Derleme
BibTex RIS Kaynak Göster

Toprak Faunasının Kurak Ekosistemlerdeki Görevleri

Yıl 2017, Cilt: 3 Sayı: 1, 67 - 78, 15.07.2017

Öz

Enerji akışı ve besin maddesi döngüleri önemli ekosistem süreçleri olup
bakteriler, mantarlar, nematodlar, solucanlar ve eklembacaklılar gibi toprak
canlılarının aktiviteleri ile kontrol edilmektedir. Toprak içerisindeki
süreçlerin işleyişi ve toprak verimliliği bu canlıların faaliyetlerine bağlı
olarak devam etmektedir. Dünyadaki toplam karasal alanın %30’u kurak alanlar
olup eklembacaklılar, kurak ekosistemlerde yaşayan toprak canlıları içerisinde
büyük çeşitliliğe sahiptir. Bu ekosistemlerdeki hassas döngülerin
sürdürülebilmesinde önemli görevleri olan canlıların ve fonksiyonlarının
bilinmesi hayati önem taşımaktadır. Kurak alanlardaki toprak canlılarının besin
ağındaki fonksiyonel yapılarını abiyotik faktörlerden özellikle sıcaklık ve
toprak nemi etkilemektedir. 
Eklembacaklıların düşük enerji ihtiyaçları da kuraklık gibi ekstrem
şartlarda hayatta kalmalarını sağlamaktadır. Bununla birlikte ölüörtü-toprak
ilişkisi hem termal hem de hidrolik özellikleri etkileyerek hızlı değişimlere
neden olabilmekte ve özellikle toprak faunasının dağılımını ve çeşitliliğini
etkilemektedir. Genel olarak ölüörtü ayrışması üzerinde yağışın etkisi
baskınken kurak alanlarda ayrışma üzerinde ışıl bozunmanın etkisi hakimdir.
Eklembacaklıların ölüörtü ayrışmasına; ölüörtüyü toprakaltına taşıyarak
doğrudan veya karmaşık trofik ilişkiler ile dolaylı etkisi olduğu
bilinmektedir. Küresel değişim senaryolarında yer alan ekosistem fonksiyonları
için toprak altı biyoçeşitliliğinin belirlenmesi, giderek artan araştırma
konuları içinde yer almaktadır.Toprak faunasının miktar ve çeşitliliği ile
ekosistem servisleri arasında kuvvetli bir ilişki vardır. Toprakaltı
biyoçeşitliliğinin azalması bu servislerin aksamasına neden olmaktadır. Bu
çalışmada, toprak faunasının biyoçeşitliliğine ve ekosistem fonksiyonlarına
olan etkileri araştırılmıştır.

Kaynakça

  • Akkaya, A., Uğurtaş, İ.H., 2006. The feeding biology of Ophisops elegans Menetries, 1832 (Reptilia: Lacertidae) populations of the Bursa region. Turkish Journal of Zoology 30, 357-360.
  • Ashwini, K.M., Sridhar, K.R., 2005. Leaf litter preference and conversion by a saprophagous tropical pill millipede, Arthrosphaera magna Attems. Pedobiologia 49, 307-316.
  • Austin, A.T., Vivanco, L., 2006. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442, 555-558.
  • Bardgett, R., Hopkins, D., Usher, M., 2005. Biological diversity and function in soils. Cambridge University Press, UK.
  • Bardgett, R.D., 2005. The Biology of Soil: A Community and Ecosystem Approach. Oxford University Press, Oxford, UK.
  • Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature 515, 505-511.
  • Barros, E., Curmi, P., Hallaire, V., Chauvel, A., Lavelle, P., 2001. The role of macrofauna in the transformation and reversibility of soil structure of an oxisol in the process of forest to pasture conversion. Geoderma 100, 193-213.
  • Berg, B., Laskowski, R., 2005. Litter decomposition: a guide to carbon and nutrient turnover. Academic Press New York.
  • Berg, B., McClaugherty, C., 2014. Plant litter: decomposition, humus formation, carbon sequestration. Springer-Verlag, Berlin Heidelberg.
  • Beylich, A., Oberholzer, H.-R., Schrader, S., Höper, H., Wilke, B.-M., 2010. Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil and Tillage Research 109, 133-143.
  • Blair, J.M., Parmelee, R.W., Beare, M.H., 1990. Decay rates, nitrogen fluxes, and decomposer communiies of single-and mixed-species foliar litter. Ecology 71, 1976-1985.
  • Bradford, M.A., Berg, B., Maynard, D.S., Wieder, W.R., Wood, S.A., 2016. Understanding the dominant controls on litter decomposition. Journal of Ecology 104, 229-238.
  • Brand, R.H., Dunn, C.P., 1998. Diversity and abundance of springtails (Insecta: Collembola) in native and restored tallgrass prairies. The American Midland Naturalist 139, 235-242.
  • Brandstätter, C., Keiblinger, K., Wanek, W., Zechmeister-Boltenstern, S., 2013. A closeup study of early beech litter decomposition: potential drivers and microbial interactions on a changing substrate. Plant and Soil 371, 139-154.
  • Brussaard, L., 1997. Biodiversity and ecosystem functioning in soil. Ambio 26, 563-570.
  • Cakir, M., 2012. Litter decomposition and organic matter turnover by soil microarthropods, Cost Action FP803 ‘Belowground Carbon Turnover in European Forests’, Antalya, Turkey.
  • Cakir, M., Makineci, E., 2013. Humus characteristics and seasonal changes of soil arthropod communities in a natural sessile oak (Quercus petraea L.) stand and adjacent Austrian pine (Pinus nigra Arnold) plantation. Environmental monitoring and assessment 185, 8943-8955.
  • Cole, L., Buckland, S.M., Bardgett, R.D., 2005. Relating microarthropod community structure and diversity to soil fertility manipulations in temperate grassland. Soil Biology and Biochemistry 37, 1707-1717.
  • Coleman, D.C., Crossley, D.A., Hendrix, P.F., 2004. Fundamentals of soil ecology. Academic press, USA.
  • Çakır, M., Çakır, F., 2015. Ormancılık faaliyetlerinin ölüörtü ve toprak eklembacaklı faunasına etkisi, Üretim işlerinde hassas ormancılık sempozyumu, Ilgaz, pp. 116-123.
  • Çakır, M., Makineci, E., 2012. Toprak faunası: sınıflandırılması ve besin ağındaki yeri. İ.Ü. Orman Fakültesi Dergisi 61, 43-55.
  • Çetik, R., 1985. Türkiye Vejetasyonu I: İç Anadolu’nun Vejetasyonu ve Ekolojisi. Selçuk Üniversitesi Yayınları, Konya.
  • David, J.F., Gillon, D., 2002. Annual feeding rate of the millipede Glomeris marginata on holm oak (Quercus ilex) leaf litter under Mediterranean conditions. Pedobiologia 46, 42-52.
  • De Deyn, G.B., Cornelissen, J.H., Bardgett, R.D., 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology letters 11, 516-531.
  • De Deyn, G.B., Raaijmakers, C.E., Zoomer, H.R., Berg, M.P., de Ruiter, P.C., Verhoef, H.A., Bezemer, T.M., van der Putten, W.H., 2003. Soil invertebrate fauna enhances grassland succession and diversity. Nature 422, 711-713.
  • Del Toro, I., Ribbons, R.R., Pelini, S.L., 2012. The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecological News 17, 133-146.
  • Doblas-Miranda, E., Sánchez-Piñero, F., González-Megías, A., 2007. Soil macroinvertebrate fauna of a Mediterranean arid system: composition and temporal changes in the assemblage. Soil Biology and Biochemistry 39, 1916-1925.
  • Doblas-Miranda, E., Sánchez-Piñero, F., González-Megías, A., 2009. Vertical distribution of soil macrofauna in an arid ecosystem: Are litter and belowground compartmentalized habitats? Pedobiologia 52, 361-373.
  • Fierer, N., Breitbart, M., Nulton, J., Salamon, P., Lozupone, C., Jones, R., Robeson, M., Edwards, R.A., Felts, B., Rayhawk, S., 2007. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Applied and environmental microbiology 73, 7059-7066.
  • Filser, J., 2002. The role of Collembola in carbon and nitrogen cycling in soil: Proceedings of the Xth international Colloquium on Apterygota, České Budějovice 2000: Apterygota at the Beginning of the Third Millennium. Pedobiologia 46, 234-245.
  • Fitter, A., Gilligan, C., Hollingworth, K., Kleczkowski, A., Twyman, R., Pitchford, J., 2005. Biodiversity and ecosystem function in soil. Functional Ecology 19, 369-377.
  • Frouz, J., Elhottová, D., Kuráž, V., Šourková, M., 2006. Effects of soil macrofauna on other soil biota and soil formation in reclaimed and unreclaimed post mining sites: results of a field microcosm experiment. Applied soil ecology 33, 308-320.
  • Frouz, J., Holec, M., Kalčík, J., 2003. The effect of Lasius niger (Hymenoptera, Formicidae) ant nest on selected soil chemical properties. Pedobiologia 47, 205-212.
  • Frouz, J., Jilkova, V., 2008. The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecological News 11, 191-199.
  • Frouz, J., Kalčík, J., Cudlín, P., 2005. Accumulation of phosphorus in nests of red wood ants Formica s. str, Annales zoologici fennici. JSTOR, pp. 269-275.
  • Frouz, J., Keplin, B., Pizl, V., Tajovskı, K., Starı, J., Lukesova, A., Nováková, A., Hánel, L., Materna, J., Düker, C., 2001. Soil biota and upper soil layer development in two contrasting post-mining chronosequences. Ecological engineering 17, 275-284.
  • Fujimaki, R., Sato, Y., Okai, N., Kaneko, N., 2010. The train millipede (Parafontaria laminata) mediates soil aggregation and N dynamics in a Japanese larch forest. Geoderma 159, 216-220.
  • Haktanır, K., Arcak, S., 1997. Toprak Biyolojisi (Toprak Ekosistemine Giriş). Ankara Üniversitesi Ziraat Fakültesi Yayınları, Ankara.
  • Hattenschwiler, S., Bretscher, D., 2008. Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Global Change Biology 7, 565-579.
  • Havlicek, E., Mitchell, E.A., 2014. Soils Supporting Biodiversity, Interactions in Soil: Promoting Plant Growth. Springer, pp. 27-58.
  • Heatwole, H., 1996. Energetics of Desert Invertebrates. Springer, Berlin.
  • Heneghan, L., Coleman, D., Zou, X., Crossley, D., Haines, B., 1998. Soil microarthropod community structure and litter decomposition dynamics: a study of tropical and temperate sites. Applied Soil Ecology 9, 33-38.
  • Heneghan, L., Coleman, D., Zou, X., Crossley Jr, D., Haines, B., 1999. Soil microarthropod contributions to decomposition dynamics: tropical-temperate comparisons of a single substrate. Ecology 80, 1873-1882.
  • Huenneke, L., Noble, I., 1996. Ecosystem function of biodiversity in arid ecosystems. Scope-Scientific Committee on Problems of The Environment International Council of Scientific Unions 55, 99-128.
  • Hunter, M.D., Adl, S., Pringle, C.M., Coleman, D.C., 2003. Relative effects of macroinvertebrates and habitat on the chemistry of litter during decomposition. Pedobiologia 47, 101-115.
  • Jílková, V., Frouz, J., Cajthaml, T., Bonkowski, M., 2015. The role of bacteria and protists in nitrogen turnover in ant nest and forest floor material: A laboratory experiment. European Journal of Soil Biology 69, 66-73.
  • John, M.G.S., Wall, D.H., Hunt, H.W., 2006. Are soil mite assemblages structured by the identity of native and invasive alien grasses? Ecology 87, 1314-1324.
  • Jones, C.G., Lawton, J.H., Shachak, M., 1994. Organisms as ecosystem engineers. Oikos, 373-386.
  • Kampichler, C., Bruckner, A., 2009. The role of microarthropods in terrestrial decomposition: a meta‐analysis of 40 years of litterbag studies. Biological Reviews 84, 375-389.
  • Kemp, P.R., Reynolds, J.F., Virginia, R.A., Whitford, W.G., 2003. Decomposition of leaf and root litter of Chihuahuan desert shrubs: effects of three years of summer drought. Journal of Arid Environments 53, 21-39.
  • Krantz, G.W., 1978. A manual of acarology (2nd edition). Oregon St Univ Bookstores, Corvallis.
  • Lalley, J., Viles, H., Henschel, J., Lalley, V., 2006. Lichen-dominated soil crusts as arthropod habitat in warm deserts. Journal of Arid Environments 67, 579-593.
  • Lavelle, P., 1996. Diversity of soil fauna and ecosystem function. Biology International 33, 3-16.
  • Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P., Rossi, J.-P., 2006. Soil invertebrates and ecosystem services. European Journal of Soil Biology 42, S3-S15.
  • Lavelle, P., Spain, A.V., 2001. Soil ecology. Kluwer Academic.
  • Lawrence, K.L., Wise, D.H., 2000. Spider predation on forest-floor Collembola and evidence for indirect effects on decomposition. Pedobiologia 44, 33-39.
  • Li, L.-J., Zeng, D.-H., Yu, Z.-Y., Fan, Z.-P., Yang, D., Liu, Y.-X., 2011. Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China. Journal of Arid Environments 75, 787-792.
  • Liu, R., Zhu, F., Steinberger, Y., 2016. Changes in ground-dwelling arthropod diversity related to the proximity of shrub cover in a desertified system. Journal of Arid Environments 124, 172-179.
  • Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M., García-Gómez, M., Bowker, M.A., Soliveres, S., Escolar, C., 2012. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214-218.
  • Malagnoux, M., 2007. Arid land forests of the world: global environmental perspectives, International Conference on Afforestation and Sustainable Forests as a Means to Combat Desertification, Jerusalem, Israel, pp. 16-19.
  • McCahon, T., Lockwood, J., 1990. Nest architecture and pedoturbation of Formica obscuripes Forel (Hymenoptera: Formicidae). Pan-Pacific Entomologist 66, 147-156.
  • Menta, C., 2012. Soil fauna diversity-function, soil degradation, biological indices, soil restoration. INTECH Open Access Publisher.
  • Midgley, G.F., 2012. Biodiversity and ecosystem function. Science 335, 174-175.
  • Moore, D., Robson, G.D., Trinci, A.P., 2011. 21st century guidebook to fungi with CD. Cambridge University Press.
  • Neher, D., Lewins, S., Weicht, T., Darby, B., 2009. Microarthropod communities associated with biological soil crusts in the Colorado Plateau and Chihuahuan deserts. Journal of Arid Environments 73, 672-677.
  • Nielsen, U., Ayres, E., Wall, D., Bardgett, R., 2011. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships. European Journal of Soil Science 62, 105-116.
  • Noble, J.C., Whitford, W.G., Kaliszweski, M., 1996. Soil and litter microarthropod populations from two contrasting ecosystems in semi-arid eastern Australia. Journal of Arid Environments 32, 329-346.
  • Orgiazzi, A., Bardgett, R.D., Barrios, E., Behan-Pelletier, V., Briones, M.J.I., Chotte, J.-L., De Deyn, G.B., Eggleton, P., Fierer, N., Fraser, T., Hedlund, K., Jeffery, S., Johnson, N.C., Jones, A., Kandeler, E., Kaneko, N., Lavelle, P., Lemanceau, P., Miko, L., Montanarella, L., Moreira, F.M.S., Ramirez, K.S., Scheu, S., Singh, B.K., Six, J., van der Putten, W.H., Wall, D.H., 2016. Global soil biodiversity atlas. European Commission, Luxembourg.
  • Petersen, H., 2002. General aspects of collembolan ecology at the turn of the millennium. Pedobiologia 46, 246-260.
  • Petersen, H., Luxton, M., 1982. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288-388.
  • Piñero, F., Tinaut, A., Aguirre-Segura, A., Miñano, J., Lencina, J., Ortiz-Sánchez, F., Pérez-López, F., 2011. Terrestrial arthropod fauna of arid areas of SE Spain: Diversity, biogeography, and conservation. Journal of Arid Environments 75, 1321-1332.
  • Punzo, F., 2000. Desert arthropods: Life history variation. Springer-Verlag, Berlin.
  • Rusek, J., 1992. Distribution and Dynamics of Soil Organisms Across Ecotones, in: Hansen, A.J., di Castri, F. (Eds.), Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flows. Springer-Verlag, New York.
  • Rusek, J., 1998. Biodiversity of Collembola and their functional role in the ecosystem. Biodiversity & Conservation 7, 1207-1219.
  • Rushton, S.P., Hassall, M., 1983. Food and feeding rates of the terrestrial isopod Armadillidium vulgare (Latreille). Oecologia 57, 415-419.
  • Santos, P.F., Whitford, W.G., 1981. The effects of microarthropods on litter decomposition in a Chihuahuan desert ecosystem. Ecology, 654-663.
  • Schneider, K., Maraun, M., 2009. Top-down control of soil microarthropods–evidence from a laboratory experiment. Soil Biology and Biochemistry 41, 170-175.
  • Seastedt, T., 1984. The role of microarthropods in decomposition and mineralization processes. Annual review of entomology 29, 25-46.
  • Shekhawat, N.S., Phulwaria, M., Rai, M.K., Kataria, V., Shekhawat, S., Gupta, A.K., Rathore, N.S., Vyas, M., Rathore, N., Vibha, J., 2012. Bioresearches of fragile ecosystem/desert. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 82, 319-334.
  • Somme, L., 1995. Invertebrates in hot and cold arid environment. Springer, Berlin.
  • Swift, M.J., Heal, W., Anderson, J.M., 1979. Decomposition in Terrestrial Ecosystems. University of California Press, Berkeley.
  • Torres, P., Abril, A., Bucher, E., 2005. Microbial succession in litter decomposition in the semi-arid Chaco woodland. Soil Biology and Biochemistry 37, 49-54.
  • Villarreal-Rosas, J., Palacios-Vargas, J.G., Maya, Y., 2014. Microarthropod communities related with biological soil crusts in a desert scrub in northwestern Mexico. Revista Mexicana de Biodiversidad 85, 513-522.
  • Wall, D.H., 2004. Sustaining biodiversity and ecosystem services in soils and sediments. Island Press.
  • Wall, D.H., Adams, G.A., Parsons, A.N., 2001. Soil biodiversity, in: III., F.S.C., Sala, O.E., Huber-Sannwald, E. (Eds.), Global Biodiversity in a Changing Environment: Scenarios for the 21st Century. Springer-Verlag, New York, pp. 47–82.
  • Wall, D.H., Bardgett, R.D., Behan-Pelletier, V., Herrick, J.E., Jones, T.H., Ritz, K., Six, J., 2012. Soil ecology and ecosystem services. Oxford University Press.
  • Wallwork, J., Macquitty, M., Silva, S., Whitford, W., 1986. Seasonality of some Chihuahuan Desert soil oribatid mites (Acari: Cryptostigmata). Journal of Zoology 208, 403-416.
  • Wallwork, J.A., 1970. Ecology of soil animals. McGraw-Hill, London.
  • Wallwork, J.A., 1976. The distribution and Diversity of Soil fauna. Academic Press, London.
  • Wang, S., Ruan, H., Wang, B., 2009. Effects of soil microarthropods on plant litter decomposition across an elevation gradient in the Wuyi Mountains. Soil Biology and Biochemistry 41, 891-897.
  • Wardle, D.A., 2002. Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton.
  • Whitford, W.G., 1989. Abiotic controls on the functional structure of soil food webs. Biology and Fertility of Soils 8, 1-6.
  • Whitford, W.G., 1996. The importance of the biodiversity of soil biota in arid ecosystems. Biodiversity and Conservation 5, 185-195.
  • Whitford, W.G., Stinnett, K., Anderson, J., 1988. Decomposition of roots in a ChihuahuanDesert ecosystem. Oecologia 75, 8-11.
  • Wickings, K., Grandy, A.S., 2011. The oribatid mite Scheloribates moestus (Acari: Oribatida) alters litter chemistry and nutrient cycling during decomposition. Soil Biology and Biochemistry 43, 351-358.
  • Wolters, V., Silver, W.L., Bignell, D.E., Coleman, D.C., Lavelle, P., Van Der Putten, W.H., De Ruiter, P., Rusek, J., Wall, D.H., Wardle, D.A., 2000. Effects of global changes on above-and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning. BioScience 50, 1089-1098.
  • Wright, C.J., Coleman, D.C., 2002. Responses of soil microbial biomass, nematode trophic groups, N-mineralization, and litter decomposition to disturbance events in the southern Appalachians. Soil Biology and Biochemistry 34, 13-25.
Yıl 2017, Cilt: 3 Sayı: 1, 67 - 78, 15.07.2017

Öz

Kaynakça

  • Akkaya, A., Uğurtaş, İ.H., 2006. The feeding biology of Ophisops elegans Menetries, 1832 (Reptilia: Lacertidae) populations of the Bursa region. Turkish Journal of Zoology 30, 357-360.
  • Ashwini, K.M., Sridhar, K.R., 2005. Leaf litter preference and conversion by a saprophagous tropical pill millipede, Arthrosphaera magna Attems. Pedobiologia 49, 307-316.
  • Austin, A.T., Vivanco, L., 2006. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442, 555-558.
  • Bardgett, R., Hopkins, D., Usher, M., 2005. Biological diversity and function in soils. Cambridge University Press, UK.
  • Bardgett, R.D., 2005. The Biology of Soil: A Community and Ecosystem Approach. Oxford University Press, Oxford, UK.
  • Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature 515, 505-511.
  • Barros, E., Curmi, P., Hallaire, V., Chauvel, A., Lavelle, P., 2001. The role of macrofauna in the transformation and reversibility of soil structure of an oxisol in the process of forest to pasture conversion. Geoderma 100, 193-213.
  • Berg, B., Laskowski, R., 2005. Litter decomposition: a guide to carbon and nutrient turnover. Academic Press New York.
  • Berg, B., McClaugherty, C., 2014. Plant litter: decomposition, humus formation, carbon sequestration. Springer-Verlag, Berlin Heidelberg.
  • Beylich, A., Oberholzer, H.-R., Schrader, S., Höper, H., Wilke, B.-M., 2010. Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil and Tillage Research 109, 133-143.
  • Blair, J.M., Parmelee, R.W., Beare, M.H., 1990. Decay rates, nitrogen fluxes, and decomposer communiies of single-and mixed-species foliar litter. Ecology 71, 1976-1985.
  • Bradford, M.A., Berg, B., Maynard, D.S., Wieder, W.R., Wood, S.A., 2016. Understanding the dominant controls on litter decomposition. Journal of Ecology 104, 229-238.
  • Brand, R.H., Dunn, C.P., 1998. Diversity and abundance of springtails (Insecta: Collembola) in native and restored tallgrass prairies. The American Midland Naturalist 139, 235-242.
  • Brandstätter, C., Keiblinger, K., Wanek, W., Zechmeister-Boltenstern, S., 2013. A closeup study of early beech litter decomposition: potential drivers and microbial interactions on a changing substrate. Plant and Soil 371, 139-154.
  • Brussaard, L., 1997. Biodiversity and ecosystem functioning in soil. Ambio 26, 563-570.
  • Cakir, M., 2012. Litter decomposition and organic matter turnover by soil microarthropods, Cost Action FP803 ‘Belowground Carbon Turnover in European Forests’, Antalya, Turkey.
  • Cakir, M., Makineci, E., 2013. Humus characteristics and seasonal changes of soil arthropod communities in a natural sessile oak (Quercus petraea L.) stand and adjacent Austrian pine (Pinus nigra Arnold) plantation. Environmental monitoring and assessment 185, 8943-8955.
  • Cole, L., Buckland, S.M., Bardgett, R.D., 2005. Relating microarthropod community structure and diversity to soil fertility manipulations in temperate grassland. Soil Biology and Biochemistry 37, 1707-1717.
  • Coleman, D.C., Crossley, D.A., Hendrix, P.F., 2004. Fundamentals of soil ecology. Academic press, USA.
  • Çakır, M., Çakır, F., 2015. Ormancılık faaliyetlerinin ölüörtü ve toprak eklembacaklı faunasına etkisi, Üretim işlerinde hassas ormancılık sempozyumu, Ilgaz, pp. 116-123.
  • Çakır, M., Makineci, E., 2012. Toprak faunası: sınıflandırılması ve besin ağındaki yeri. İ.Ü. Orman Fakültesi Dergisi 61, 43-55.
  • Çetik, R., 1985. Türkiye Vejetasyonu I: İç Anadolu’nun Vejetasyonu ve Ekolojisi. Selçuk Üniversitesi Yayınları, Konya.
  • David, J.F., Gillon, D., 2002. Annual feeding rate of the millipede Glomeris marginata on holm oak (Quercus ilex) leaf litter under Mediterranean conditions. Pedobiologia 46, 42-52.
  • De Deyn, G.B., Cornelissen, J.H., Bardgett, R.D., 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology letters 11, 516-531.
  • De Deyn, G.B., Raaijmakers, C.E., Zoomer, H.R., Berg, M.P., de Ruiter, P.C., Verhoef, H.A., Bezemer, T.M., van der Putten, W.H., 2003. Soil invertebrate fauna enhances grassland succession and diversity. Nature 422, 711-713.
  • Del Toro, I., Ribbons, R.R., Pelini, S.L., 2012. The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecological News 17, 133-146.
  • Doblas-Miranda, E., Sánchez-Piñero, F., González-Megías, A., 2007. Soil macroinvertebrate fauna of a Mediterranean arid system: composition and temporal changes in the assemblage. Soil Biology and Biochemistry 39, 1916-1925.
  • Doblas-Miranda, E., Sánchez-Piñero, F., González-Megías, A., 2009. Vertical distribution of soil macrofauna in an arid ecosystem: Are litter and belowground compartmentalized habitats? Pedobiologia 52, 361-373.
  • Fierer, N., Breitbart, M., Nulton, J., Salamon, P., Lozupone, C., Jones, R., Robeson, M., Edwards, R.A., Felts, B., Rayhawk, S., 2007. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Applied and environmental microbiology 73, 7059-7066.
  • Filser, J., 2002. The role of Collembola in carbon and nitrogen cycling in soil: Proceedings of the Xth international Colloquium on Apterygota, České Budějovice 2000: Apterygota at the Beginning of the Third Millennium. Pedobiologia 46, 234-245.
  • Fitter, A., Gilligan, C., Hollingworth, K., Kleczkowski, A., Twyman, R., Pitchford, J., 2005. Biodiversity and ecosystem function in soil. Functional Ecology 19, 369-377.
  • Frouz, J., Elhottová, D., Kuráž, V., Šourková, M., 2006. Effects of soil macrofauna on other soil biota and soil formation in reclaimed and unreclaimed post mining sites: results of a field microcosm experiment. Applied soil ecology 33, 308-320.
  • Frouz, J., Holec, M., Kalčík, J., 2003. The effect of Lasius niger (Hymenoptera, Formicidae) ant nest on selected soil chemical properties. Pedobiologia 47, 205-212.
  • Frouz, J., Jilkova, V., 2008. The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecological News 11, 191-199.
  • Frouz, J., Kalčík, J., Cudlín, P., 2005. Accumulation of phosphorus in nests of red wood ants Formica s. str, Annales zoologici fennici. JSTOR, pp. 269-275.
  • Frouz, J., Keplin, B., Pizl, V., Tajovskı, K., Starı, J., Lukesova, A., Nováková, A., Hánel, L., Materna, J., Düker, C., 2001. Soil biota and upper soil layer development in two contrasting post-mining chronosequences. Ecological engineering 17, 275-284.
  • Fujimaki, R., Sato, Y., Okai, N., Kaneko, N., 2010. The train millipede (Parafontaria laminata) mediates soil aggregation and N dynamics in a Japanese larch forest. Geoderma 159, 216-220.
  • Haktanır, K., Arcak, S., 1997. Toprak Biyolojisi (Toprak Ekosistemine Giriş). Ankara Üniversitesi Ziraat Fakültesi Yayınları, Ankara.
  • Hattenschwiler, S., Bretscher, D., 2008. Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Global Change Biology 7, 565-579.
  • Havlicek, E., Mitchell, E.A., 2014. Soils Supporting Biodiversity, Interactions in Soil: Promoting Plant Growth. Springer, pp. 27-58.
  • Heatwole, H., 1996. Energetics of Desert Invertebrates. Springer, Berlin.
  • Heneghan, L., Coleman, D., Zou, X., Crossley, D., Haines, B., 1998. Soil microarthropod community structure and litter decomposition dynamics: a study of tropical and temperate sites. Applied Soil Ecology 9, 33-38.
  • Heneghan, L., Coleman, D., Zou, X., Crossley Jr, D., Haines, B., 1999. Soil microarthropod contributions to decomposition dynamics: tropical-temperate comparisons of a single substrate. Ecology 80, 1873-1882.
  • Huenneke, L., Noble, I., 1996. Ecosystem function of biodiversity in arid ecosystems. Scope-Scientific Committee on Problems of The Environment International Council of Scientific Unions 55, 99-128.
  • Hunter, M.D., Adl, S., Pringle, C.M., Coleman, D.C., 2003. Relative effects of macroinvertebrates and habitat on the chemistry of litter during decomposition. Pedobiologia 47, 101-115.
  • Jílková, V., Frouz, J., Cajthaml, T., Bonkowski, M., 2015. The role of bacteria and protists in nitrogen turnover in ant nest and forest floor material: A laboratory experiment. European Journal of Soil Biology 69, 66-73.
  • John, M.G.S., Wall, D.H., Hunt, H.W., 2006. Are soil mite assemblages structured by the identity of native and invasive alien grasses? Ecology 87, 1314-1324.
  • Jones, C.G., Lawton, J.H., Shachak, M., 1994. Organisms as ecosystem engineers. Oikos, 373-386.
  • Kampichler, C., Bruckner, A., 2009. The role of microarthropods in terrestrial decomposition: a meta‐analysis of 40 years of litterbag studies. Biological Reviews 84, 375-389.
  • Kemp, P.R., Reynolds, J.F., Virginia, R.A., Whitford, W.G., 2003. Decomposition of leaf and root litter of Chihuahuan desert shrubs: effects of three years of summer drought. Journal of Arid Environments 53, 21-39.
  • Krantz, G.W., 1978. A manual of acarology (2nd edition). Oregon St Univ Bookstores, Corvallis.
  • Lalley, J., Viles, H., Henschel, J., Lalley, V., 2006. Lichen-dominated soil crusts as arthropod habitat in warm deserts. Journal of Arid Environments 67, 579-593.
  • Lavelle, P., 1996. Diversity of soil fauna and ecosystem function. Biology International 33, 3-16.
  • Lavelle, P., Decaëns, T., Aubert, M., Barot, S., Blouin, M., Bureau, F., Margerie, P., Mora, P., Rossi, J.-P., 2006. Soil invertebrates and ecosystem services. European Journal of Soil Biology 42, S3-S15.
  • Lavelle, P., Spain, A.V., 2001. Soil ecology. Kluwer Academic.
  • Lawrence, K.L., Wise, D.H., 2000. Spider predation on forest-floor Collembola and evidence for indirect effects on decomposition. Pedobiologia 44, 33-39.
  • Li, L.-J., Zeng, D.-H., Yu, Z.-Y., Fan, Z.-P., Yang, D., Liu, Y.-X., 2011. Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China. Journal of Arid Environments 75, 787-792.
  • Liu, R., Zhu, F., Steinberger, Y., 2016. Changes in ground-dwelling arthropod diversity related to the proximity of shrub cover in a desertified system. Journal of Arid Environments 124, 172-179.
  • Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M., García-Gómez, M., Bowker, M.A., Soliveres, S., Escolar, C., 2012. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214-218.
  • Malagnoux, M., 2007. Arid land forests of the world: global environmental perspectives, International Conference on Afforestation and Sustainable Forests as a Means to Combat Desertification, Jerusalem, Israel, pp. 16-19.
  • McCahon, T., Lockwood, J., 1990. Nest architecture and pedoturbation of Formica obscuripes Forel (Hymenoptera: Formicidae). Pan-Pacific Entomologist 66, 147-156.
  • Menta, C., 2012. Soil fauna diversity-function, soil degradation, biological indices, soil restoration. INTECH Open Access Publisher.
  • Midgley, G.F., 2012. Biodiversity and ecosystem function. Science 335, 174-175.
  • Moore, D., Robson, G.D., Trinci, A.P., 2011. 21st century guidebook to fungi with CD. Cambridge University Press.
  • Neher, D., Lewins, S., Weicht, T., Darby, B., 2009. Microarthropod communities associated with biological soil crusts in the Colorado Plateau and Chihuahuan deserts. Journal of Arid Environments 73, 672-677.
  • Nielsen, U., Ayres, E., Wall, D., Bardgett, R., 2011. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships. European Journal of Soil Science 62, 105-116.
  • Noble, J.C., Whitford, W.G., Kaliszweski, M., 1996. Soil and litter microarthropod populations from two contrasting ecosystems in semi-arid eastern Australia. Journal of Arid Environments 32, 329-346.
  • Orgiazzi, A., Bardgett, R.D., Barrios, E., Behan-Pelletier, V., Briones, M.J.I., Chotte, J.-L., De Deyn, G.B., Eggleton, P., Fierer, N., Fraser, T., Hedlund, K., Jeffery, S., Johnson, N.C., Jones, A., Kandeler, E., Kaneko, N., Lavelle, P., Lemanceau, P., Miko, L., Montanarella, L., Moreira, F.M.S., Ramirez, K.S., Scheu, S., Singh, B.K., Six, J., van der Putten, W.H., Wall, D.H., 2016. Global soil biodiversity atlas. European Commission, Luxembourg.
  • Petersen, H., 2002. General aspects of collembolan ecology at the turn of the millennium. Pedobiologia 46, 246-260.
  • Petersen, H., Luxton, M., 1982. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39, 288-388.
  • Piñero, F., Tinaut, A., Aguirre-Segura, A., Miñano, J., Lencina, J., Ortiz-Sánchez, F., Pérez-López, F., 2011. Terrestrial arthropod fauna of arid areas of SE Spain: Diversity, biogeography, and conservation. Journal of Arid Environments 75, 1321-1332.
  • Punzo, F., 2000. Desert arthropods: Life history variation. Springer-Verlag, Berlin.
  • Rusek, J., 1992. Distribution and Dynamics of Soil Organisms Across Ecotones, in: Hansen, A.J., di Castri, F. (Eds.), Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flows. Springer-Verlag, New York.
  • Rusek, J., 1998. Biodiversity of Collembola and their functional role in the ecosystem. Biodiversity & Conservation 7, 1207-1219.
  • Rushton, S.P., Hassall, M., 1983. Food and feeding rates of the terrestrial isopod Armadillidium vulgare (Latreille). Oecologia 57, 415-419.
  • Santos, P.F., Whitford, W.G., 1981. The effects of microarthropods on litter decomposition in a Chihuahuan desert ecosystem. Ecology, 654-663.
  • Schneider, K., Maraun, M., 2009. Top-down control of soil microarthropods–evidence from a laboratory experiment. Soil Biology and Biochemistry 41, 170-175.
  • Seastedt, T., 1984. The role of microarthropods in decomposition and mineralization processes. Annual review of entomology 29, 25-46.
  • Shekhawat, N.S., Phulwaria, M., Rai, M.K., Kataria, V., Shekhawat, S., Gupta, A.K., Rathore, N.S., Vyas, M., Rathore, N., Vibha, J., 2012. Bioresearches of fragile ecosystem/desert. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 82, 319-334.
  • Somme, L., 1995. Invertebrates in hot and cold arid environment. Springer, Berlin.
  • Swift, M.J., Heal, W., Anderson, J.M., 1979. Decomposition in Terrestrial Ecosystems. University of California Press, Berkeley.
  • Torres, P., Abril, A., Bucher, E., 2005. Microbial succession in litter decomposition in the semi-arid Chaco woodland. Soil Biology and Biochemistry 37, 49-54.
  • Villarreal-Rosas, J., Palacios-Vargas, J.G., Maya, Y., 2014. Microarthropod communities related with biological soil crusts in a desert scrub in northwestern Mexico. Revista Mexicana de Biodiversidad 85, 513-522.
  • Wall, D.H., 2004. Sustaining biodiversity and ecosystem services in soils and sediments. Island Press.
  • Wall, D.H., Adams, G.A., Parsons, A.N., 2001. Soil biodiversity, in: III., F.S.C., Sala, O.E., Huber-Sannwald, E. (Eds.), Global Biodiversity in a Changing Environment: Scenarios for the 21st Century. Springer-Verlag, New York, pp. 47–82.
  • Wall, D.H., Bardgett, R.D., Behan-Pelletier, V., Herrick, J.E., Jones, T.H., Ritz, K., Six, J., 2012. Soil ecology and ecosystem services. Oxford University Press.
  • Wallwork, J., Macquitty, M., Silva, S., Whitford, W., 1986. Seasonality of some Chihuahuan Desert soil oribatid mites (Acari: Cryptostigmata). Journal of Zoology 208, 403-416.
  • Wallwork, J.A., 1970. Ecology of soil animals. McGraw-Hill, London.
  • Wallwork, J.A., 1976. The distribution and Diversity of Soil fauna. Academic Press, London.
  • Wang, S., Ruan, H., Wang, B., 2009. Effects of soil microarthropods on plant litter decomposition across an elevation gradient in the Wuyi Mountains. Soil Biology and Biochemistry 41, 891-897.
  • Wardle, D.A., 2002. Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton.
  • Whitford, W.G., 1989. Abiotic controls on the functional structure of soil food webs. Biology and Fertility of Soils 8, 1-6.
  • Whitford, W.G., 1996. The importance of the biodiversity of soil biota in arid ecosystems. Biodiversity and Conservation 5, 185-195.
  • Whitford, W.G., Stinnett, K., Anderson, J., 1988. Decomposition of roots in a ChihuahuanDesert ecosystem. Oecologia 75, 8-11.
  • Wickings, K., Grandy, A.S., 2011. The oribatid mite Scheloribates moestus (Acari: Oribatida) alters litter chemistry and nutrient cycling during decomposition. Soil Biology and Biochemistry 43, 351-358.
  • Wolters, V., Silver, W.L., Bignell, D.E., Coleman, D.C., Lavelle, P., Van Der Putten, W.H., De Ruiter, P., Rusek, J., Wall, D.H., Wardle, D.A., 2000. Effects of global changes on above-and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning. BioScience 50, 1089-1098.
  • Wright, C.J., Coleman, D.C., 2002. Responses of soil microbial biomass, nematode trophic groups, N-mineralization, and litter decomposition to disturbance events in the southern Appalachians. Soil Biology and Biochemistry 34, 13-25.
Toplam 97 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makaleler
Yazarlar

Meriç Çakır

Yayımlanma Tarihi 15 Temmuz 2017
Gönderilme Tarihi 29 Mart 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 3 Sayı: 1

Kaynak Göster

APA Çakır, M. (2017). Toprak Faunasının Kurak Ekosistemlerdeki Görevleri. Anadolu Orman Araştırmaları Dergisi, 3(1), 67-78.
AMA Çakır M. Toprak Faunasının Kurak Ekosistemlerdeki Görevleri. AOAD. Temmuz 2017;3(1):67-78.
Chicago Çakır, Meriç. “Toprak Faunasının Kurak Ekosistemlerdeki Görevleri”. Anadolu Orman Araştırmaları Dergisi 3, sy. 1 (Temmuz 2017): 67-78.
EndNote Çakır M (01 Temmuz 2017) Toprak Faunasının Kurak Ekosistemlerdeki Görevleri. Anadolu Orman Araştırmaları Dergisi 3 1 67–78.
IEEE M. Çakır, “Toprak Faunasının Kurak Ekosistemlerdeki Görevleri”, AOAD, c. 3, sy. 1, ss. 67–78, 2017.
ISNAD Çakır, Meriç. “Toprak Faunasının Kurak Ekosistemlerdeki Görevleri”. Anadolu Orman Araştırmaları Dergisi 3/1 (Temmuz 2017), 67-78.
JAMA Çakır M. Toprak Faunasının Kurak Ekosistemlerdeki Görevleri. AOAD. 2017;3:67–78.
MLA Çakır, Meriç. “Toprak Faunasının Kurak Ekosistemlerdeki Görevleri”. Anadolu Orman Araştırmaları Dergisi, c. 3, sy. 1, 2017, ss. 67-78.
Vancouver Çakır M. Toprak Faunasının Kurak Ekosistemlerdeki Görevleri. AOAD. 2017;3(1):67-78.