Araştırma Makalesi
BibTex RIS Kaynak Göster

Çok Duvarlı Karbon Nanotüpler/Politiyofen Kompozit Kullanılarak Hazırlanan Amperometrik Glikoz Biyosensörü

Yıl 2022, , 350 - 357, 27.12.2022
https://doi.org/10.24323/akademik-gida.1224812

Öz

Bu çalışmada, glikozun amperometrik tespiti için çok duvarlı karbon nanotüpler/politiyofen kompozit (MWCNTs/PTh) modifiye camsı karbon elektrot kullanılmıştır. Glikoz oksidaz (GOx), tiyofenin MWCNT’ler üzerine elektrokimyasal polimerizasyonu ile sentezlenen MWCNT’ler/PTh kompozit film üzerinde çapraz bağlama ajanı tarafından tutulmuştur. Kompozit filmin karakterizasyonu, döngüsel voltametri (CV), fourier dönüşümlü kızılötesi (FTIR) spektroskopisi ve taramalı elektron mikroskobu (SEM) teknikleri ile yapılmıştır. Elektrodun amperometrik ölçümleri, enzimatik olarak üretilen H2O2’nin elektrooksidasyon potansiyeli olan SCE'ye karşı +0.70V’de gerçekleştirilmiştir. Kompozit içindeki tiyofen miktarı, pH, sıcaklık ve substrat derişiminin enzim elektrodunun tepkisi üzerindeki etkileri araştırılmıştır. Oda sıcaklığında optimum pH, 7.0 olarak bulunmuş ve enzim elektrodunun tepkime süresi 25 saniye olarak belirlenmiştir. Lineer çalışma aralığının üst sınırı 4.85 mM glukoz derişimi olarak elde edilmiştir. Sensörün tespit limiti 148 µM olarak hesaplanmıştır. Geliştirilen glukoz biyosensörünün duyarlılığı 4.39 µA mM-1 cm-2 olarak belirlenmiştir. Lineweaver-Burk denklemine göre görünür Michaelis-Menten sabiti (KMapp) değeri 1.68 mM olarak hesaplanmıştır. Bu immobilize enzim sisteminin aktivasyon enerjisi 88.92 kJ mol-1 olarak bulunmuştur.

Kaynakça

  • [1] Pilo, M., Farre, R., Lachowicz, J. I., Masolo, E., Panzanelli, A., Sanna, G., Senes, N., Sobral, A., Spano, N. (2018). Design of amperometric biosensors for the detection of glucose prepared by ımmobilization of glucose oxidase on conducting (poly)thiophene films. Journal of Analytical Methods in Chemistry, 2018, 1-7.
  • [2] Panda, B.R., Chattopadhyay, A. (2007). A water-soluble polythiophene-Au nanoparticle composite for pH sensing. Journal of Colloid and Interface Science, 316(2), 962–967.
  • [3] Jang, J., Chang, M., Yoon, H. (2005). Chemical sensors based on highly conductive poly(3,4-ethylenedioxythiophene) nanorods. Advanced Materials, 17(13), 1616–1620.
  • [4] Uygun, A., Yavuz, A.G., Sen, S., Omastová, M. (2009). Polythiophene/SiO2 nanocomposites prepared in the presence of surfactants and their application to glucose biosensing. Synthetic Metals, 159(19-20), 2022–2028.
  • [5] Rashed, M.A., Ahmed, J., Faisal, M., Alsareii, S.A., Jalalah M., Tirth, V., Harraz, F.A. (2022). Surface modification of CuO nanoparticles with conducting polythiophene as a non-enzymatic amperometric sensor for sensitive and selective determination of hydrogen peroxide. Surfaces and Interfaces, 31, 101998-102011.
  • [6] Cherian, A.R., Benny, L., George, A., Sirimahachai, U., Varghese, A., Hegde, G. (2022). Electro fabrication of molecularly imprinted sensor based on Pd nanoparticles decorated poly-(3 thiophene acetic acid) for progesterone detection. Electrochimica Acta, 408, 139963-139977.
  • [7] Alba, N., Du, Z., Catt, K., Kozai, T., Cui, X. (2015). In vivo electrochemical analysis of a PEDOT/MWCNT neural electrode coating. Biosensors, 5(4), 618–646.
  • [8] Ramanavicius, S., Ramanavicius, A. (2020). Conducting polymers in the design of biosensors and biofuel cells. Polymers, 13(1), 49.
  • [9] Luong, J.H.T., Glennon, J.D., Gedanken, A., Vashist, S.K. (2016). Achievement and assessment of direct electron transfer of glucose oxidase in electrochemical biosensing using carbon nanotubes, graphene, and their nanocomposites. Microchimica Acta, 184(2), 369-388.
  • [10] Tilmaciu C.M., Morris M.C. (2015). Carbon nanotube biosensors. Frontiers in Chemistry, 3, 59.
  • [11] Sari, B., Talu, M., Yildirim, F., Balci, E.K. (2003). Synthesis and characterization of polyurethane/polythiophene conducting copolymer by electrochemical method. Applied Surface Science, 205(1-4), 27-38.
  • [12] Senthilkumar, B., Thenamirtham, P., Kalai Selvan, R. (2011). Structural and electrochemical properties of polythiophene. Applied Surface Science, 257(21), 9063-9067.
  • [13] Çil, M., Böyükbayram, A.E., Kıralp, S., Toppare, L., Yağcı, Y. (2007). Various applications of immobilized glucose oxidase and polyphenol oxidase in a conducting polymer matrix. International Journal of Biological Macromolecules, 41(1), 49-55.
  • [14] Contal, E., Sougueh, C.M., Lakard, S., Et Taouil, A., Magnenet, C., Lakard, B. (2019). Investigation of polycarbazoles thin films prepared by electrochemical oxidation of synthesized carbazole derivatives. Frontiers in Materials, 6, 131.
  • [15] Sen, S. (2009). Amperometric glucose sensor based on the entrapment of glucose oxidase in electrochemically synthesized pyrrole/N,N-dimethylaminopyrrole (Py/DMAPy) copolymer film. Asian Journal of Chemistry, 21(5), 4063-4076.
  • [16] Sen, S., Gülce, A., Gülce, H. (2004). Polyvinylferrocenium modified Pt electrode for the design of amperometric choline and acetylcholine enzyme electrodes. Biosensors and Bioelectronics 19, 1261-1268.

Amperometric Glucose Biosensor Prepared by Using Multi-Walled Carbon Nanotubes/Polythiophene Composite

Yıl 2022, , 350 - 357, 27.12.2022
https://doi.org/10.24323/akademik-gida.1224812

Öz

In this study, multi-walled carbon nanotubes/polythiophene composite (MWCNTs/PTh) modified glassy carbon electrode was used for the amperometric detection of glucose. Glucose oxidase (GOx) was entrapped by a crosslinking agent on the MWCNTs/PTh composite film synthesized by electrochemical polymerization of thiophene onto MWCNTs. Characterization of composite film was achieved by cyclic voltammetry (CV), fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) techniques. The amperometric measurements of electrode was performed at +0.70V vs. SCE, which was the electrooxidation potential of enzymatically produced H2O2. The effects of thiophene amount in the composite, pH, temperature and substrate concentration were investigated on the response of enzyme electrode. Optimum pH was 7.0 at room temperature and the response time of enzyme electrode was 25 s. The upper limit of the linear working range was 4.85 mM glucose concentration. The limit of detection of sensor was calculated as 148 µM. The sensitivity of glucose biosensor was determined as 4.39 µA mM-1 cm-2. The value of apparent Michaelis-Menten constant (KMapp) was 1.68 mM according to the Lineweaver-Burk equation. The activation energy of this immobilized enzyme system was 88.92 kJ mol-1.

Kaynakça

  • [1] Pilo, M., Farre, R., Lachowicz, J. I., Masolo, E., Panzanelli, A., Sanna, G., Senes, N., Sobral, A., Spano, N. (2018). Design of amperometric biosensors for the detection of glucose prepared by ımmobilization of glucose oxidase on conducting (poly)thiophene films. Journal of Analytical Methods in Chemistry, 2018, 1-7.
  • [2] Panda, B.R., Chattopadhyay, A. (2007). A water-soluble polythiophene-Au nanoparticle composite for pH sensing. Journal of Colloid and Interface Science, 316(2), 962–967.
  • [3] Jang, J., Chang, M., Yoon, H. (2005). Chemical sensors based on highly conductive poly(3,4-ethylenedioxythiophene) nanorods. Advanced Materials, 17(13), 1616–1620.
  • [4] Uygun, A., Yavuz, A.G., Sen, S., Omastová, M. (2009). Polythiophene/SiO2 nanocomposites prepared in the presence of surfactants and their application to glucose biosensing. Synthetic Metals, 159(19-20), 2022–2028.
  • [5] Rashed, M.A., Ahmed, J., Faisal, M., Alsareii, S.A., Jalalah M., Tirth, V., Harraz, F.A. (2022). Surface modification of CuO nanoparticles with conducting polythiophene as a non-enzymatic amperometric sensor for sensitive and selective determination of hydrogen peroxide. Surfaces and Interfaces, 31, 101998-102011.
  • [6] Cherian, A.R., Benny, L., George, A., Sirimahachai, U., Varghese, A., Hegde, G. (2022). Electro fabrication of molecularly imprinted sensor based on Pd nanoparticles decorated poly-(3 thiophene acetic acid) for progesterone detection. Electrochimica Acta, 408, 139963-139977.
  • [7] Alba, N., Du, Z., Catt, K., Kozai, T., Cui, X. (2015). In vivo electrochemical analysis of a PEDOT/MWCNT neural electrode coating. Biosensors, 5(4), 618–646.
  • [8] Ramanavicius, S., Ramanavicius, A. (2020). Conducting polymers in the design of biosensors and biofuel cells. Polymers, 13(1), 49.
  • [9] Luong, J.H.T., Glennon, J.D., Gedanken, A., Vashist, S.K. (2016). Achievement and assessment of direct electron transfer of glucose oxidase in electrochemical biosensing using carbon nanotubes, graphene, and their nanocomposites. Microchimica Acta, 184(2), 369-388.
  • [10] Tilmaciu C.M., Morris M.C. (2015). Carbon nanotube biosensors. Frontiers in Chemistry, 3, 59.
  • [11] Sari, B., Talu, M., Yildirim, F., Balci, E.K. (2003). Synthesis and characterization of polyurethane/polythiophene conducting copolymer by electrochemical method. Applied Surface Science, 205(1-4), 27-38.
  • [12] Senthilkumar, B., Thenamirtham, P., Kalai Selvan, R. (2011). Structural and electrochemical properties of polythiophene. Applied Surface Science, 257(21), 9063-9067.
  • [13] Çil, M., Böyükbayram, A.E., Kıralp, S., Toppare, L., Yağcı, Y. (2007). Various applications of immobilized glucose oxidase and polyphenol oxidase in a conducting polymer matrix. International Journal of Biological Macromolecules, 41(1), 49-55.
  • [14] Contal, E., Sougueh, C.M., Lakard, S., Et Taouil, A., Magnenet, C., Lakard, B. (2019). Investigation of polycarbazoles thin films prepared by electrochemical oxidation of synthesized carbazole derivatives. Frontiers in Materials, 6, 131.
  • [15] Sen, S. (2009). Amperometric glucose sensor based on the entrapment of glucose oxidase in electrochemically synthesized pyrrole/N,N-dimethylaminopyrrole (Py/DMAPy) copolymer film. Asian Journal of Chemistry, 21(5), 4063-4076.
  • [16] Sen, S., Gülce, A., Gülce, H. (2004). Polyvinylferrocenium modified Pt electrode for the design of amperometric choline and acetylcholine enzyme electrodes. Biosensors and Bioelectronics 19, 1261-1268.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Derya Kahraman Bu kişi benim 0000-0002-3201-3514

Songül Şen Gürsoy Bu kişi benim 0000-0002-9506-9822

Yayımlanma Tarihi 27 Aralık 2022
Gönderilme Tarihi 7 Ağustos 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Kahraman, D., & Şen Gürsoy, S. (2022). Amperometric Glucose Biosensor Prepared by Using Multi-Walled Carbon Nanotubes/Polythiophene Composite. Akademik Gıda, 20(4), 350-357. https://doi.org/10.24323/akademik-gida.1224812
AMA Kahraman D, Şen Gürsoy S. Amperometric Glucose Biosensor Prepared by Using Multi-Walled Carbon Nanotubes/Polythiophene Composite. Akademik Gıda. Aralık 2022;20(4):350-357. doi:10.24323/akademik-gida.1224812
Chicago Kahraman, Derya, ve Songül Şen Gürsoy. “Amperometric Glucose Biosensor Prepared by Using Multi-Walled Carbon Nanotubes/Polythiophene Composite”. Akademik Gıda 20, sy. 4 (Aralık 2022): 350-57. https://doi.org/10.24323/akademik-gida.1224812.
EndNote Kahraman D, Şen Gürsoy S (01 Aralık 2022) Amperometric Glucose Biosensor Prepared by Using Multi-Walled Carbon Nanotubes/Polythiophene Composite. Akademik Gıda 20 4 350–357.
IEEE D. Kahraman ve S. Şen Gürsoy, “Amperometric Glucose Biosensor Prepared by Using Multi-Walled Carbon Nanotubes/Polythiophene Composite”, Akademik Gıda, c. 20, sy. 4, ss. 350–357, 2022, doi: 10.24323/akademik-gida.1224812.
ISNAD Kahraman, Derya - Şen Gürsoy, Songül. “Amperometric Glucose Biosensor Prepared by Using Multi-Walled Carbon Nanotubes/Polythiophene Composite”. Akademik Gıda 20/4 (Aralık 2022), 350-357. https://doi.org/10.24323/akademik-gida.1224812.
JAMA Kahraman D, Şen Gürsoy S. Amperometric Glucose Biosensor Prepared by Using Multi-Walled Carbon Nanotubes/Polythiophene Composite. Akademik Gıda. 2022;20:350–357.
MLA Kahraman, Derya ve Songül Şen Gürsoy. “Amperometric Glucose Biosensor Prepared by Using Multi-Walled Carbon Nanotubes/Polythiophene Composite”. Akademik Gıda, c. 20, sy. 4, 2022, ss. 350-7, doi:10.24323/akademik-gida.1224812.
Vancouver Kahraman D, Şen Gürsoy S. Amperometric Glucose Biosensor Prepared by Using Multi-Walled Carbon Nanotubes/Polythiophene Composite. Akademik Gıda. 2022;20(4):350-7.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).