Araştırma Makalesi
BibTex RIS Kaynak Göster

Discrimination, Quantitation, and Identification of Edible Vegetable Oil Blends Based on Their Fatty Acid Profiles

Yıl 2021, Cilt: 19 Sayı: 3, 244 - 256, 19.10.2021
https://doi.org/10.24323/akademik-gida.1011209

Öz

Based on the most common vegetable oil blends, binary and ternary analytical mixtures were constructed in mass fractions from 0.50 to 0.97, and their fatty acid profile was determined and represented graphically. The fatty acids with discriminatory power were selected to construct equations to predict commercial oil blend proportions. Three different linear equations resulted from the analysis for i. palm oil-based blends: y = (0.3713 ± 0.0217)x + (11.401 ± 0.68) for C18:2 and (0.4357 ± 0.0254)x + (51.281 ± 2.90) for C16:0 ii. soybean oil-based blends y = (-0.0789 ± 0.0046)x + (30.686 ± 1.71) for C18:1 and (0.0686 ± 0.0040)x - (0.1395 ± 0.0081) for C18:3 and iii. sunflower oil-based blends y = (-0.0552 ± 0.0032)x + (12.167 ± 0.6105) for C16:0. Finally, the fatty acid profiles of n = 10 commercial samples (i.e., vegetable oil blends) were determined, and the model was applied to them with satisfactory results.

Destekleyen Kurum

The Ministry of Economy, Industry and Commerce of Costa Rica and the Technological Support Program for Industry (PATI project 917-02)

Proje Numarası

PATI project 917-02

Teşekkür

The Ministry of Economy, Industry and Commerce of Costa Rica and the Technological Support Program for Industry (PATI project 917-02) co-financed this research.

Kaynakça

  • [1] Choudhury, R.A., Costa, M.C. (2012). Impact of government law on edible oil supply chain in Bangladesh perspective. International Journal Supply Chain Management, 1(1), 33-38.
  • [2] Mielke, T. (2017). World Markets for vegetable oils: Status and perspectives. In Encyclopedia of Sustainability Science and Technology, Edited by R.A. Meyers, Switzerland, Springer Science+Business Media LLC., 578p.
  • [3] Pilorgé, E. (2020). Sunflower in the global vegetable oil system: Situation, specificities, and perspectives. OCL, 27, 34.
  • [4] Dahimi, O., Sukri Hassan, M., Abdul Rahim, A., Abdulkarim, S.M., Mashitoh, S. (2014). Differentiation of lard from other edible fats by gas chromatography-flame ionisation detector (GC-FID) and chemometrics. Journal of Food and Pharmaceutical Sciences, 2, 27–31.
  • [5] He, M., Qin, C-X., Wang, X., Ding, N-Z. (2020). Plant unsaturated fatty acids: Biosynthesis and regulation. Frontiers in Plant Science, 11, 390.
  • [6] Orsavova, J., Misurcova, L., Ambrozova, J.V., Vicha, R., Mleck, J. (2015). Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. International Journal of Molecular Sciences, 16(6), 12871-12890.
  • [7] Mihai, A.L., Negoiţă, M., Adascălului, A.C., Ionescu, V., Belc, N. (2018). Evaluation of fatty acids composition of some food samples by using GC-MS and NMR techniques. Agriculture for Life Life for Agriculture Conference Proceedings 1(1), 548-554.
  • [8] Mihai, A.L., Negoiţă, M., Belc, N. (2019). Evaluation of fatty acid profile of oils/fats by GC/MS through two quantification approaches. Romanian Biotechnological Letters, 24(6), 973-985.
  • [9] Rueda, A., Seiquer, I., Olalla, M., Giménez, R., Lara, L., Cabreara-Vique, C. (2014). Characterization of fatty acid profile of argan oil and other edible vegetable oils by Gas Chromatography and discriminant analysis. Journal of Chemistry, ID 843908.
  • [10] Covaciu, F-D., Berghian-Grosan, C., Feher, I., Magdas, D.A. (2020). Edible oils differentiation based on the determination of fatty acids profile and Raman spectroscopy. Applied Science, 10(23), 8347.
  • [11] Zhang, L., Li, P., Sun, X., Wang, X., Xu, B., Wang, X., Ma, F., Zhang, X., Ding, X. (2014). Classification and adulteration detection of vegetable oils based on fatty acid profiles. Journal of Agriculture and Food Chemistry, 62(34), 8745-8751.
  • [12] Manchanda, S.C. (2016). Selecting healthy edible oil in the Indian context. Indian Heart Journal, 68(4), 447-449.
  • [13] Sun, Y., Neelakantan, N., Wu, Y., Lote-Ote, R., Pan, A., van Dam, R.M. (2015). Palm oil consumption increases LDL cholesterol compared with vegetable oils low in saturated fat in a meta-analysis of clinical trials. The Journal of Nutrition, 145(7), 1549-1558.
  • [14] Larbi Ayisi, C., Zhao, J., Wu, J-W. (2018). Replacement of fish oil with palm oil: Effects on growth performance, innate immune response, antioxidant capacity and disease resistance in Nile Tilapia (Oreochromis niloticus). PLoS One, 13(4): e0196100.
  • [15] Sudibyo, H., Pradana•Budhijanto, Y.S., Budjijanto, W. (2018). Bio-synthesis of Eicosapentaenoic acid (EPA) from palm oil mil effluent using anaerobic process. Defect and Diffussion Forum, 382, 286-291.
  • [16] Almeida Schneider, V.A., Carbonera, F., Lopes, A.P., Santos, O.O., Oliveira, C., Souza, N.E., Visentainer, J.V. (2015). Effect of dietary replacement of soybean oil with different sources of gamma-linoleic acid fatty acid composition of Nile Tilapia. Journal of the American Oil Chemists’ Society, 92, 225-231.
  • [17] EFSA, (2016). Erucic acid in feed and food. EFSA Journal, 14(11), e04593.
  • [18] Prada, F., Ayala-Díaz, I.M., Delgado, W., Ruiz-Romero, R., Romero, H.M. (2011). Effect of fruit ripening on content and chemical composition of oil from three oil palm cultivars (Elaeis guineensis Jacq.) grown in Colombia. Journal of Agriculture and Food Chemistry, 59(18), 10136-10142.
  • [19] Siew, W.L. (2002). Palm oil. In Vegetable Oils In Food Technology: Composition, Properties and Uses, Edited by F.D. Gunstone, Boca Raton, FLC, CRC Press, 356p.
  • [20] Akkaya, M.R. (2018). Prediction of fatty acid composition of sunflower seeds by near-infrared reflectance spectroscopy. Journal of Food Science and Technology, 55, 2318-2325.
  • [21] Ayyildiz, H.F., Topkafa, M., Kara, H., Sherazi, S.T.H. (2015). Evaluation of fatty acid composition, tocols profile, and oxidative stability of some fully refined edible oils. International Journal of Food Properties, 18(9), 2064-2076.
  • [22] Clemente, T.E., Cahoon, E.B. (2009). Soybean oil: Genetic approaches for modification of functionality and total content. Plant Physiology, 151(3), 1030-1040.
  • [23] Dorni, C., Sharma, P., Saikia, G., Longvah, T. (2018). Fatty acid profile of edible oils and fats consumed in India. Food Chemistry, 238, 9-15.
  • [24] Cert, A., Moreda, W., Pérez-Camino, M.C. (2000). Chromatographic analysis of minor constituents in vegetable oils. Journal of Chromatography A, 881(1-2), 131-148. [25] Mahesar, S.A., Sherazi, S.T.H., Khaskheli, A.R., Kandhro, A.A., Uddin, S. (2014). Analytical approaches for the assessment of free fatty acids in oils and fats. Analytical Methods, 14.
  • [26] Al-Majidi, M.I.H., Bader, A.T. (2015). Physicochemical characteristics of some imported edible vegetable oils in Iraq. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(5), 488-494.
  • [27] Mengistie, T., Alemu, A., Mekonnen, A. (2018). Comparison of physicochemical properties of edible vegetable oils commercially available in Bahir Dar, Ethiopia. Chemistry International, 4(2), 130-135.
  • [28] Vaisali, C., Charanyaa, S., Belur, P.D., Regupathi, I. (2015). Refining of edible oils: a critical appraisal of current and potential technologies. International Journal of Food Science & Technology, 50(1), 13-23.
  • [29] Casadei, E., Valli, E., Panni, F., Donarski, J., Gubern, J.F., Lucci, P., Conte, L., Lacoste, F., Maquet, A., Bendini, A., Toschi, T.G., 2021. Emerging trends in olive oil fraud and possible countermeasures. Food Control, 124, 107902.
  • [30] Lim, K., Pan, K., Yu, Z., Xiao, R.H., 2020. Pattern recognition based on machine learning identifies oil adulteration and edible oil mixtures. Nature Communications, 11, 5353.
  • [31] Kohr, Y.P., Sim, B.I., Abas, F., Lai, O.M., Wang, Y., Wang, Y., Tan, C.P., 2019. Quality profile determination of palm olein: potential markers for the detection of recycled cooking oils. International Journal of Food Properties, 22(1), 1172-1182.
  • [32] Maszewska, M., Florowska, A., Dłużewska, E., Wroniak, M., Marciniak-Lukasiak, K., Żbikowska, A. (2018). Oxidative stability of selected edible oils. Molecules, 23(7), 1746.
  • [33] Blasi, F., Lombardi, G., Damiani, P., Simonetti, M.S., Giua, L., Cossignani, L. (2013). Triacylglicerol stereospecific analysis and linear discriminant analysis for milk speciation. Journal of Dairy Science, 80(2), 144-151.
  • [34] Azadmard-Damirchi, S., Torbati, M. (2015). Adulterations in some edible oils and fats and their detection methods. Journal of Food Quality and Hazards Control, 2, 38-44.

Yağ Asidi Profillerine Dayalı Yenilebilir Bitkisel Yağ Karışımlarının Ayırt Edilmesi, Nicelenmesi ve Tanımlanması

Yıl 2021, Cilt: 19 Sayı: 3, 244 - 256, 19.10.2021
https://doi.org/10.24323/akademik-gida.1011209

Öz

En yaygın bitkisel yağ karışımlarına dayalı olarak, ikili ve üçlü analitik karışımlar 0.50 ila 0.97 arasında kütle fraksiyonlarında oluşturulmuş ve bunların yağ asidi profilleri belirlenmiş ve grafiksel olarak gösterilmiştir. Ticari yağ karışım oranlarının tahmini için denklemler oluşturmak amacıyla ayırt edici güce sahip yağ asitleri seçilmiştir. Yapılan analizden üç farklı lineer denklem elde edilmiştir: (i) palm yağı bazlı karışımlar, C18:2 için y = (0.3713 ± 0.0217)x + (11.401 ± 0.68) ve C16:0 için (0.4357 ± 0.0254)x + (51.281 ± 2.90), (ii) soya fasulyesi yağı bazlı karışımlar, C18:1 için y = (-0.0789 ± 0.0046)x + (30.686 ± 1.71) ve C18:3 için (0.0686 ± 0.0040)x - (0.1395 ± 0.0081) ve (iii) ayçiçeği yağı bazlı karışımlar, C16:0 için y = (-0.0552 ± 0.0032)x + (12.167 ± 0.6105). Son olarak, ticari numunenin (n = 10, bitkisel yağ karışımları) yağ asidi profilleri belirlenmiş ve model, tatmin edici sonuçlarla bunlara uygulanmıştır.

Proje Numarası

PATI project 917-02

Kaynakça

  • [1] Choudhury, R.A., Costa, M.C. (2012). Impact of government law on edible oil supply chain in Bangladesh perspective. International Journal Supply Chain Management, 1(1), 33-38.
  • [2] Mielke, T. (2017). World Markets for vegetable oils: Status and perspectives. In Encyclopedia of Sustainability Science and Technology, Edited by R.A. Meyers, Switzerland, Springer Science+Business Media LLC., 578p.
  • [3] Pilorgé, E. (2020). Sunflower in the global vegetable oil system: Situation, specificities, and perspectives. OCL, 27, 34.
  • [4] Dahimi, O., Sukri Hassan, M., Abdul Rahim, A., Abdulkarim, S.M., Mashitoh, S. (2014). Differentiation of lard from other edible fats by gas chromatography-flame ionisation detector (GC-FID) and chemometrics. Journal of Food and Pharmaceutical Sciences, 2, 27–31.
  • [5] He, M., Qin, C-X., Wang, X., Ding, N-Z. (2020). Plant unsaturated fatty acids: Biosynthesis and regulation. Frontiers in Plant Science, 11, 390.
  • [6] Orsavova, J., Misurcova, L., Ambrozova, J.V., Vicha, R., Mleck, J. (2015). Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. International Journal of Molecular Sciences, 16(6), 12871-12890.
  • [7] Mihai, A.L., Negoiţă, M., Adascălului, A.C., Ionescu, V., Belc, N. (2018). Evaluation of fatty acids composition of some food samples by using GC-MS and NMR techniques. Agriculture for Life Life for Agriculture Conference Proceedings 1(1), 548-554.
  • [8] Mihai, A.L., Negoiţă, M., Belc, N. (2019). Evaluation of fatty acid profile of oils/fats by GC/MS through two quantification approaches. Romanian Biotechnological Letters, 24(6), 973-985.
  • [9] Rueda, A., Seiquer, I., Olalla, M., Giménez, R., Lara, L., Cabreara-Vique, C. (2014). Characterization of fatty acid profile of argan oil and other edible vegetable oils by Gas Chromatography and discriminant analysis. Journal of Chemistry, ID 843908.
  • [10] Covaciu, F-D., Berghian-Grosan, C., Feher, I., Magdas, D.A. (2020). Edible oils differentiation based on the determination of fatty acids profile and Raman spectroscopy. Applied Science, 10(23), 8347.
  • [11] Zhang, L., Li, P., Sun, X., Wang, X., Xu, B., Wang, X., Ma, F., Zhang, X., Ding, X. (2014). Classification and adulteration detection of vegetable oils based on fatty acid profiles. Journal of Agriculture and Food Chemistry, 62(34), 8745-8751.
  • [12] Manchanda, S.C. (2016). Selecting healthy edible oil in the Indian context. Indian Heart Journal, 68(4), 447-449.
  • [13] Sun, Y., Neelakantan, N., Wu, Y., Lote-Ote, R., Pan, A., van Dam, R.M. (2015). Palm oil consumption increases LDL cholesterol compared with vegetable oils low in saturated fat in a meta-analysis of clinical trials. The Journal of Nutrition, 145(7), 1549-1558.
  • [14] Larbi Ayisi, C., Zhao, J., Wu, J-W. (2018). Replacement of fish oil with palm oil: Effects on growth performance, innate immune response, antioxidant capacity and disease resistance in Nile Tilapia (Oreochromis niloticus). PLoS One, 13(4): e0196100.
  • [15] Sudibyo, H., Pradana•Budhijanto, Y.S., Budjijanto, W. (2018). Bio-synthesis of Eicosapentaenoic acid (EPA) from palm oil mil effluent using anaerobic process. Defect and Diffussion Forum, 382, 286-291.
  • [16] Almeida Schneider, V.A., Carbonera, F., Lopes, A.P., Santos, O.O., Oliveira, C., Souza, N.E., Visentainer, J.V. (2015). Effect of dietary replacement of soybean oil with different sources of gamma-linoleic acid fatty acid composition of Nile Tilapia. Journal of the American Oil Chemists’ Society, 92, 225-231.
  • [17] EFSA, (2016). Erucic acid in feed and food. EFSA Journal, 14(11), e04593.
  • [18] Prada, F., Ayala-Díaz, I.M., Delgado, W., Ruiz-Romero, R., Romero, H.M. (2011). Effect of fruit ripening on content and chemical composition of oil from three oil palm cultivars (Elaeis guineensis Jacq.) grown in Colombia. Journal of Agriculture and Food Chemistry, 59(18), 10136-10142.
  • [19] Siew, W.L. (2002). Palm oil. In Vegetable Oils In Food Technology: Composition, Properties and Uses, Edited by F.D. Gunstone, Boca Raton, FLC, CRC Press, 356p.
  • [20] Akkaya, M.R. (2018). Prediction of fatty acid composition of sunflower seeds by near-infrared reflectance spectroscopy. Journal of Food Science and Technology, 55, 2318-2325.
  • [21] Ayyildiz, H.F., Topkafa, M., Kara, H., Sherazi, S.T.H. (2015). Evaluation of fatty acid composition, tocols profile, and oxidative stability of some fully refined edible oils. International Journal of Food Properties, 18(9), 2064-2076.
  • [22] Clemente, T.E., Cahoon, E.B. (2009). Soybean oil: Genetic approaches for modification of functionality and total content. Plant Physiology, 151(3), 1030-1040.
  • [23] Dorni, C., Sharma, P., Saikia, G., Longvah, T. (2018). Fatty acid profile of edible oils and fats consumed in India. Food Chemistry, 238, 9-15.
  • [24] Cert, A., Moreda, W., Pérez-Camino, M.C. (2000). Chromatographic analysis of minor constituents in vegetable oils. Journal of Chromatography A, 881(1-2), 131-148. [25] Mahesar, S.A., Sherazi, S.T.H., Khaskheli, A.R., Kandhro, A.A., Uddin, S. (2014). Analytical approaches for the assessment of free fatty acids in oils and fats. Analytical Methods, 14.
  • [26] Al-Majidi, M.I.H., Bader, A.T. (2015). Physicochemical characteristics of some imported edible vegetable oils in Iraq. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(5), 488-494.
  • [27] Mengistie, T., Alemu, A., Mekonnen, A. (2018). Comparison of physicochemical properties of edible vegetable oils commercially available in Bahir Dar, Ethiopia. Chemistry International, 4(2), 130-135.
  • [28] Vaisali, C., Charanyaa, S., Belur, P.D., Regupathi, I. (2015). Refining of edible oils: a critical appraisal of current and potential technologies. International Journal of Food Science & Technology, 50(1), 13-23.
  • [29] Casadei, E., Valli, E., Panni, F., Donarski, J., Gubern, J.F., Lucci, P., Conte, L., Lacoste, F., Maquet, A., Bendini, A., Toschi, T.G., 2021. Emerging trends in olive oil fraud and possible countermeasures. Food Control, 124, 107902.
  • [30] Lim, K., Pan, K., Yu, Z., Xiao, R.H., 2020. Pattern recognition based on machine learning identifies oil adulteration and edible oil mixtures. Nature Communications, 11, 5353.
  • [31] Kohr, Y.P., Sim, B.I., Abas, F., Lai, O.M., Wang, Y., Wang, Y., Tan, C.P., 2019. Quality profile determination of palm olein: potential markers for the detection of recycled cooking oils. International Journal of Food Properties, 22(1), 1172-1182.
  • [32] Maszewska, M., Florowska, A., Dłużewska, E., Wroniak, M., Marciniak-Lukasiak, K., Żbikowska, A. (2018). Oxidative stability of selected edible oils. Molecules, 23(7), 1746.
  • [33] Blasi, F., Lombardi, G., Damiani, P., Simonetti, M.S., Giua, L., Cossignani, L. (2013). Triacylglicerol stereospecific analysis and linear discriminant analysis for milk speciation. Journal of Dairy Science, 80(2), 144-151.
  • [34] Azadmard-Damirchi, S., Torbati, M. (2015). Adulterations in some edible oils and fats and their detection methods. Journal of Food Quality and Hazards Control, 2, 38-44.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Graciela Artavia Bu kişi benim 0000-0002-3190-3726

Fabio Granados-chinchilla Bu kişi benim 0000-0003-4828-3727

Proje Numarası PATI project 917-02
Yayımlanma Tarihi 19 Ekim 2021
Gönderilme Tarihi 8 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 19 Sayı: 3

Kaynak Göster

APA Artavia, G., & Granados-chinchilla, F. (2021). Discrimination, Quantitation, and Identification of Edible Vegetable Oil Blends Based on Their Fatty Acid Profiles. Akademik Gıda, 19(3), 244-256. https://doi.org/10.24323/akademik-gida.1011209
AMA Artavia G, Granados-chinchilla F. Discrimination, Quantitation, and Identification of Edible Vegetable Oil Blends Based on Their Fatty Acid Profiles. Akademik Gıda. Ekim 2021;19(3):244-256. doi:10.24323/akademik-gida.1011209
Chicago Artavia, Graciela, ve Fabio Granados-chinchilla. “Discrimination, Quantitation, and Identification of Edible Vegetable Oil Blends Based on Their Fatty Acid Profiles”. Akademik Gıda 19, sy. 3 (Ekim 2021): 244-56. https://doi.org/10.24323/akademik-gida.1011209.
EndNote Artavia G, Granados-chinchilla F (01 Ekim 2021) Discrimination, Quantitation, and Identification of Edible Vegetable Oil Blends Based on Their Fatty Acid Profiles. Akademik Gıda 19 3 244–256.
IEEE G. Artavia ve F. Granados-chinchilla, “Discrimination, Quantitation, and Identification of Edible Vegetable Oil Blends Based on Their Fatty Acid Profiles”, Akademik Gıda, c. 19, sy. 3, ss. 244–256, 2021, doi: 10.24323/akademik-gida.1011209.
ISNAD Artavia, Graciela - Granados-chinchilla, Fabio. “Discrimination, Quantitation, and Identification of Edible Vegetable Oil Blends Based on Their Fatty Acid Profiles”. Akademik Gıda 19/3 (Ekim 2021), 244-256. https://doi.org/10.24323/akademik-gida.1011209.
JAMA Artavia G, Granados-chinchilla F. Discrimination, Quantitation, and Identification of Edible Vegetable Oil Blends Based on Their Fatty Acid Profiles. Akademik Gıda. 2021;19:244–256.
MLA Artavia, Graciela ve Fabio Granados-chinchilla. “Discrimination, Quantitation, and Identification of Edible Vegetable Oil Blends Based on Their Fatty Acid Profiles”. Akademik Gıda, c. 19, sy. 3, 2021, ss. 244-56, doi:10.24323/akademik-gida.1011209.
Vancouver Artavia G, Granados-chinchilla F. Discrimination, Quantitation, and Identification of Edible Vegetable Oil Blends Based on Their Fatty Acid Profiles. Akademik Gıda. 2021;19(3):244-56.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).