Araştırma Makalesi
BibTex RIS Kaynak Göster

Probiyotik, Prebiyotik, L-Arginin ve Çemen Otunun Ezme Kırmızı Etin Bazı Kalite Kriterleri Üzerine Olan Karşılaştırmalı Etkileri

Yıl 2022, , 232 - 243, 11.10.2022
https://doi.org/10.24323/akademik-gida.1186928

Öz

Araştırmada ezme (pâtė) sığır eti gruplarına probiyotik mikroorganizmalar; Streptococcus thermophilus ATCC 19258 ve Lactobacillus bulgaricus BAA-2844, prebiyotik (fruktooligosakkarit, FOS), toz halde çemen otu tohumu (Trigonella foenum graecum, fenugreek) ve L-arginin amino asidinin farklı kombinasyonları ilave edilmiş, takiben bu ezme et gruplarından “probiyotik” veya “probiyotik ve prebiyotik” ilave edilmiş olanlar 22 ve 37°C’de olmak üzere iki farklı sıcaklıkta 72 saat süre ile fermentasyon işlemine alınmıştır. “Probiyotik, prebiyotik ve arginine” ve “probiyotik, prebiyotik ve çemen out” ilaveleri, 37°C’deki fermentasyonla birleştirildiğinde, 4°C’de soğutma koşullarında muhafazaya alınan ezme etinin depolamanın 22. gününde, toplam mezofilik aerobik bakteri (TMAB) sayısını, sırasıyla 2.51 ve 2.36 log (kob/g) düzeylerinde baskılamıştır. Ancak aynı işlemler pH düzeyini 4.20 düzeyinin altına düşürerek ezme etinde aşırı ekşi tada neden olmuştur. “Probiyotik, prebiyotik, çemen otu ve arginine” veya “probiyotik, prebiyotik ve arginine” veya “probiyotik, prebiyotik ve çemen out” ilaveleri, 22°C’deki fermentasyonla birleştiğinde ise TMAB yükünü 1.01-1.09 log (kob/g) şeklinde çok daha az düzeyde baskılamış, buna karşılık bu uygulamaların duyusal kaliteyi korurken daha kontrollü bir fermentasyona ve sürekliliği olan mikrobiyostatik bir etkiye sahip olduğu belirlenmiştir. Ezme ete çemen otu ilavesinin Listeria monocytogenes üzerinde çok daha baskılayıcı etkiye sahip olduğu, arginin ilavesinin ise Salmonella Typhimurium üzerindeki baskılayıcı etkisinin daha fazla olduğu tespit edilmiştir. Probiyotik, prebiyotik, çemen otu ve arginin’in farklı kombinasyonlarının ezme kırmızı ete ilavelerinin, sıcaklık fark etmeksizin fermentasyon işlemi ile birleştirildiğinde, Salmonella Typhimurium ve Listeria monocytogenes bakterilerini sırası ile 5.91 ve 6.11 log (kob/g) düzeylerinde baskıladığı ortaya koyulmuştur.

Kaynakça

  • [1] Hutchison, M., Harrison, D., Richardson, I., Tchorzewska, M. (2015). A method for the preparation of chicken liver pâtė that reliably destroys Campylobacters. International Journal of Environmental Research and Public Health, 12(5), 4652-466.
  • [2] Poumeyrol, G., Rosset, P., Morelli, V.N.E. (2010). HACCP methodology implementation of meat pâtė hazard analysis in pork butchery. Food Control, 21(11), 1500-1506.
  • [3] Özkaya, P.T., Kayaardı, S. (2018). Novel techniques for improving the quality of meat and meat products. Akademik Gıda, 16(3), 323-331.
  • [4] Won, G., Lee, J.H. (2017). Salmonella typhimurium. the major causative agent of foodborne illness inactivated by a phage lysis system provides effective protection against lethal challange by induction of robust cell-mediated immune responses and activation of dentritic cells. Veterinary Research, 48, 66.
  • [5] Barocci, S., Mancini, A., Canovari, B., Petrelli, E., Sbriscia-Fioretti, E., Licci, A., D’Addesa, S., Petrini, G. (2015). Giacomini M. Renzi A. Migali A. Briscolini S. Listeria monocytogenes meningitis in an immunocompromised patient. New Microbiologica, 38, 113-118.
  • [6] Şanlıbaba, P., Uymaz, B. (2015). Application of bacteriophage for biocontrol of Listeria monocytogenes in foods. Akademik Gıda, 13, 81-88.
  • [7] Himathongkham, S., Riemann, H. (1999). Destruction of Salmonella typhimurium. Escherichia coli O157: H7 and Listeria monocytogenes in chicken manure by drying and/or gassing with ammonia. FEMS Microbiology Letters, 171(2), 179-182.
  • [8] Sepahi, M., Jalal, R. (2017). Mashreghi M. Antibacterial activity of poly-l-arginine under different conditions. Iranian Journal of Microbiology, 9(2), 103-111.
  • [9] Al-Timimi, L.A.N. (2019). Antibacterial and anticancer activities of fenugreek seed extract. Asian Pacific Journal of Cancer Prevention, 20(12), 3771-3776.
  • [10] Anatriello, E., Cunha, M., Nogueira, J., Carvalho, J.L., Sa. A.K., Miranda, M., Castro-Faria-Neto, H., Keller, A.C., Aimbire, F. (2019). Oral feeding of Lactobacillus bulgaricus N45.10 inhibits the lung inflammation and airway modeling in murine allergic asthma: relevance to the Th1/Th2 cytokines and STAT6/T-bet. Cellular Immunology, 341, 103928.
  • [11] Passos, L.M.L., Park., Y.K. (2003). Fructooligosaccharides: Implications in human health being and use in foods. Ciencia Rural, 33(2), 385-390.
  • [12] Lorenzo, J.M., Pâtėiro, M. (2013). Influence of fat content on phsico-chemical and oxidative stability of foal liver pâtė. Meat Science, 95(2), 330-335.
  • [13] Porto-Fett, A.C.S., Hwang, C.A., Call, J.E., Juneja, V.K., Ingham, S.C., Ingham, B.H., Luchansky, J.B. (2008). Viability of multi-strain mixtures of Listeria monocytogenes. Salmonella typhimurium. or Escherichia coli O157:H7 inoculated into the batter or onto the surface of a soudjouk-style fermented semi-dry sausage. Food Microbiology, 25(6), 793-801.
  • [14] Ruiz, J., Nunez, M., Diaz, J., Lorente, I., Perez, J., Gomez, J. (1996). Comparison of five plating media for isolation of Salmonella species from human stools. Journal of Clinical Microbiology. 34(3). 686-688.
  • [15] Jay, J.M. (2002). A review of aerobic and psychrotrophic plate count procedures for fresh meat and poultry products. Journal of Food Protection, 65(7), 1200-1206.
  • [16] Greenwood, M., Willis, C., Doswell, P., Allen, G., Pathak, K. (2005). Evaluation of chromogenic media for the detection of Listeria species in food. Journal of Applied Microbiology, 99(6), 1340-1345.
  • [17] Lorenzo, J.M., Fontan, M.C.F., Cachaldora, A., Franco, I., Carballo, J. (2010). Study of the lactic acid bacteria throughout the manufacture of dry-cured bacon (a Spanish traditional meat product). Effect of some additives. Food Microbiology, 27(2), 229-235.
  • [18] Mello, L.S.S., Almeida, E.L., Melo, L. (2019). Discrimination of sensory attributes by trained assessors and consumers in semi-sweet hard dough biscuits and their drivers of liking and disliking. Food Research International, 122, 599-609.
  • [19] Civille, G.V., Oftedal, K.N. (2012). Sensory evaluation techniques-make ‘good for you’ taste ‘good’. Physiology and Behavior, 107(4), 598-605.
  • [20] Eberly, L.E. (2007). Correlation and simple linear regression. Methods in Molecular Biology, 404, 143-64.
  • [21] Muraki, E., Chiba, H., Taketani, K., Hoshino, S., Tsuge, N., Tsunoda, N., Kasono, K. (2012). Fenugreek with reduced bitterness prevents diet-induced metabolic disorders in rats. Lipids in Health and Disease, 11, 58.
  • [22] Kalschne, D.L., Womer, R., Mattana, A., Sarmento, C.M.P., Colla, L.M., Colla, E. (2015). Characterization of the spoilage lactic acid bacteria in ‘sliced vacuum-packed cooked ham’. Brazilian Journal of Microbiology, 46, 173-181.
  • [23] Ogawa, T., Nakamura, T., Tsuji, E., Miyanaga, Y., Nakagawa, H., Hirabayashi, H., Uchida, T. (2004). The combination effect of L-arginine and NaCl on bitterness suppression of amino acid solutions. Chemical and Pharmaceutical Bulletin, 52(2), 172-177.
  • [24] Tuell, J., Kim, H., Zhang, J., Guedes, J. (2020). Arginine supplementation may improve color and redox stability of beef loins through delayed onset of mitochondrial-mediated apoptotic processes. Food Chemistry, 343(5), 128552.
  • [25] Wani, S.A., Kumar, P. (2018). Fenugreek: a review on its nutraceutical properties and utilization in various food products. Journal of the Saudi Society of Agricultural Sciences, 17(2), 97-106.
  • [26] Sorapukdee, S., Jansa, S., Tangwatcharin, P. (2019). Partial replacement of pork backfat with konjac gel in northeastern Thai fermented sausage (Sai Krok E-san). Asian-Australasian Journal of Animal Sciences, 32(11), 1763-1775.
  • [27] Jiang, J.X., Zhu, L.W., Zhang, W.M., Sun, R.C. (2007). Characterization of galactomannan gum from fenugreek (Trigonella foenum graecum) seeds and its rheological properties. International Journal of Polymeric Materials, 56(12), 1145-1154.
  • [28] Yang, E., Fan, L., Yan, J., Jiang, Y., Doucette, C., Fillmore, S., Walker, B. (2018). Influence of culture media. pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express, 8, 10.
  • [29] Gustaw, W., Kordowska-Wiater, M., Koziol, J. (2011). The influence of selected prebiotics on the growth of lactic acid bacteria for bioyoghurt production. Acta Scientiarum Polonorum. Technologia Alimentaria, 10(4), 455-66.
  • [30] Badi, H.N., Mehrafarin, A., Mustafavi, H.S., Labbafi, M.R. (2018). Exogenous arginine improved fenugreek sprouts growth and trigonelline production under salinity condition. Industrial Crops and Products, 122, 609-616.
  • [31] De Souza, S.M., Monache, F.D., Smania, Jr.A. (2005). Antibacterial activity of coumarins. Zeitschrift für Naturforschung. C. Journal of Biosciences, 60(9-10), 693-700.
  • [32] Maity, H., Karkaria, C., Davagnino, J. (2009). Effects of pH and arginine on the solubility and stability of a therapeutic protein (fibroblast growth factor 20): relationship between solubility and stability. Current Pharmaceutical Biotechnology, 10(6), 609-25.
  • [33] Moore, J.E., Madden, R.H. (1997). Preservation of vacuum-packaged pork liver pâtė by fermentation. Journal of Food Protection, 60(7), 791-794.
  • [34] Porto-Fett, A.C., Shoyer, B.A., Shane, L.E., Osoria, M., Henry, E., Jung, Y., Luchansky, J.B. (2019). Thermal inactivation of Salmonella in pâtė made from chicken liver. Journal of Food Protection, 82(6), 980-987.

Comparative Effects of Probiotic, Prebiotic, L-Arginine, and Fenugreek on Some Quality Criteria of Fermented Red Meat Pâtè

Yıl 2022, , 232 - 243, 11.10.2022
https://doi.org/10.24323/akademik-gida.1186928

Öz

The different combinations of bioactive compounds, probiotics (Streptococcus thermophilus ATCC 19258 and Lactobacillus bulgaricus BAA-2844), prebiotic (fructooligosaccharides, FOS), fenugreek, and L-arginine, were added to the pâtė meat. Some pâtė meats were contaminated with Salmonella Typhimurium ATCC 14028 and Listeria monocytogenes ATCC 7644. Fermentation was applied only to batches containing ‘probiotic’ or ‘probiotic and prebiotic’ at two different temperatures, 22 and 37°C. Although fermentation at 37°C in combination with the additions of ‘probiotics, prebiotic and arginine’ and ‘probiotics, prebiotic and fenugreek’ resulted in 2.51 and 2.36 log (cfu/g) reductions on total mesophile aerobic bacterial (TMAB) counts, respectively, these treatments lowered the pH values of pâtė below 4.20 on the 22nd day of storage and caused an uncontrolled fermentation with a sourish taste. On the other hand, the combined additions of ‘probiotics, prebiotic, fenugreek and arginine’ or ‘probiotics, prebiotic and arginine’ or ‘probiotic, prebiotic and fenugreek’ in combination with fermentation at 22°C, caused reductions on TMAB counts between 1.01-1.09 log (cfu/g) with a constant bacteriostatic effect, and extended shelf life 10 days while improving the sensory quality. The addition of fenugreek inhibited Listeria monocytogenes more whereas the antimicrobial effect of L-arginine was more significant on Salmonella Typhimurium. The antimicrobial effect of adding the bioactive compounds in combination with fermentation at 22°C could eliminate the pathogens in the contaminated pâtė meat batches, causing 5.91 and 6.11 log (cfu/g) reductions on the counts of Salmonella Typhimurium and Listeria monocytogenes, respectively.

Kaynakça

  • [1] Hutchison, M., Harrison, D., Richardson, I., Tchorzewska, M. (2015). A method for the preparation of chicken liver pâtė that reliably destroys Campylobacters. International Journal of Environmental Research and Public Health, 12(5), 4652-466.
  • [2] Poumeyrol, G., Rosset, P., Morelli, V.N.E. (2010). HACCP methodology implementation of meat pâtė hazard analysis in pork butchery. Food Control, 21(11), 1500-1506.
  • [3] Özkaya, P.T., Kayaardı, S. (2018). Novel techniques for improving the quality of meat and meat products. Akademik Gıda, 16(3), 323-331.
  • [4] Won, G., Lee, J.H. (2017). Salmonella typhimurium. the major causative agent of foodborne illness inactivated by a phage lysis system provides effective protection against lethal challange by induction of robust cell-mediated immune responses and activation of dentritic cells. Veterinary Research, 48, 66.
  • [5] Barocci, S., Mancini, A., Canovari, B., Petrelli, E., Sbriscia-Fioretti, E., Licci, A., D’Addesa, S., Petrini, G. (2015). Giacomini M. Renzi A. Migali A. Briscolini S. Listeria monocytogenes meningitis in an immunocompromised patient. New Microbiologica, 38, 113-118.
  • [6] Şanlıbaba, P., Uymaz, B. (2015). Application of bacteriophage for biocontrol of Listeria monocytogenes in foods. Akademik Gıda, 13, 81-88.
  • [7] Himathongkham, S., Riemann, H. (1999). Destruction of Salmonella typhimurium. Escherichia coli O157: H7 and Listeria monocytogenes in chicken manure by drying and/or gassing with ammonia. FEMS Microbiology Letters, 171(2), 179-182.
  • [8] Sepahi, M., Jalal, R. (2017). Mashreghi M. Antibacterial activity of poly-l-arginine under different conditions. Iranian Journal of Microbiology, 9(2), 103-111.
  • [9] Al-Timimi, L.A.N. (2019). Antibacterial and anticancer activities of fenugreek seed extract. Asian Pacific Journal of Cancer Prevention, 20(12), 3771-3776.
  • [10] Anatriello, E., Cunha, M., Nogueira, J., Carvalho, J.L., Sa. A.K., Miranda, M., Castro-Faria-Neto, H., Keller, A.C., Aimbire, F. (2019). Oral feeding of Lactobacillus bulgaricus N45.10 inhibits the lung inflammation and airway modeling in murine allergic asthma: relevance to the Th1/Th2 cytokines and STAT6/T-bet. Cellular Immunology, 341, 103928.
  • [11] Passos, L.M.L., Park., Y.K. (2003). Fructooligosaccharides: Implications in human health being and use in foods. Ciencia Rural, 33(2), 385-390.
  • [12] Lorenzo, J.M., Pâtėiro, M. (2013). Influence of fat content on phsico-chemical and oxidative stability of foal liver pâtė. Meat Science, 95(2), 330-335.
  • [13] Porto-Fett, A.C.S., Hwang, C.A., Call, J.E., Juneja, V.K., Ingham, S.C., Ingham, B.H., Luchansky, J.B. (2008). Viability of multi-strain mixtures of Listeria monocytogenes. Salmonella typhimurium. or Escherichia coli O157:H7 inoculated into the batter or onto the surface of a soudjouk-style fermented semi-dry sausage. Food Microbiology, 25(6), 793-801.
  • [14] Ruiz, J., Nunez, M., Diaz, J., Lorente, I., Perez, J., Gomez, J. (1996). Comparison of five plating media for isolation of Salmonella species from human stools. Journal of Clinical Microbiology. 34(3). 686-688.
  • [15] Jay, J.M. (2002). A review of aerobic and psychrotrophic plate count procedures for fresh meat and poultry products. Journal of Food Protection, 65(7), 1200-1206.
  • [16] Greenwood, M., Willis, C., Doswell, P., Allen, G., Pathak, K. (2005). Evaluation of chromogenic media for the detection of Listeria species in food. Journal of Applied Microbiology, 99(6), 1340-1345.
  • [17] Lorenzo, J.M., Fontan, M.C.F., Cachaldora, A., Franco, I., Carballo, J. (2010). Study of the lactic acid bacteria throughout the manufacture of dry-cured bacon (a Spanish traditional meat product). Effect of some additives. Food Microbiology, 27(2), 229-235.
  • [18] Mello, L.S.S., Almeida, E.L., Melo, L. (2019). Discrimination of sensory attributes by trained assessors and consumers in semi-sweet hard dough biscuits and their drivers of liking and disliking. Food Research International, 122, 599-609.
  • [19] Civille, G.V., Oftedal, K.N. (2012). Sensory evaluation techniques-make ‘good for you’ taste ‘good’. Physiology and Behavior, 107(4), 598-605.
  • [20] Eberly, L.E. (2007). Correlation and simple linear regression. Methods in Molecular Biology, 404, 143-64.
  • [21] Muraki, E., Chiba, H., Taketani, K., Hoshino, S., Tsuge, N., Tsunoda, N., Kasono, K. (2012). Fenugreek with reduced bitterness prevents diet-induced metabolic disorders in rats. Lipids in Health and Disease, 11, 58.
  • [22] Kalschne, D.L., Womer, R., Mattana, A., Sarmento, C.M.P., Colla, L.M., Colla, E. (2015). Characterization of the spoilage lactic acid bacteria in ‘sliced vacuum-packed cooked ham’. Brazilian Journal of Microbiology, 46, 173-181.
  • [23] Ogawa, T., Nakamura, T., Tsuji, E., Miyanaga, Y., Nakagawa, H., Hirabayashi, H., Uchida, T. (2004). The combination effect of L-arginine and NaCl on bitterness suppression of amino acid solutions. Chemical and Pharmaceutical Bulletin, 52(2), 172-177.
  • [24] Tuell, J., Kim, H., Zhang, J., Guedes, J. (2020). Arginine supplementation may improve color and redox stability of beef loins through delayed onset of mitochondrial-mediated apoptotic processes. Food Chemistry, 343(5), 128552.
  • [25] Wani, S.A., Kumar, P. (2018). Fenugreek: a review on its nutraceutical properties and utilization in various food products. Journal of the Saudi Society of Agricultural Sciences, 17(2), 97-106.
  • [26] Sorapukdee, S., Jansa, S., Tangwatcharin, P. (2019). Partial replacement of pork backfat with konjac gel in northeastern Thai fermented sausage (Sai Krok E-san). Asian-Australasian Journal of Animal Sciences, 32(11), 1763-1775.
  • [27] Jiang, J.X., Zhu, L.W., Zhang, W.M., Sun, R.C. (2007). Characterization of galactomannan gum from fenugreek (Trigonella foenum graecum) seeds and its rheological properties. International Journal of Polymeric Materials, 56(12), 1145-1154.
  • [28] Yang, E., Fan, L., Yan, J., Jiang, Y., Doucette, C., Fillmore, S., Walker, B. (2018). Influence of culture media. pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express, 8, 10.
  • [29] Gustaw, W., Kordowska-Wiater, M., Koziol, J. (2011). The influence of selected prebiotics on the growth of lactic acid bacteria for bioyoghurt production. Acta Scientiarum Polonorum. Technologia Alimentaria, 10(4), 455-66.
  • [30] Badi, H.N., Mehrafarin, A., Mustafavi, H.S., Labbafi, M.R. (2018). Exogenous arginine improved fenugreek sprouts growth and trigonelline production under salinity condition. Industrial Crops and Products, 122, 609-616.
  • [31] De Souza, S.M., Monache, F.D., Smania, Jr.A. (2005). Antibacterial activity of coumarins. Zeitschrift für Naturforschung. C. Journal of Biosciences, 60(9-10), 693-700.
  • [32] Maity, H., Karkaria, C., Davagnino, J. (2009). Effects of pH and arginine on the solubility and stability of a therapeutic protein (fibroblast growth factor 20): relationship between solubility and stability. Current Pharmaceutical Biotechnology, 10(6), 609-25.
  • [33] Moore, J.E., Madden, R.H. (1997). Preservation of vacuum-packaged pork liver pâtė by fermentation. Journal of Food Protection, 60(7), 791-794.
  • [34] Porto-Fett, A.C., Shoyer, B.A., Shane, L.E., Osoria, M., Henry, E., Jung, Y., Luchansky, J.B. (2019). Thermal inactivation of Salmonella in pâtė made from chicken liver. Journal of Food Protection, 82(6), 980-987.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Uğur Göğüş Bu kişi benim 0000-0001-7008-4690

Yayımlanma Tarihi 11 Ekim 2022
Gönderilme Tarihi 1 Ağustos 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Göğüş, U. (2022). Comparative Effects of Probiotic, Prebiotic, L-Arginine, and Fenugreek on Some Quality Criteria of Fermented Red Meat Pâtè. Akademik Gıda, 20(3), 232-243. https://doi.org/10.24323/akademik-gida.1186928
AMA Göğüş U. Comparative Effects of Probiotic, Prebiotic, L-Arginine, and Fenugreek on Some Quality Criteria of Fermented Red Meat Pâtè. Akademik Gıda. Ekim 2022;20(3):232-243. doi:10.24323/akademik-gida.1186928
Chicago Göğüş, Uğur. “Comparative Effects of Probiotic, Prebiotic, L-Arginine, and Fenugreek on Some Quality Criteria of Fermented Red Meat Pâtè”. Akademik Gıda 20, sy. 3 (Ekim 2022): 232-43. https://doi.org/10.24323/akademik-gida.1186928.
EndNote Göğüş U (01 Ekim 2022) Comparative Effects of Probiotic, Prebiotic, L-Arginine, and Fenugreek on Some Quality Criteria of Fermented Red Meat Pâtè. Akademik Gıda 20 3 232–243.
IEEE U. Göğüş, “Comparative Effects of Probiotic, Prebiotic, L-Arginine, and Fenugreek on Some Quality Criteria of Fermented Red Meat Pâtè”, Akademik Gıda, c. 20, sy. 3, ss. 232–243, 2022, doi: 10.24323/akademik-gida.1186928.
ISNAD Göğüş, Uğur. “Comparative Effects of Probiotic, Prebiotic, L-Arginine, and Fenugreek on Some Quality Criteria of Fermented Red Meat Pâtè”. Akademik Gıda 20/3 (Ekim 2022), 232-243. https://doi.org/10.24323/akademik-gida.1186928.
JAMA Göğüş U. Comparative Effects of Probiotic, Prebiotic, L-Arginine, and Fenugreek on Some Quality Criteria of Fermented Red Meat Pâtè. Akademik Gıda. 2022;20:232–243.
MLA Göğüş, Uğur. “Comparative Effects of Probiotic, Prebiotic, L-Arginine, and Fenugreek on Some Quality Criteria of Fermented Red Meat Pâtè”. Akademik Gıda, c. 20, sy. 3, 2022, ss. 232-43, doi:10.24323/akademik-gida.1186928.
Vancouver Göğüş U. Comparative Effects of Probiotic, Prebiotic, L-Arginine, and Fenugreek on Some Quality Criteria of Fermented Red Meat Pâtè. Akademik Gıda. 2022;20(3):232-43.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).