Araştırma Makalesi
BibTex RIS Kaynak Göster

Katyonik hidroksietil selüloz-jelatin biyokompozitlerin üretimi, genel karakterizasyon özelliklerinin değerlendirilmesi ve çapraz bağlayıcı ilavesinin kompozit özelliklerine etkisi

Yıl 2025, Cilt: 11 Sayı: 2, 367 - 376, 31.12.2025
https://doi.org/10.53516/ajfr.1813868

Öz

Giriş ve Hedefler Bu çalışma, biyolojik bazlı bir selüloz türevi olan hidroksietil selüloz (HES)’dan katyonik hidroksietil selüloz (KHES) sentezi ile başlamıştır. KHES matrisine farklı miktarlarda jelatin (Jel) polimerinin katılmasından sonra biyokompozitler elde edilmiştir. Bu kompoztilerin farklı kullanım alanlarında değerlendirilebilmesi için genel karakterizasyon özellikleri tespit edilmiştir.
Yöntemler Öncelikle HES, glisidil trimetil amonyum klorür (GTMAC) ile katyonize edilmiştir. Ardından KHES yapısına farklı kraışım oranlarında (80/20, 50/50 ve 20/80; 80/20, %80 KHES ve %20 Jel ağırlık/ağırlık) Jel ilave edilmiştir. Kompozitler polimer bileşenlerinin -86 °C' de 24 saat süre ile dondurulmasından sonra liyofilizasyon tekniği ile üretilmiştir. Çapraz bağlayıcı kullanılmadan yapılan üretimlerin yanı sıra, çapraz bağlayıcının etkilerini göstermek için aynı karışım oranlarında CaCl2 (C) (%5) veya TA (tannik asit) (%5) eklenerek kompozitler üretilmiştir. Karakterizasyon çalışmaları için porozite değerleri, yoğunluk, BET (Bruneuer Emmett Teller) yüzey alanı, sıvı emilimi (su, fosfat tamponlu salin-PBS, yağ), su buharı geçirgenliği, FTIR spektrumu, bakteriyel direnç özellikleri ve SEM (Taramalı Elektron Mikroskobu) görüntüleme testleri gerçekleştirilmiştir.
Bulgular 0,0121 g/cm3 ile 0,0238 g/cm3 araslğında düşük yoğunluk değerleri tespit edilmiştir. Yüksek porozite değerlerine ek olarak spesifik yüzey alanı değerleri (206 g/m2-307 g/m2) de yüksek olarak tespit edilmiş ve bu iki özelliğin çapraz bağlayıcı katkısı ile olumsuz etkilendiği belirlenmiştir. S. aureus ve E. coli' ye karşı antibakteriyel performanslara ek olarak sıvı emilim çalışmaları da yapılmış ve her bir sıvı için yüksek emilim performansları (su %1135-%1533; PBS %1098-%1628; yağ %1237-%5236) belirlenmiştir.
Sonuçlar Farklı karışım oranlarında KHES ve Jel içeren KHES-Jel esaslı biyokompozitlerin üretimi donma-liyofilizasyon prosesi ile gerçekleştirilmiştir. Düşük yoğunluklu ve yüksek oranda poröz yapılar elde edilmiştir. Yüksek WVT, antibakteriyel özellikler ve sıvı absorpsiyon kapasitesine sahip olması sebebi ile bu biyokompozitlerin geniş bir potansiyel uygulama alanına sahiptir.

Etik Beyan

-

Proje Numarası

TÜBİTAK 2209 (1919B012327052)

Kaynakça

  • ASTM E 96/96 M. 2002. “Standard Test Methods for Water Vapor Transmission of Materials ", ASTM International.
  • Bigi, A., Cojazzi, G., Panzavolta, S., Rubini, K. and Roveri, N., 2001. Mechanical and Thermal Properties of Gelatin Films at Different Degrees of Glutaraldehyde Crosslinking. Biomaterials, 22, 763-768.
  • Brunauer, S., Emmett, P. H. and Teller, E., 1938. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319.
  • Dabbaghi, A., Kabiri, K., Ramazani, A., Zohuriaan‐Mehr, M. J. and Jahandideh, A., 2019. Synthesis of bio‐based internal and external cross‐linkers based on tannic acid for preparation of antibacterial superabsorbents. Polymers for Advanced Technologies, 30(11), 2894-2905.
  • Ding, X., Fu, Q., Wang, T., Xu, Q., Luo, Z., Wang, K., Wang, T., 2025. The synthesis, performance, and functional mechanism of an eco-friendly suppressant derived from hydroxyethyl cellulose for the mitigation of coal dust pollution. Process Safety and Environmental Protection, 203(A), 107861.
  • Farris, S., Song, J. ve Huang, Q., 2010. Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. Journal of agricultural and food chemistry, 58(2), 998-1003.
  • Fu, K., Li, J., Ge, J., Zheng, Y., Sang, Y., and Tian, G., 2025. Structural modification of gelatin with four flavonoids for improving its properties. Food Chemistry, 492(2), 145518.
  • He, M., Lin, Y., Huang, Y., Fang, Y., and Xiong, X., 2025. Research Progress of the Preparation of Cellulose Ethers and Their Applications: A Short Review. Molecules, 30(7), 1610. Huang, S., Wu, L., Li, T., Xu, D., Lin, X. and Wu, C., 2019. Facile preparation of biomass lignin-based hydroxyethyl cellulose super-absorbent hydrogel for dye pollutant removal. International journal of biological macromolecules, 137, 939-947.
  • Kaczmarek, B., 2020. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials—A minireview. Materials, 13(14), 3224.
  • Khakalo, A., Filpponen, I., Johansson, L.S., Vishtal, A., Lokanathan, A.R., Rojas, O.J., Laine, J., 2014. Using Gelatin Protein to Facilitate Paper Thermoformability. Reactive & Functional Polymers, 85, 175-184.
  • Kommareddy, S., Shenoy, D. B., Amiji, M. M., 2007. Gelatin nanoparticles and their biofunctionalization. Nanotechnologies for the life sciences: Online.
  • Li, J., Wang, R., and Li, L., 2021. Influence of cellulose ethers structure on mechanical strength of calcium sulphoaluminate cement mortar. Construction and Building Materials, 303, 124514.
  • Li, X., Wang, Z., Chen, J. and Zhang, S., 1998. UV spectral study on the interaction of RE ions with BSA. Chinese Journal of Applied Chemistry, (1), 5.
  • Lii, C. Y., Tomasik, P., Zaleska, H., Liaw, S. C., Lai, V. M. F., 2002. Carboxymethyl cellulose–gelatin complexes. Carbohydrate Polymers, 50(1), 19-26.
  • Liu, R., Zheng, J., Guo, R., Luo, J., Yuan, Y., Liu, X., 2014. Synthesis of new biobased antibacterial methacrylates derived from tannic acid and their application in UV-cured coatings. Industrial & Engineering Chemistry Research, 53(27), 10835-10840.
  • Lu, Q., Zhang, S., Xiong, M., Lin, F., Tang, L., Huang, B., Chen, Y., 2018. One-pot construction of cellulose-gelatin supramolecular hydrogels with high strength and pH-responsive properties. Carbohydrate polymers, 196, 225-232.
  • Majewicz, T. G., Podlas, T. J., 2000. Cellulose ethers. Kirk‐Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc.
  • Ning, F., Zhang, J., Kang, M., Ma, C., Li, H., Qiu, Z., 2021. Hydroxyethyl cellulose hydrogel modified with tannic acid as methylene blue adsorbent. Journal of Applied Polymer Science, 138(8), 49880.
  • Palan Abdullah, M.S., Noordin, M.I., Ismail, S.I.M., Mustapha, N.M., Jasamai, M., Danik, M.F., Ismail, W.A.W., Shamsuddin, A.F., 2018. Recent Advances in the Use of Animal-Sourced Gelatine as Natural Polymers for Food, Cosmetics and Pharmaceutical Applications. Sains Malaysiana, 47(2), 323-336.
  • Peng, T., Zhu, J., Huang, T., Jiang, C., Zhao, F., Ge, S., Xie, L., 2021. Facile preparation for gelatin/hydroxyethyl cellulose‐SiO2 composite aerogel with good mechanical strength, heat insulation, and water resistance. Journal of Applied Polymer Science, 138(23), 50539.
  • Şen, F. and Kahraman, M. V., 2018. Preparation and characterization of hybrid cationic hydroxyethyl cellulose/sodium alginate polyelectrolyte antimicrobial films. Polymers for Advanced Technologies, 29(7), 1895-1901.
  • Schrieber, R. and Gareis, H., 2007. Gelatine Handbook-Theory and Industrial Practice, Wiley-VCH Verlag GmbH & Co. KGaA.
  • Seddiqi, H., Oliaei, E., Honarkar, H., Jin, J., Geonzon, L. C., Bacabac, R. G., Klein-Nulend, J., 2021. Cellulose and its derivatives: Towards biomedical applications. Cellulose, 28(4), 1893-1931. Song, J., Liao, C., Yuan, Z., Yu, X., Cui, J., Ding, Y., ... and Mo, X., 2025. Electrically conductive and anti-inflammatory nerve conduits based on chitosan/hydroxyethyl cellulose hydrogel for enhanced peripheral nerve regeneration. Carbohydrate Polymers, 368(2), 124178.
  • Svensson, A. V., Huang, L., Johnson, E. S., Nylander, T., Piculell, L., 2009. Surface deposition and phase behavior of oppositely charged polyion/surfactant ion complexes. 1. Cationic guar versus cationic hydroxyethylcellulose in mixtures with anionic surfactants. ACS Applied Materials & Interfaces, 1(11), 2431-2442.
  • Talebian, A., Kordestani, S. S., Rashidi, A., Dadashian, F., Montazer, M., 2007. The effect of glutaraldehyde on the properties of gelatin films. Kem. Ind, 56(11), 537-541.
  • Tan, J. J., Gjerde, N., Del Giudice, A., Knudsen, K. D., Galantini, L., Du, G., ...and Nyström, B., 2023. Interactions in Aqueous Mixtures of Cationic Hydroxyethyl Cellulose and Different Anionic Bile Salts. Journal of Agricultural and Food Chemistry, 71(8), 3732-3741.
  • Teixeira, M. A., Amorim, M. T. P., Felgueiras, H. P., 2020. Poly (vinyl alcohol)-based nanofibrous electrospun scaffolds for tissue engineering applications. Polymers, 12(1), 7.
  • Ulubayram, K., Cakar, A.N., Korkusuz, P., Ertan, C., Hasırcı, N., 2001. EGF Containing Gelatin-Based Wound Dressing. Biomaterials, 22(11), 1345-1356.
  • Wang, Y. and Xie, W., 2010. Synthesis of cationic starch with a high degree of substitution in an ionic liquid. Carbohydrate Polymers, 80(4), 1172-1177.
  • Wang, W., Li, F., Yu, J., Navard, P., Budtova, T., 2015. Influence of substitution on the rheological properties and gelation of hydroxyethyl cellulose solution in NaOH–water solvent. Carbohydrate polymers, 124, 85-89.
  • Wang, K. and Ye, L., 2014. Solution behavior of hydrophobic cationic hydroxyethyl cellulose. Journal of Macromolecular Science, Part B, 53(1), 149-161.
  • Wang, W., Wang, J., Kang, Y., Wang, A., 2011. Synthesis, swelling and responsive properties of a new composite hydrogel based on hydroxyethyl cellulose and medicinal stone. Composites Part B: Engineering, 42(4), 809-818.
  • Yang, Y., Guo, Y., Sun, R., Wang, X. 2016. Self-assembly and β-carotene loading capacity of hydroxyethyl cellulose-graft-linoleic acid nanomicelles. Carbohydrate polymers, 145, 56-63.
  • Yetim, H., 2011. Jelatin Üretimi, Özellikleri ve Kullanımı-1. Ulusal Helal ve Sağlıklı Gıda Kongresi, Gıda Katkı Maddeleri: Sorunlar ve Çözüm Önerileri, Ankara, pp. 86-88.
  • Yin, O. S., Ahmad, I., Amin, M. C. I. M., 2015. Effect of cellulose nanocrystals content and pH on swelling behaviour of gelatin based hydrogel. Sains Malaysiana, 44(6), 793-799.
  • Zainal, S. H., Mohd, N. H., Suhaili, N., Anuar, F. H., Lazim, A. M., Othaman, R., 2021. Preparation of cellulose-based hydrogel: A review. Journal of Materials Research and Technology, 10, 935-952.
  • Zhou, J., Jia, Y., Liu, H., 2023. Coagulation/flocculation-flotation harvest of Microcystis aeruginosa by cationic hydroxyethyl cellulose and Agrobacterium mucopolysaccharides, Chemosphere, 313, 137503.

Fabrication of cationic hydroxyethyl cellulose-gelatin biocomposite, assessment of general characterization properties, and influence of crosslinker addition on composite specifications

Yıl 2025, Cilt: 11 Sayı: 2, 367 - 376, 31.12.2025
https://doi.org/10.53516/ajfr.1813868

Öz

Background and Aims This study was started with the synthesis of cationic hydroxyethyl cellulose (CHEC) from HEC, which is a biological cellulose derivative. After adding different amounts of Gel polymer into the CHEC matrix, bicomposite materials were obtained. The general characterization properties of these composites were investigated for determining their usability for various applications.
Methods Initially, HEC was cationized with glycidyl trimethyl ammonium chloride (GTMAC). Subsequently, Gel was incorporated into CHEC structure in varying proportions (80/20, 50/50, and 20/80; 80/20 denotes 80% CHEC and 20% Gel w/w). Composites were produced by means of the lyophilization process, even after freezing the polymer compounds at -86°C for 24 hours. The effects of the crosslinkers, CaCl₂ (C) (5%) or TA (tannic acid) (5%), were also added into the composition to show their efficiency compared to non-added pure samples. Porosity values, density, BET (Bruneuer Emmett Teller) surface area values, liquid absorption (water, phosphate-buffered saline-PBS, oil), water vapor transmission (WVT), FTIR spectrum, bacterial resistance, and SEM (Scanning Electron Microscope) imaging experiments were carried out to perform the characterization.
Results The low level of density values were determined between 0.0121 g/cm³-0.0238 g/cm³. In addition to high porosity also high spesific surface area values (206 g/m² to 307 g/m²) were obtained and it was determined that both these specifications were negatively effected with addition of crosslinker. Liquid absorption performances were also evaluated and high levels for each liquids (water 1135%-1533%; PBS 1098%-1628%; oil 1237%-5236%) were measured addition to antibacterial efficacy against S. aureus and E. coli.
Conclusion Freezing-lyophilization process was carried out to obtain CHEC-Gel-based biocomposites with different mixing ratios of CHEC and Gel. Low level of density and highly porous structures were obtained. Their high WVT, antibacterial properties, and capacity to absorb liquids were all highlighted in the experiments, suggesting that these materials have a wide range of potential specialized uses.

Etik Beyan

-

Destekleyen Kurum

Scientific and Technological Research Council of Turkey

Proje Numarası

TÜBİTAK 2209 (1919B012327052)

Teşekkür

The authors would like to express their gratitude to TÜBİTAK, the Scientific and Technological Research Council of Turkey, for the financial support it provided.

Kaynakça

  • ASTM E 96/96 M. 2002. “Standard Test Methods for Water Vapor Transmission of Materials ", ASTM International.
  • Bigi, A., Cojazzi, G., Panzavolta, S., Rubini, K. and Roveri, N., 2001. Mechanical and Thermal Properties of Gelatin Films at Different Degrees of Glutaraldehyde Crosslinking. Biomaterials, 22, 763-768.
  • Brunauer, S., Emmett, P. H. and Teller, E., 1938. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319.
  • Dabbaghi, A., Kabiri, K., Ramazani, A., Zohuriaan‐Mehr, M. J. and Jahandideh, A., 2019. Synthesis of bio‐based internal and external cross‐linkers based on tannic acid for preparation of antibacterial superabsorbents. Polymers for Advanced Technologies, 30(11), 2894-2905.
  • Ding, X., Fu, Q., Wang, T., Xu, Q., Luo, Z., Wang, K., Wang, T., 2025. The synthesis, performance, and functional mechanism of an eco-friendly suppressant derived from hydroxyethyl cellulose for the mitigation of coal dust pollution. Process Safety and Environmental Protection, 203(A), 107861.
  • Farris, S., Song, J. ve Huang, Q., 2010. Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. Journal of agricultural and food chemistry, 58(2), 998-1003.
  • Fu, K., Li, J., Ge, J., Zheng, Y., Sang, Y., and Tian, G., 2025. Structural modification of gelatin with four flavonoids for improving its properties. Food Chemistry, 492(2), 145518.
  • He, M., Lin, Y., Huang, Y., Fang, Y., and Xiong, X., 2025. Research Progress of the Preparation of Cellulose Ethers and Their Applications: A Short Review. Molecules, 30(7), 1610. Huang, S., Wu, L., Li, T., Xu, D., Lin, X. and Wu, C., 2019. Facile preparation of biomass lignin-based hydroxyethyl cellulose super-absorbent hydrogel for dye pollutant removal. International journal of biological macromolecules, 137, 939-947.
  • Kaczmarek, B., 2020. Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials—A minireview. Materials, 13(14), 3224.
  • Khakalo, A., Filpponen, I., Johansson, L.S., Vishtal, A., Lokanathan, A.R., Rojas, O.J., Laine, J., 2014. Using Gelatin Protein to Facilitate Paper Thermoformability. Reactive & Functional Polymers, 85, 175-184.
  • Kommareddy, S., Shenoy, D. B., Amiji, M. M., 2007. Gelatin nanoparticles and their biofunctionalization. Nanotechnologies for the life sciences: Online.
  • Li, J., Wang, R., and Li, L., 2021. Influence of cellulose ethers structure on mechanical strength of calcium sulphoaluminate cement mortar. Construction and Building Materials, 303, 124514.
  • Li, X., Wang, Z., Chen, J. and Zhang, S., 1998. UV spectral study on the interaction of RE ions with BSA. Chinese Journal of Applied Chemistry, (1), 5.
  • Lii, C. Y., Tomasik, P., Zaleska, H., Liaw, S. C., Lai, V. M. F., 2002. Carboxymethyl cellulose–gelatin complexes. Carbohydrate Polymers, 50(1), 19-26.
  • Liu, R., Zheng, J., Guo, R., Luo, J., Yuan, Y., Liu, X., 2014. Synthesis of new biobased antibacterial methacrylates derived from tannic acid and their application in UV-cured coatings. Industrial & Engineering Chemistry Research, 53(27), 10835-10840.
  • Lu, Q., Zhang, S., Xiong, M., Lin, F., Tang, L., Huang, B., Chen, Y., 2018. One-pot construction of cellulose-gelatin supramolecular hydrogels with high strength and pH-responsive properties. Carbohydrate polymers, 196, 225-232.
  • Majewicz, T. G., Podlas, T. J., 2000. Cellulose ethers. Kirk‐Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc.
  • Ning, F., Zhang, J., Kang, M., Ma, C., Li, H., Qiu, Z., 2021. Hydroxyethyl cellulose hydrogel modified with tannic acid as methylene blue adsorbent. Journal of Applied Polymer Science, 138(8), 49880.
  • Palan Abdullah, M.S., Noordin, M.I., Ismail, S.I.M., Mustapha, N.M., Jasamai, M., Danik, M.F., Ismail, W.A.W., Shamsuddin, A.F., 2018. Recent Advances in the Use of Animal-Sourced Gelatine as Natural Polymers for Food, Cosmetics and Pharmaceutical Applications. Sains Malaysiana, 47(2), 323-336.
  • Peng, T., Zhu, J., Huang, T., Jiang, C., Zhao, F., Ge, S., Xie, L., 2021. Facile preparation for gelatin/hydroxyethyl cellulose‐SiO2 composite aerogel with good mechanical strength, heat insulation, and water resistance. Journal of Applied Polymer Science, 138(23), 50539.
  • Şen, F. and Kahraman, M. V., 2018. Preparation and characterization of hybrid cationic hydroxyethyl cellulose/sodium alginate polyelectrolyte antimicrobial films. Polymers for Advanced Technologies, 29(7), 1895-1901.
  • Schrieber, R. and Gareis, H., 2007. Gelatine Handbook-Theory and Industrial Practice, Wiley-VCH Verlag GmbH & Co. KGaA.
  • Seddiqi, H., Oliaei, E., Honarkar, H., Jin, J., Geonzon, L. C., Bacabac, R. G., Klein-Nulend, J., 2021. Cellulose and its derivatives: Towards biomedical applications. Cellulose, 28(4), 1893-1931. Song, J., Liao, C., Yuan, Z., Yu, X., Cui, J., Ding, Y., ... and Mo, X., 2025. Electrically conductive and anti-inflammatory nerve conduits based on chitosan/hydroxyethyl cellulose hydrogel for enhanced peripheral nerve regeneration. Carbohydrate Polymers, 368(2), 124178.
  • Svensson, A. V., Huang, L., Johnson, E. S., Nylander, T., Piculell, L., 2009. Surface deposition and phase behavior of oppositely charged polyion/surfactant ion complexes. 1. Cationic guar versus cationic hydroxyethylcellulose in mixtures with anionic surfactants. ACS Applied Materials & Interfaces, 1(11), 2431-2442.
  • Talebian, A., Kordestani, S. S., Rashidi, A., Dadashian, F., Montazer, M., 2007. The effect of glutaraldehyde on the properties of gelatin films. Kem. Ind, 56(11), 537-541.
  • Tan, J. J., Gjerde, N., Del Giudice, A., Knudsen, K. D., Galantini, L., Du, G., ...and Nyström, B., 2023. Interactions in Aqueous Mixtures of Cationic Hydroxyethyl Cellulose and Different Anionic Bile Salts. Journal of Agricultural and Food Chemistry, 71(8), 3732-3741.
  • Teixeira, M. A., Amorim, M. T. P., Felgueiras, H. P., 2020. Poly (vinyl alcohol)-based nanofibrous electrospun scaffolds for tissue engineering applications. Polymers, 12(1), 7.
  • Ulubayram, K., Cakar, A.N., Korkusuz, P., Ertan, C., Hasırcı, N., 2001. EGF Containing Gelatin-Based Wound Dressing. Biomaterials, 22(11), 1345-1356.
  • Wang, Y. and Xie, W., 2010. Synthesis of cationic starch with a high degree of substitution in an ionic liquid. Carbohydrate Polymers, 80(4), 1172-1177.
  • Wang, W., Li, F., Yu, J., Navard, P., Budtova, T., 2015. Influence of substitution on the rheological properties and gelation of hydroxyethyl cellulose solution in NaOH–water solvent. Carbohydrate polymers, 124, 85-89.
  • Wang, K. and Ye, L., 2014. Solution behavior of hydrophobic cationic hydroxyethyl cellulose. Journal of Macromolecular Science, Part B, 53(1), 149-161.
  • Wang, W., Wang, J., Kang, Y., Wang, A., 2011. Synthesis, swelling and responsive properties of a new composite hydrogel based on hydroxyethyl cellulose and medicinal stone. Composites Part B: Engineering, 42(4), 809-818.
  • Yang, Y., Guo, Y., Sun, R., Wang, X. 2016. Self-assembly and β-carotene loading capacity of hydroxyethyl cellulose-graft-linoleic acid nanomicelles. Carbohydrate polymers, 145, 56-63.
  • Yetim, H., 2011. Jelatin Üretimi, Özellikleri ve Kullanımı-1. Ulusal Helal ve Sağlıklı Gıda Kongresi, Gıda Katkı Maddeleri: Sorunlar ve Çözüm Önerileri, Ankara, pp. 86-88.
  • Yin, O. S., Ahmad, I., Amin, M. C. I. M., 2015. Effect of cellulose nanocrystals content and pH on swelling behaviour of gelatin based hydrogel. Sains Malaysiana, 44(6), 793-799.
  • Zainal, S. H., Mohd, N. H., Suhaili, N., Anuar, F. H., Lazim, A. M., Othaman, R., 2021. Preparation of cellulose-based hydrogel: A review. Journal of Materials Research and Technology, 10, 935-952.
  • Zhou, J., Jia, Y., Liu, H., 2023. Coagulation/flocculation-flotation harvest of Microcystis aeruginosa by cationic hydroxyethyl cellulose and Agrobacterium mucopolysaccharides, Chemosphere, 313, 137503.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ormancılık (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ceylan Finas 0009-0006-7482-4629

Orçun Çağlar Kurtuluş 0000-0002-3233-7279

Proje Numarası TÜBİTAK 2209 (1919B012327052)
Gönderilme Tarihi 30 Ekim 2025
Kabul Tarihi 10 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 2

Kaynak Göster

APA Finas, C., & Kurtuluş, O. Ç. (2025). Fabrication of cationic hydroxyethyl cellulose-gelatin biocomposite, assessment of general characterization properties, and influence of crosslinker addition on composite specifications. Anadolu Orman Araştırmaları Dergisi, 11(2), 367-376. https://doi.org/10.53516/ajfr.1813868
AMA Finas C, Kurtuluş OÇ. Fabrication of cationic hydroxyethyl cellulose-gelatin biocomposite, assessment of general characterization properties, and influence of crosslinker addition on composite specifications. AOAD. Aralık 2025;11(2):367-376. doi:10.53516/ajfr.1813868
Chicago Finas, Ceylan, ve Orçun Çağlar Kurtuluş. “Fabrication of cationic hydroxyethyl cellulose-gelatin biocomposite, assessment of general characterization properties, and influence of crosslinker addition on composite specifications”. Anadolu Orman Araştırmaları Dergisi 11, sy. 2 (Aralık 2025): 367-76. https://doi.org/10.53516/ajfr.1813868.
EndNote Finas C, Kurtuluş OÇ (01 Aralık 2025) Fabrication of cationic hydroxyethyl cellulose-gelatin biocomposite, assessment of general characterization properties, and influence of crosslinker addition on composite specifications. Anadolu Orman Araştırmaları Dergisi 11 2 367–376.
IEEE C. Finas ve O. Ç. Kurtuluş, “Fabrication of cationic hydroxyethyl cellulose-gelatin biocomposite, assessment of general characterization properties, and influence of crosslinker addition on composite specifications”, AOAD, c. 11, sy. 2, ss. 367–376, 2025, doi: 10.53516/ajfr.1813868.
ISNAD Finas, Ceylan - Kurtuluş, Orçun Çağlar. “Fabrication of cationic hydroxyethyl cellulose-gelatin biocomposite, assessment of general characterization properties, and influence of crosslinker addition on composite specifications”. Anadolu Orman Araştırmaları Dergisi 11/2 (Aralık2025), 367-376. https://doi.org/10.53516/ajfr.1813868.
JAMA Finas C, Kurtuluş OÇ. Fabrication of cationic hydroxyethyl cellulose-gelatin biocomposite, assessment of general characterization properties, and influence of crosslinker addition on composite specifications. AOAD. 2025;11:367–376.
MLA Finas, Ceylan ve Orçun Çağlar Kurtuluş. “Fabrication of cationic hydroxyethyl cellulose-gelatin biocomposite, assessment of general characterization properties, and influence of crosslinker addition on composite specifications”. Anadolu Orman Araştırmaları Dergisi, c. 11, sy. 2, 2025, ss. 367-76, doi:10.53516/ajfr.1813868.
Vancouver Finas C, Kurtuluş OÇ. Fabrication of cationic hydroxyethyl cellulose-gelatin biocomposite, assessment of general characterization properties, and influence of crosslinker addition on composite specifications. AOAD. 2025;11(2):367-76.