Araştırma Makalesi
BibTex RIS Kaynak Göster

Validation of EUMETSAT H-SAF space-born snow water equivalent product (H13) for the 2020-2021 snow year over Turkey

Yıl 2022, Cilt: 8 Sayı: 2, 16 - 21, 30.12.2022
https://doi.org/10.53516/ajfr.1145662

Öz

Timely and consistent information on the seasonal snow cover is critical for various scientific studies and operational applications, especially for hydrological purposes. Snow water equivalent (SWE) is a significant seasonal snow parameter, which serves as a key input for many hydrological and climatological models. H13 is a SWE product supplied within the frame of EUMETSAT’s H-SAF project based on the processing of passive microwave radiometer data. The basic aim of this study is to perform a validation of H13 over Turkey for the 2020-2021 snow season by using in-situ snow depth measurements. The validation covers the period between January and March 2021, and it includes 1282 ground-based observations. According to the results, annual RMSE of the H13 SWE product is obtained as 40.00 mm, which lies within the acceptable limits of the required product compliance. The minimum and maximum snow depth measurements within the validation period are 2.80 cm and 95.34 cm, respectively. The results obtained in this validation study clearly indicate the usability of the H13 SWE product in hydrological and climatic studies.

Kaynakça

  • Akyürek, Z., Hall, D.K., Riggs, G.A., Sensoy, A., 2010. Evaluating the utility of the ANSA blended snow cover product in the mountains of eastern Turkey. International Journal of Remote Sensing, 31, 3727-3744.
  • Allan, R.P., Barlow, M., Byrne, M.P., Cherchi, A., Douville, H., Fowler, H.J., Gan, T.Y., Pendergrass, A.G., Rosenfeld, D., Swann, A.L.S., Wilcox, L.J., Zolina, O., 2020. Advances in understanding large-scale responses of the water cycle to climate change. Annals of the New York Academy of Sciences, 1472, 49-75.
  • Bilgili, B.C., Erşahin, S., Kavakligil, S.S., Öner, N., 2020. Net primary productivity of a mountain forest ecosystem as affected by climate and topography. Cerne, 26, 356-368.
  • Brown, R.D., Robinson, D.A., 2005. Snow and Snow Cover. In: Oliver, J.E. (Ed.), Encyclopedia of World Climatology. Springer, Netherlands, Dordrecht, pp. 658-663.
  • Broxton, P.D., Dawson, N., Zeng, X., 2016. Linking snowfall and snow accumulation to generate spatial maps of SWE and snow depth. Earth and Space Science, 3, 246-256.
  • Corbaci, O.L., Bilgili, B.C., Oner, N., Ersahin, S., Kasko-Arici, Y., 2019. Potential use of natural Turkish sweetgum species in landscape design in Turkey. Fresenius Environmental Bulletin, 28, 1610-1615.
  • Dawson, J.P., Bloomer, B.J., Winner, D.A., Weaver, C.P., 2014. Understanding the meteorological drivers of US particulate matter concentrations in a changing climate. Bulletin of the American Meteorological Society, 95, 521-532.
  • Dietz, A.J., Kuenzer, C., Gessner, U., Dech, S., 2012. Remote sensing of snow – A review of available methods. International Journal of Remote Sensing, 33, 4094-4134.
  • Dong, J., Walker, J.P., Houser, P.R., Sun, C., 2007. Scanning multichannel microwave radiometer snow water equivalent assimilation. Journal of Geophysical Research: Atmospheres, 112, D07108.
  • Dyer, J.L., Mote, T.L., 2006. Spatial variability and trends in observed snow depth over North America. Geophysical Research Letters, 33, L165033.
  • Eken, O., Oner, N., 2017. An assessment of the important morphological properties of Anatolian black pine seedlings in semiarid forest nursery. Fresenius Environmental Bulletin 26, 4158-4162.
  • Emery, W., Camps, A., 2017. Introduction to Satellite Remote Sensing: Atmosphere, Ocean, Land and Cryosphere Applications. Elsevier, Amsterdam, Netherlands.
  • Fiel, R., Sommer, W., Rentsch, T., 2009. SPA-Snow Pack Analysing System. In, International Snow Science Workshop. Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Davos, Switzerland, pp. 129-131.
  • H13-PUM, 2018. Product User Manual (PUM) for product H13 – SN-OBS-4: Snow Water Equivalent by MW Radiometry. https://hsaf.meteoam.it/CaseStudy/GetDocumentUserDocument?fileName=SAF_HSAF_PUM-13_1_0.pdf&tipo=PUM, Accessed on 4th of July 2022.
  • H13-PVR, 2012. Product Validation Report (PVR-13) for product H13 (SN-OBS-4) Snow Water Equivalent by MW Radiometry. https://hsaf.meteoam.it/CaseStudy/GetDocumentUserDocument?fileName=SAF_HSAF_PVR-13_1.2.1.pdf&tipo=PVR, Accessed on 4th of July 2022.
  • Hall, D.K., Martinec, J., 1985. Remote Sensing of Ice and Snow. Chapman and Hall, USA.
  • Hall, D.K., Riggs, G.A., DiGirolamo, N.E., Román, M.O., 2019. Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an Earth science data record. Hydrol. Earth Syst. Sci., 23, 5227-5241.
  • Kruopis, N., Praks, J., Arslan, A.N., Alasalmi, H.M., Koskinen, J.T., Hallikainen, M.T., 1999. Passive microwave measurements of snow-covered forest areas in EMAC'95. IEEE Transactions on Geoscience and Remote Sensing, 37, 2699-2705.
  • Kuter, S., Bolat, K., Akyurek, Z., 2022. A machine learning-based accuracy enhancement on EUMETSAT H-SAF H35 effective snow-covered area product. Remote Sensing of Environment, 272, 112947.
  • Lee, S., McCarty, G.W., Moglen, G.E., Lang, M.W., Nathan Jones, C., Palmer, M., Yeo, I.-Y., Anderson, M., Sadeghi, A.M., Rabenhorst, M.C., 2020. Seasonal drivers of geographically isolated wetland hydrology in a low-gradient, Coastal Plain landscape. Journal of Hydrology, 583, 124608.
  • López-Moreno, J.I., Fassnacht, S.R., Heath, J.T., Musselman, K.N., Revuelto, J., Latron, J., Morán-Tejeda, E., Jonas, T., 2013. Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Advances in Water Resources, 55, 40-52.
  • Metsämäki, S., Pulliainen, J., Salminen, M., Luojus, K., Wiesmann, A., Solberg, R., Böttcher, K., Hiltunen, M., Ripper, E., 2015. Introduction to GlobSnow Snow Extent products with considerations for accuracy assessment. Remote Sensing of Environment, 156, 96-108.
  • Oner, N., M., Uysal, 2009. Usability of the Taurus cedar and Crimean pine in green belt afforestations in semiarid regions in Turkey: A case study in Konya Province Loros Mountain-Akyokus. African Journal of Agricultural Research, 4, 1049-1057.
  • Piazzi, G., Tanis, C.M., Kuter, S., Simsek, B., Puca, S., Toniazzo, A., Takala, M., Akyürek, Z., Gabellani, S., Arslan, A.N., 2019. Cross-Country Assessment of H-SAF Snow Products by Sentinel-2 Imagery Validated against In-Situ Observations and Webcam Photography. Geosciences, 9, 129.
  • Pulliainen, J., 2006. Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Remote Sensing of Environment, 101, 257-269.
  • Pulliainen, J., Hallikainen, M., 2001. Retrieval of regional snow water equivalent from space-borne passive microwave observations. Remote Sensing of Environment, 75, 76-85.
  • Pulliainen, J., Karna, J., Hallikainen, M., 1993. Development of geophysical retrieval algorithms for the MIMR. IEEE Transactions on Geoscience and Remote Sensing, 31, 268-277.
  • Pulliainen, J.T., Grandell, J., Hallikainen, M.T., 1999. HUT snow emission model and its applicability to snow water equivalent retrieval. IEEE Transactions on Geoscience and Remote Sensing, 37, 1378-1390.
  • Ryan, W.A., Doesken, N.J., Fassnacht, S.R., 2008. evaluation of ultrasonic snow depth sensors for U.S. Snow Measurements Journal of Atmospheric and Oceanic Technology, 25, 667-684.
  • Şorman, A.A., Ertaş, M.C., 2019. Otomatik yeni yöntemlerle gözlenen kar bileşenlerinin manuel ölçümler ve uydu görüntüleriyle değerlendiriimesi. DSİ Teknik Bülteni, 132, 1-11.
  • Sorman, A.U., Beser, O., 2013. Determination of snow water equivalent over the eastern part of Turkey using passive microwave data. Hydrological Processes, 27, 1945-1958.
  • SSM/IS, 2007. Special Sensor Microwave Imager and Sounder (SSMIS) Antenna brightness temperature data record (tdr) calibration and validation user manual. http://rain.atmos.colostate.edu/FCDR/Archive_Docs/SSMIS_general/NOAA_STAR_SSMIS_TDR_CalVal_User_Manual.pdf, Accessed on 15 July 2022.
  • Sulistya, W., Nugraha, H.A., Dharmawan, G.S.B., Putra, M., Furqon, A., Sugiarto, S., Pramagusta, A.P., 2019. Development of automated weather observing system based on realtime web display. In, 2019 International Electronics Symposium (IES), pp. 577-581.
  • Tekeli, A.E., Akyürek, Z., Şorman, A.A., Şensoy, A., Şorman, Ü., 2005. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sensing of Environment, 97, 216-230.
  • Venäläinen, P., Luojus, K., Lemmetyinen, J., Pulliainen, J., Moisander, M., Takala, M., 2021. Impact of dynamic snow density on GlobSnow snow water equivalent retrieval accuracy. The Cryosphere, 15, 2969-2981.
  • Viviroli, D., Archer, D.R., Buytaert, W., Fowler, H.J., Greenwood, G., Hamlet, A.F., Huang, Y., Koboltschnig, G., Litaor, I., López-Moreno, 2011. Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrology and Earth System Sciences, 15, 471-504.

EUMETSAT H-SAF H13 uzay tabanlı kar suyu eşdeğeri ürününün 2020-2021 kar yılı için yersel kar derinliği ölçümleriyle Türkiye üzerinde doğrulanması

Yıl 2022, Cilt: 8 Sayı: 2, 16 - 21, 30.12.2022
https://doi.org/10.53516/ajfr.1145662

Öz

Mevsimsel kar örtüsü hakkında zamanında ve tutarlı bilgi elde edilmesi, çeşitli bilimsel çalışmalar, operasyonel uygulamalar ve özellikle de hidrolojik amaçlar için kritik öneme sahiptir. Kar suyu eşdeğeri (KSE), birçok hidrolojik ve iklimsel model için önemli bir girdi işlevi gören mevsimsel bir kar parametresidir. H13, EUMETSAT'ın H-SAF projesi çerçevesince pasif mikrodalga radyometre verilerinin işlenmesine dayalı üretilen bir KSE ürünüdür. Bu çalışmanın temel amacı, yersel kar derinliği ölçümlerini kullanarak 2020-2021 kar sezonu için Türkiye üzerinde H13 ürününün validasyonunun gerçekleştirilmesidir. Validasyon, Ocak - Mart 2021 arasındaki dönemi kapsamakta ve 1282 yer tabanlı gözlem içermektedir. Validasyon sonuçlarına göre, H13 KSE ürününün yıllık RMSE'si 40,00 mm olarak hesaplanmıştır ve gerekli ürün uyumluluğunun kabul edilebilir sınırları içindedir. Validasyon dönemindeki minimum ve maksimum kar derinliği ölçümleri sırasıyla 2,80 cm ve 95,34 cm'dir. Bu validasyon çalışmasında elde edilen sonuçlar, H13 SWE ürününün hidrolojik ve iklimsel çalışmalarda kullanılabilirliğini açıkça göstermektedir.

Kaynakça

  • Akyürek, Z., Hall, D.K., Riggs, G.A., Sensoy, A., 2010. Evaluating the utility of the ANSA blended snow cover product in the mountains of eastern Turkey. International Journal of Remote Sensing, 31, 3727-3744.
  • Allan, R.P., Barlow, M., Byrne, M.P., Cherchi, A., Douville, H., Fowler, H.J., Gan, T.Y., Pendergrass, A.G., Rosenfeld, D., Swann, A.L.S., Wilcox, L.J., Zolina, O., 2020. Advances in understanding large-scale responses of the water cycle to climate change. Annals of the New York Academy of Sciences, 1472, 49-75.
  • Bilgili, B.C., Erşahin, S., Kavakligil, S.S., Öner, N., 2020. Net primary productivity of a mountain forest ecosystem as affected by climate and topography. Cerne, 26, 356-368.
  • Brown, R.D., Robinson, D.A., 2005. Snow and Snow Cover. In: Oliver, J.E. (Ed.), Encyclopedia of World Climatology. Springer, Netherlands, Dordrecht, pp. 658-663.
  • Broxton, P.D., Dawson, N., Zeng, X., 2016. Linking snowfall and snow accumulation to generate spatial maps of SWE and snow depth. Earth and Space Science, 3, 246-256.
  • Corbaci, O.L., Bilgili, B.C., Oner, N., Ersahin, S., Kasko-Arici, Y., 2019. Potential use of natural Turkish sweetgum species in landscape design in Turkey. Fresenius Environmental Bulletin, 28, 1610-1615.
  • Dawson, J.P., Bloomer, B.J., Winner, D.A., Weaver, C.P., 2014. Understanding the meteorological drivers of US particulate matter concentrations in a changing climate. Bulletin of the American Meteorological Society, 95, 521-532.
  • Dietz, A.J., Kuenzer, C., Gessner, U., Dech, S., 2012. Remote sensing of snow – A review of available methods. International Journal of Remote Sensing, 33, 4094-4134.
  • Dong, J., Walker, J.P., Houser, P.R., Sun, C., 2007. Scanning multichannel microwave radiometer snow water equivalent assimilation. Journal of Geophysical Research: Atmospheres, 112, D07108.
  • Dyer, J.L., Mote, T.L., 2006. Spatial variability and trends in observed snow depth over North America. Geophysical Research Letters, 33, L165033.
  • Eken, O., Oner, N., 2017. An assessment of the important morphological properties of Anatolian black pine seedlings in semiarid forest nursery. Fresenius Environmental Bulletin 26, 4158-4162.
  • Emery, W., Camps, A., 2017. Introduction to Satellite Remote Sensing: Atmosphere, Ocean, Land and Cryosphere Applications. Elsevier, Amsterdam, Netherlands.
  • Fiel, R., Sommer, W., Rentsch, T., 2009. SPA-Snow Pack Analysing System. In, International Snow Science Workshop. Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Davos, Switzerland, pp. 129-131.
  • H13-PUM, 2018. Product User Manual (PUM) for product H13 – SN-OBS-4: Snow Water Equivalent by MW Radiometry. https://hsaf.meteoam.it/CaseStudy/GetDocumentUserDocument?fileName=SAF_HSAF_PUM-13_1_0.pdf&tipo=PUM, Accessed on 4th of July 2022.
  • H13-PVR, 2012. Product Validation Report (PVR-13) for product H13 (SN-OBS-4) Snow Water Equivalent by MW Radiometry. https://hsaf.meteoam.it/CaseStudy/GetDocumentUserDocument?fileName=SAF_HSAF_PVR-13_1.2.1.pdf&tipo=PVR, Accessed on 4th of July 2022.
  • Hall, D.K., Martinec, J., 1985. Remote Sensing of Ice and Snow. Chapman and Hall, USA.
  • Hall, D.K., Riggs, G.A., DiGirolamo, N.E., Román, M.O., 2019. Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an Earth science data record. Hydrol. Earth Syst. Sci., 23, 5227-5241.
  • Kruopis, N., Praks, J., Arslan, A.N., Alasalmi, H.M., Koskinen, J.T., Hallikainen, M.T., 1999. Passive microwave measurements of snow-covered forest areas in EMAC'95. IEEE Transactions on Geoscience and Remote Sensing, 37, 2699-2705.
  • Kuter, S., Bolat, K., Akyurek, Z., 2022. A machine learning-based accuracy enhancement on EUMETSAT H-SAF H35 effective snow-covered area product. Remote Sensing of Environment, 272, 112947.
  • Lee, S., McCarty, G.W., Moglen, G.E., Lang, M.W., Nathan Jones, C., Palmer, M., Yeo, I.-Y., Anderson, M., Sadeghi, A.M., Rabenhorst, M.C., 2020. Seasonal drivers of geographically isolated wetland hydrology in a low-gradient, Coastal Plain landscape. Journal of Hydrology, 583, 124608.
  • López-Moreno, J.I., Fassnacht, S.R., Heath, J.T., Musselman, K.N., Revuelto, J., Latron, J., Morán-Tejeda, E., Jonas, T., 2013. Small scale spatial variability of snow density and depth over complex alpine terrain: Implications for estimating snow water equivalent. Advances in Water Resources, 55, 40-52.
  • Metsämäki, S., Pulliainen, J., Salminen, M., Luojus, K., Wiesmann, A., Solberg, R., Böttcher, K., Hiltunen, M., Ripper, E., 2015. Introduction to GlobSnow Snow Extent products with considerations for accuracy assessment. Remote Sensing of Environment, 156, 96-108.
  • Oner, N., M., Uysal, 2009. Usability of the Taurus cedar and Crimean pine in green belt afforestations in semiarid regions in Turkey: A case study in Konya Province Loros Mountain-Akyokus. African Journal of Agricultural Research, 4, 1049-1057.
  • Piazzi, G., Tanis, C.M., Kuter, S., Simsek, B., Puca, S., Toniazzo, A., Takala, M., Akyürek, Z., Gabellani, S., Arslan, A.N., 2019. Cross-Country Assessment of H-SAF Snow Products by Sentinel-2 Imagery Validated against In-Situ Observations and Webcam Photography. Geosciences, 9, 129.
  • Pulliainen, J., 2006. Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Remote Sensing of Environment, 101, 257-269.
  • Pulliainen, J., Hallikainen, M., 2001. Retrieval of regional snow water equivalent from space-borne passive microwave observations. Remote Sensing of Environment, 75, 76-85.
  • Pulliainen, J., Karna, J., Hallikainen, M., 1993. Development of geophysical retrieval algorithms for the MIMR. IEEE Transactions on Geoscience and Remote Sensing, 31, 268-277.
  • Pulliainen, J.T., Grandell, J., Hallikainen, M.T., 1999. HUT snow emission model and its applicability to snow water equivalent retrieval. IEEE Transactions on Geoscience and Remote Sensing, 37, 1378-1390.
  • Ryan, W.A., Doesken, N.J., Fassnacht, S.R., 2008. evaluation of ultrasonic snow depth sensors for U.S. Snow Measurements Journal of Atmospheric and Oceanic Technology, 25, 667-684.
  • Şorman, A.A., Ertaş, M.C., 2019. Otomatik yeni yöntemlerle gözlenen kar bileşenlerinin manuel ölçümler ve uydu görüntüleriyle değerlendiriimesi. DSİ Teknik Bülteni, 132, 1-11.
  • Sorman, A.U., Beser, O., 2013. Determination of snow water equivalent over the eastern part of Turkey using passive microwave data. Hydrological Processes, 27, 1945-1958.
  • SSM/IS, 2007. Special Sensor Microwave Imager and Sounder (SSMIS) Antenna brightness temperature data record (tdr) calibration and validation user manual. http://rain.atmos.colostate.edu/FCDR/Archive_Docs/SSMIS_general/NOAA_STAR_SSMIS_TDR_CalVal_User_Manual.pdf, Accessed on 15 July 2022.
  • Sulistya, W., Nugraha, H.A., Dharmawan, G.S.B., Putra, M., Furqon, A., Sugiarto, S., Pramagusta, A.P., 2019. Development of automated weather observing system based on realtime web display. In, 2019 International Electronics Symposium (IES), pp. 577-581.
  • Tekeli, A.E., Akyürek, Z., Şorman, A.A., Şensoy, A., Şorman, Ü., 2005. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sensing of Environment, 97, 216-230.
  • Venäläinen, P., Luojus, K., Lemmetyinen, J., Pulliainen, J., Moisander, M., Takala, M., 2021. Impact of dynamic snow density on GlobSnow snow water equivalent retrieval accuracy. The Cryosphere, 15, 2969-2981.
  • Viviroli, D., Archer, D.R., Buytaert, W., Fowler, H.J., Greenwood, G., Hamlet, A.F., Huang, Y., Koboltschnig, G., Litaor, I., López-Moreno, 2011. Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrology and Earth System Sciences, 15, 471-504.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Semih Kuter 0000-0002-4760-3816

Çağrı Hasan Karaman 0000-0002-1480-614X

Mustafa Berkay Akpınar 0000-0002-4815-8793

Zuhal Akyürek 0000-0003-3744-2702

Yayımlanma Tarihi 30 Aralık 2022
Gönderilme Tarihi 19 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 8 Sayı: 2

Kaynak Göster

APA Kuter, S., Karaman, Ç. H., Akpınar, M. B., Akyürek, Z. (2022). Validation of EUMETSAT H-SAF space-born snow water equivalent product (H13) for the 2020-2021 snow year over Turkey. Anadolu Orman Araştırmaları Dergisi, 8(2), 16-21. https://doi.org/10.53516/ajfr.1145662
AMA Kuter S, Karaman ÇH, Akpınar MB, Akyürek Z. Validation of EUMETSAT H-SAF space-born snow water equivalent product (H13) for the 2020-2021 snow year over Turkey. AOAD. Aralık 2022;8(2):16-21. doi:10.53516/ajfr.1145662
Chicago Kuter, Semih, Çağrı Hasan Karaman, Mustafa Berkay Akpınar, ve Zuhal Akyürek. “Validation of EUMETSAT H-SAF Space-Born Snow Water Equivalent Product (H13) for the 2020-2021 Snow Year over Turkey”. Anadolu Orman Araştırmaları Dergisi 8, sy. 2 (Aralık 2022): 16-21. https://doi.org/10.53516/ajfr.1145662.
EndNote Kuter S, Karaman ÇH, Akpınar MB, Akyürek Z (01 Aralık 2022) Validation of EUMETSAT H-SAF space-born snow water equivalent product (H13) for the 2020-2021 snow year over Turkey. Anadolu Orman Araştırmaları Dergisi 8 2 16–21.
IEEE S. Kuter, Ç. H. Karaman, M. B. Akpınar, ve Z. Akyürek, “Validation of EUMETSAT H-SAF space-born snow water equivalent product (H13) for the 2020-2021 snow year over Turkey”, AOAD, c. 8, sy. 2, ss. 16–21, 2022, doi: 10.53516/ajfr.1145662.
ISNAD Kuter, Semih vd. “Validation of EUMETSAT H-SAF Space-Born Snow Water Equivalent Product (H13) for the 2020-2021 Snow Year over Turkey”. Anadolu Orman Araştırmaları Dergisi 8/2 (Aralık 2022), 16-21. https://doi.org/10.53516/ajfr.1145662.
JAMA Kuter S, Karaman ÇH, Akpınar MB, Akyürek Z. Validation of EUMETSAT H-SAF space-born snow water equivalent product (H13) for the 2020-2021 snow year over Turkey. AOAD. 2022;8:16–21.
MLA Kuter, Semih vd. “Validation of EUMETSAT H-SAF Space-Born Snow Water Equivalent Product (H13) for the 2020-2021 Snow Year over Turkey”. Anadolu Orman Araştırmaları Dergisi, c. 8, sy. 2, 2022, ss. 16-21, doi:10.53516/ajfr.1145662.
Vancouver Kuter S, Karaman ÇH, Akpınar MB, Akyürek Z. Validation of EUMETSAT H-SAF space-born snow water equivalent product (H13) for the 2020-2021 snow year over Turkey. AOAD. 2022;8(2):16-21.