keasar, T., Sapir, Y., 2025. The roles of florivory and herbivory in maintaining intra‐population flower colour variation in Anemone coronaria. Plant Biology, 27(1), 163-171. https://doi.org/10.1111/plb.13744
  • Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., Zerroukat, M., 2019. UKESM1: Description and evaluation of the UK Earth System Model. Journal of Advances in Modeling Earth Systems, 11(12), 4513-4558. https://doi.org/10.1029/2019MS001739
  • Seyidoğlu, N., Yayım, D., 2007. Geophytes as medicinal and aromatic plants. In I International Medicinal and Aromatic Plants Conference on Culinary Herbs 826 (pp. 421-426). https://doi.org/10.17660/ActaHortic.2009.826.59
  • Seyidoğlu, N., Zencirkıran, M., Ayaşlıgil, Y., 2009. Position and application areas of geophytes within landscape design. African Journal of Agricultural Research, 4(12), 1351-1357.
  • Solomou, A. D., 2025. Mediterranean Basin. In Terrestrial Biomes (pp. 147-154). Academic Press. https://doi.org/10.1016/B978-0-443-36569-0.00009-4
  • Summers, D. M., Bryan, B. A., Crossman, N. D., Meyer, W. S., 2012. Species vulnerability to climate change: impacts on spatial conservation priorities and species representation. Global Change Biology, 18(7), 2335-2348. https://doi.org/10.1111/j.1365-2486.2012.02700.x
  • Swets, J. A., 1988. Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285-1293. https://doi.org/10.1126/science.3287615
  • Tekeş, A., Özdemir, S., Aykurt, C., Gülsoy, S., Özkan, K., 2025. Species distribution modeling of red hawthorn (Crataegus monogyna Jacq.) in response to climate change. Šumarski list, 149(5-6). https://doi.org/10.31298/sl.149.5-6.3
  • Thomson, J. D., 2010. Flowering phenology, fruiting success and progressive deterioration of pollination in an early-flowering geophyte. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1555), 3187-3199. https://doi.org/10.1098/rstb.2010.0115
  • Traill, L. W., Lim, M. L., Sodhi, N. S., Bradshaw, C. J., 2010. Mechanisms driving change: altered species interactions and ecosystem function through global warming. Journal of Animal Ecology, 79(5), 937-947. https://doi.org/10.1111/j.1365-2656.2010.01695.x
  • Turan, M., Mammadov, R., 2020. Evaluation of phytochemical compounds, biological activity and uses in ethnobotany of genera in Turkey of Liliaceae family used as ornamental plants. Ed: Arzu Çığ, Ornamental Plants in Different Approaches. İksad Publishing House.
  • Tylianakis, J. M., Didham, R. K., Bascompte, J., Wardle, D. A., 2008. Global change and species interactions in terrestrial ecosystems. Ecology letters, 11(12), 1351-1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x
  • Umiel, N., Hagiladi, A., Ozeri, Y., Elyasi, R., Abramsky, S., Kanza, M., 1992. A standard viability test for corms of Anemone coronaria and Ranunculus asiaticus. In VI International Symposium on Flower Bulbs 325 (pp. 333-340). https://doi.org/10.17660/ActaHortic.1992.325.43
  • Uzunoğlu, F., Özmen, K., Demir, S., Coşkun, Ö. F., Mavi, K., 2025. Doğadan Toplanan Anemon Bitkisine Ait Genotiplerin Morfolojik Karakterizasyonu. Bahçe, 54(Özel Sayı 1), 80-86. https://doi.org/10.53471/bahce.1552355
  • Valavanidis, A., Vlachogianni, T., 2011. Ecosystems and biodiversity hotspots in the Mediterranean basin threats and conservation efforts. Sci Adv Environ Toxicol Ecotoxicol, 10, 1-24.
  • Vanbergen, A. J., Insect Pollinators Initiative., 2013. Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 11(5), 251-259. https://doi.org/10.1890/120126
  • Vitt, P., Havens, K., Kramer, A. T., Sollenberger, D., Yates, E., 2010. Assisted migration of plants: changes in latitudes, changes in attitudes. Biological conservation, 143(1), 18-27. https://doi.org/10.1016/j.biocon.2009.08.015
  • Yan, Y., Tang, Z., 2019. Protecting endemic seed plants on the Tibetan Plateau under future climate change: migration matters. Journal of Plant Ecology, 12(6), 962-971. https://doi.org/10.1093/jpe/rtz032

Modelling and mapping of current and future potential distribution areas of Anemone coronaria L. in Türkiye

Yıl 2025, Cilt: 11 Sayı: 2, 290 - 301, 31.12.2025
https://doi.org/10.53516/ajfr.1779655

Öz

Background and Aims This study aim to predict the current and future potential distribution areas of Anemone coronaria L., an important geophyte species naturally distributed in Türkiye.
Methods The species’ potential distribution modelling and mapping were conducted using the MaxEnt (Maximum Entropy) method. Current climate data were obtained from the WorldClim database, while future projections for the year 2100 were derived from the UKESM1-0LL global climate model outputs under four Shared Socioeconomic Pathways (SSP) scenarios. Species occurrence records were sourced from the Global Biodiversity Information Facility (GBIF) database.
Results The modelling results indicated that the Area Under the Curve (AUC) values were 0.938 for the training dataset and 0.933 for the test dataset, classifying the model’s performance as “excellent.” The environmental variables on the species’ potential distribution were Annual Precipitation (BIO12), Precipitation of the Warmest Quarter (BIO18), Temperature Annual Range (BIO7), ruggedness, and elevation. Currently, A. coronaria shows high habitat suitability concentrated along the coastal zones of the Aegean, Mediterranean, and southern Marmara regions. Future projections suggest varying degrees of habitat contraction depending on the severity of climate change.
Conclusions A. coronaria is highly sensitive to climate change and that future habitat contraction could adversely affect its ecological, aesthetic, and cultural values. This study contributes to the sustainable management of A. coronaria and provides a model framework for the conservation of other climate-sensitive Mediterranean flora.

Kaynakça

  • Acarer, A., 2024. Response of Black Pine (Pinus nigra) in Southwestern Anatolia to Climate Change. BioResources, 19(4), 8594-8607.
  • Acarer, A., 2025. The Extinction Trajectory of the Crimean Juniper (Juniperus excelsa) Species in Central Anatolia Under Global Climate Change. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 21(1), 646-672. https://doi.org/10.58816/duzceod.1694206
  • Aertsen, W., Kint, V., Van Orshoven, J., Özkan, K., Muys, B., 2010. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling, 221(8), 1119-1130. https://doi.org/10.1016/j.ecolmodel.2010.01.007
  • Adedeji, O., Reuben, O., Olatoye, O. 2014. Global climate change. Journal of Geoscience and Environment Protection, 2(2), 114-122. https://doi.org/10.4236/gep.2014.22016
  • Alarcón, D., Santos, D., Arroyo, M. T., 2023. Evidencia a nivel poblacional de adaptación al cambio climático en una planta en peligro y endémica de un hotspot de biodiversidad. Plants, 12, 2017.
  • Alves-de-Lima, L., Alves, D. F. R., Anjos, D. V., Valdivia, F. A., Torezan-Silingardi, H. M., 2025. Predicting the Impact of Global Climate Change on the Geographic Distribution of Anemochoric Species in Protected Areas. Atmosphere, 16(4), 453. https://doi.org/10.3390/atmos16040453
  • Atalay, İ., 2008. Ekosistem ekolojisi ve coğrafyası. Çevre ve Orman Bakanlığı Yayınları.
  • Babarabie, M., Sardoei, A. S., Jamali, B., Hatami, M., Nicola, S., Devecchi, M., 2023. Compatibility and possibility of new ornamental geophytes for their utilization in landscape architecture. Horticulturae, 10(1), 3. https://doi.org/10.3390/horticulturae10010003
  • Baldwin, R. A., 2009. Use of maximum entropy modeling in wildlife research. Entropy, 11(4), 854-866. https://doi.org/10.3390/e11040854
  • Ben-Hod, G., Kigel, J., Steinitz, B., 1988. Dormancy and flowering in Anemone coronaria L. as affected by photoperiod and temperature. Annals of Botany, 61(5), 623-633. https://doi.org/10.1093/oxfordjournals.aob.a087596
  • Çakmakçı, R., Aslanataş, R., Erdoğan, Y., Erdoğan, Ü., 2017. Flowers of Çoruh Valley. Turkish Journal of Agriculture-Food Science and Technology, 5(13), 1785-1791. https://doi.org/10.24925/turjaf.v5i13.1785-1791.1688
  • Çelik, A., Çiçek, M., Semiz, G., Karıncalı, M., 2004. Taxonomical and ecological investigations on some geophytes growing around Denizli Province (Turkey). Turkish Journal of Botany, 28(1), 205-211.
  • Dafni, A., Bernhardt, P., Shmida, A., Ivri, Y., Greenbaum, S., O'Toole, C., Losito, L., 1990. Red bowl-shaped flowers: convergence for beetle pollination in the Mediterranean region. Israel Journal of Plant Sciences, 39(1-2), 81-92.
  • Dafni, A., Tzohari, H., Ben-Shlomo, R., Vereecken, N. J., Ne’eman, G., 2020. Flower colour polymorphism, pollination modes, breeding system and gene flow in Anemone coronaria. Plants, 9(3), 397. https://doi.org/10.3390/plants9030397.
  • Düdükçü Tekeş, A., Acarer, A., 2025. Current and Future Olive (Olea europaea L.) Distribution Mapping in Türkiye Based on Climate Scenarios. Turkish Journal of Agriculture-Food Science and Technology, 13(9), 2774-2783.
  • Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., E. Zimmermann, N., 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
  • Ergüner, Y., Kumar, J., Hoffman, F. M., Dalfes, H. N., Hargrove, W. W., 2019. Mapping ecoregions under climate change: a case study from the biological ‘crossroads’ of three continents, Turkey. Landscape Ecology, 34(1), 35-50. https://doi.org/10.1007/s10980-018-0743-8
  • Feng, X., Park, D. S., Liang, Y., Pandey, R., Papeş, M., 2019. Collinearity in ecological niche modeling: Confusions and challenges. Ecology and evolution, 9(18), 10365-10376. https://doi.org/10.1002/ece3.5555
  • Fick, S. E., Hijmans, R. J., 2017. WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. https://doi.org/10.1002/joc.5086
  • Foden, W. B., Young, B. E., Akçakaya, H. R., Garcia, R. A., Hoffmann, A. A., Stein, B. A., Huntley, B., 2019. Climate change vulnerability assessment of species. Wiley interdisciplinary reviews: climate change, 10(1). https://doi.org/10.1002/wcc.551
  • GBIF, 2025. Global Biodiversity Information Facility, GBIF.org (03 February 2025) GBIF Occurrence Download https://doi.org/10.15468/dl.5up2sz
  • Gorsuch, R. L. (1974). Factor analysis Philadelphia: Saunders.
  • Grimm, N. B., Chapin III, F. S., Bierwagen, B., Gonzalez, P., Groffman, P. M., Luo, Y., Williamson, C. E., 2013. The impacts of climate change on ecosystem structure and function. Frontiers in Ecology and the Environment, 11(9), 474-482. https://doi.org/10.1890/120282
  • Gül, E., 2025. On the Edge of Survival: The Fragile Fate of Scots Pine (Pinus sylvestris L.) in Central Anatolia, Türkiye Under Climate Change. BioResources, 20(2).
  • Gül, E., Dölarslan, M., 2021. Çölleşme Riski ile Bitki Tür Dağılımı Arasındaki İlişkilerin İncelenmesi: Çankırı Kavra Örneği. Anadolu Orman Araştırmaları Dergisi, 7(2), 193-199.
  • Güner, A., Aslan, S. (Eds.)., 2012. Türkiye bitkileri listesi:(damarlı bitkiler). Nezahat Gökyiǧit Botanik Bahçesi Yayınları.
  • Hannah, L., Midgley, G. F., Millar, D., 2002. Climate change‐integrated conservation strategies. Global Ecology and Biogeography, 11(6), 485-495. https://doi.org/10.1046/j.1466-822X.2002.00306.x
  • Hertig, E., Jahn, S., Kaspar‐Ott, I., 2023. Future local ground‐level ozone in the European area from statistical downscaling projections considering climate and emission changes. Earth's Future, 11(2). https://doi.org/10.1029/2022EF003317
  • Kaiser, H. F., 1960. The application of electronic computers to factor analysis. Educational and psychological measurement, 20(1), 141-151. https://doi.org/10.1177/001316446002000116
  • Kamenetsky, R., 2004. Production of flower bulbs in regions with warm climates. In IX International Symposium on Flower Bulbs 673(pp. 59-66). https://doi.org/10.17660/ActaHortic.2005.673.4
  • Karl, T. R., Trenberth, K. E., 2003. Modern global climate change. science, 302(5651), 1719-1723. https://doi.org/10.1126/science.1090228
  • Koçak, A., Koçak, G., Deniz, İ., 2022. Molecular Phylogeny of Some Geophytes Taxa from Turkey; Systematic Approaches. Turkish Journal of Agricultural and Natural Sciences, 9(1), 217-226. https://doi.org/10.30910/turkjans.970894
  • Kumar, A., Rajwar, N., Tonk, T., 2024. Climate change effects on plant-pollinator interactions, reproductive biology and ecosystem services. In Forests and climate change: biological perspectives on impact, adaptation, and mitigation strategies (pp. 97-117). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-3905-9_5
  • Laura, M., Copetta, A., Savona, M., 2025. Biotechnological Approaches in Anemone coronaria L. In Breeding of Ornamental Crops: Bulbous Flowers (pp. 221-239). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-77900-8_5
  • Lloret, F., Escudero, A., Iriondo, J. M., Martínez‐Vilalta, J., Valladares, F., 2012. Extreme climatic events and vegetation: the role of stabilizing processes. Global Change Biology, 18(3), 797-805. https://doi.org/10.1111/j.1365-2486.2011.02624.x
  • Mathe, A., Turgut, K., 2023. Introduction to medicinal and aromatic plants in Türkiye. In Medicinal and Aromatic Plants of Turkey (pp. 1-30). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-43312-2_1
  • McCune, B., Keon, D., 2002. Equations for potential annual direct incident radiation and heat load. Journal of Vegetation Science, 13(4), 603-606. https://doi.org/10.1111/j.1654-1103.2002.tb02087.x
  • Medail, F., Quezel, P., 1997. Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Annals of the Missouri Botanical Garden, 112-127. https://doi.org/10.2307/2399957
  • Medail, F., Quezel, P., 1999. Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conservation biology, 13(6), 1510-1513. https://doi.org/10.1046/j.1523-1739.1999.98467.x
  • Miranda, A., Syphard, A. D., Berdugo, M., Carrasco, J., Gómez-González, S., Ovalle, J. F., Garreaud, R., 2023. Widespread synchronous decline of Mediterranean-type forest driven by accelerated aridity. Nature Plants, 9(11), 1810-1817. https://doi.org/10.1038/s41477-023-01541-7
  • Mondoni, A., Probert, R., Rossi, G., Hay, F., 2009. Habitat-related germination behaviour and emergence phenology in the woodland geophyte Anemone ranunculoides L.(Ranunculaceae) from northern Italy. Seed Science Research, 19(3), 137-144. https://doi.org/10.1017/S0960258509990067
  • Moisen, G. G., Frescino, T. S., 2002. Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling, 157(2-3), 209-225. https://doi.org/10.1016/S0304-3800(02)00197-7
  • Nissim, Y., Jinggui, F., Arik, S., Neta, P., Uri, L., Avner, C., 2004. Phenotypic and genotypic analysis of a commercial cultivar and wild populations of Anemone coronaria. Euphytica, 136(1), 51-62. https://doi.org/10.1023/B:EUPH.0000019520.19707.59
  • Özdemir, S., 2022. Distribution Modeling of the Main Forest Tree Species under Climate Change in West Mediterranean [Doctoral dissertation (PhD thesis)], Isparta University of Applied Sciences.
  • Parker, K. C., 1988. Environmental relationships and vegetation associates of columnar cacti in the northern Sonoran Desert. Vegetatio, 78, 125-140. https://doi.org/10.1007/BF00033422
  • Peñuelas, J., Filella, I., Comas, P., 2002. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology, 8(6), 531-544. https://doi.org/10.1046/j.1365-2486.2002.00489.x
  • Perevolotsky, A., Schwartz-Tzachor, R., Yonathan, R., Ne’eman, G., 2011. Geophytes–herbivore interactions: reproduction and population dynamics of Anemone coronaria L. Plant ecology, 212(4), 563-571. https://doi.org/10.1007/s11258-010-9846-2
  • Phillips, S. J., Dudík, M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  • Phillips, S. J., Anderson, R. P., Schapire, R. E., 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., Blair, M. E., 2017. Opening the black box: An open‐source release of Maxent. Ecography, 40(7), 887-893. https://doi.org/10.1111/ecog.03049
  • Read, M., 1989. The bulb trade—a threat to wild plant populations. Oryx, 23(3), 127-134. https://doi.org/10.1017/S0030605300022833
  • Saabna, N., Keasar, T., Sapir, Y., 2025. The roles of florivory and herbivory in maintaining intra‐population flower colour variation in Anemone coronaria. Plant Biology, 27(1), 163-171. https://doi.org/10.1111/plb.13744
  • Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., Zerroukat, M., 2019. UKESM1: Description and evaluation of the UK Earth System Model. Journal of Advances in Modeling Earth Systems, 11(12), 4513-4558. https://doi.org/10.1029/2019MS001739
  • Seyidoğlu, N., Yayım, D., 2007. Geophytes as medicinal and aromatic plants. In I International Medicinal and Aromatic Plants Conference on Culinary Herbs 826 (pp. 421-426). https://doi.org/10.17660/ActaHortic.2009.826.59
  • Seyidoğlu, N., Zencirkıran, M., Ayaşlıgil, Y., 2009. Position and application areas of geophytes within landscape design. African Journal of Agricultural Research, 4(12), 1351-1357.
  • Solomou, A. D., 2025. Mediterranean Basin. In Terrestrial Biomes (pp. 147-154). Academic Press. https://doi.org/10.1016/B978-0-443-36569-0.00009-4
  • Summers, D. M., Bryan, B. A., Crossman, N. D., Meyer, W. S., 2012. Species vulnerability to climate change: impacts on spatial conservation priorities and species representation. Global Change Biology, 18(7), 2335-2348. https://doi.org/10.1111/j.1365-2486.2012.02700.x
  • Swets, J. A., 1988. Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285-1293. https://doi.org/10.1126/science.3287615
  • Tekeş, A., Özdemir, S., Aykurt, C., Gülsoy, S., Özkan, K., 2025. Species distribution modeling of red hawthorn (Crataegus monogyna Jacq.) in response to climate change. Šumarski list, 149(5-6). https://doi.org/10.31298/sl.149.5-6.3
  • Thomson, J. D., 2010. Flowering phenology, fruiting success and progressive deterioration of pollination in an early-flowering geophyte. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1555), 3187-3199. https://doi.org/10.1098/rstb.2010.0115
  • Traill, L. W., Lim, M. L., Sodhi, N. S., Bradshaw, C. J., 2010. Mechanisms driving change: altered species interactions and ecosystem function through global warming. Journal of Animal Ecology, 79(5), 937-947. https://doi.org/10.1111/j.1365-2656.2010.01695.x
  • Turan, M., Mammadov, R., 2020. Evaluation of phytochemical compounds, biological activity and uses in ethnobotany of genera in Turkey of Liliaceae family used as ornamental plants. Ed: Arzu Çığ, Ornamental Plants in Different Approaches. İksad Publishing House.
  • Tylianakis, J. M., Didham, R. K., Bascompte, J., Wardle, D. A., 2008. Global change and species interactions in terrestrial ecosystems. Ecology letters, 11(12), 1351-1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x
  • Umiel, N., Hagiladi, A., Ozeri, Y., Elyasi, R., Abramsky, S., Kanza, M., 1992. A standard viability test for corms of Anemone coronaria and Ranunculus asiaticus. In VI International Symposium on Flower Bulbs 325 (pp. 333-340). https://doi.org/10.17660/ActaHortic.1992.325.43
  • Uzunoğlu, F., Özmen, K., Demir, S., Coşkun, Ö. F., Mavi, K., 2025. Doğadan Toplanan Anemon Bitkisine Ait Genotiplerin Morfolojik Karakterizasyonu. Bahçe, 54(Özel Sayı 1), 80-86. https://doi.org/10.53471/bahce.1552355
  • Valavanidis, A., Vlachogianni, T., 2011. Ecosystems and biodiversity hotspots in the Mediterranean basin threats and conservation efforts. Sci Adv Environ Toxicol Ecotoxicol, 10, 1-24.
  • Vanbergen, A. J., Insect Pollinators Initiative., 2013. Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 11(5), 251-259. https://doi.org/10.1890/120126
  • Vitt, P., Havens, K., Kramer, A. T., Sollenberger, D., Yates, E., 2010. Assisted migration of plants: changes in latitudes, changes in attitudes. Biological conservation, 143(1), 18-27. https://doi.org/10.1016/j.biocon.2009.08.015
  • Yan, Y., Tang, Z., 2019. Protecting endemic seed plants on the Tibetan Plateau under future climate change: migration matters. Journal of Plant Ecology, 12(6), 962-971. https://doi.org/10.1093/jpe/rtz032
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Orman Biyoçeşitliliği, Orman Ekosistemleri, Ormancılık (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ayşegül Tekeş Düdükçü 0000-0003-4515-7258

Gönderilme Tarihi 7 Eylül 2025
Kabul Tarihi 31 Ekim 2025
Erken Görünüm Tarihi 10 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 2

Kaynak Göster

APA Tekeş Düdükçü, A. (2025). Modelling and mapping of current and future potential distribution areas of Anemone coronaria L. in Türkiye. Anadolu Orman Araştırmaları Dergisi, 11(2), 290-301. https://doi.org/10.53516/ajfr.1779655
AMA Tekeş Düdükçü A. Modelling and mapping of current and future potential distribution areas of Anemone coronaria L. in Türkiye. AOAD. Aralık 2025;11(2):290-301. doi:10.53516/ajfr.1779655
Chicago Tekeş Düdükçü, Ayşegül. “Modelling and mapping of current and future potential distribution areas of Anemone coronaria L. in Türkiye”. Anadolu Orman Araştırmaları Dergisi 11, sy. 2 (Aralık 2025): 290-301. https://doi.org/10.53516/ajfr.1779655.
EndNote Tekeş Düdükçü A (01 Aralık 2025) Modelling and mapping of current and future potential distribution areas of Anemone coronaria L. in Türkiye. Anadolu Orman Araştırmaları Dergisi 11 2 290–301.
IEEE A. Tekeş Düdükçü, “Modelling and mapping of current and future potential distribution areas of Anemone coronaria L. in Türkiye”, AOAD, c. 11, sy. 2, ss. 290–301, 2025, doi: 10.53516/ajfr.1779655.
ISNAD Tekeş Düdükçü, Ayşegül. “Modelling and mapping of current and future potential distribution areas of Anemone coronaria L. in Türkiye”. Anadolu Orman Araştırmaları Dergisi 11/2 (Aralık2025), 290-301. https://doi.org/10.53516/ajfr.1779655.
JAMA Tekeş Düdükçü A. Modelling and mapping of current and future potential distribution areas of Anemone coronaria L. in Türkiye. AOAD. 2025;11:290–301.
MLA Tekeş Düdükçü, Ayşegül. “Modelling and mapping of current and future potential distribution areas of Anemone coronaria L. in Türkiye”. Anadolu Orman Araştırmaları Dergisi, c. 11, sy. 2, 2025, ss. 290-01, doi:10.53516/ajfr.1779655.
Vancouver Tekeş Düdükçü A. Modelling and mapping of current and future potential distribution areas of Anemone coronaria L. in Türkiye. AOAD. 2025;11(2):290-301.