Derleme
BibTex RIS Kaynak Göster

Spirulina Mikroalginin Besinsel Özellikleri ve Sağlık Üzerine Potansiyel Etkileri

Yıl 2022, Cilt: 20 Sayı: 3, 296 - 304, 11.10.2022
https://doi.org/10.24323/akademik-gida.1187159

Öz

Dünya nüfusunun hızlı artışına paralel olarak besin takviyelerine olan ilgi de artarak devam etmektedir. İnsan beslenmesindeki ilk kullanımı çok eski dönemlere dayanan alglerin besin takviyesi olarak kullanımı son yıllarda artış göstermiştir. Özellikle Spirulina en çok tüketilen mikroalg cinslerinden biridir. Spirulina hap, tablet, kapsül, toz ve jel formlarında besin takviyesi olarak kullanılmasının yanı sıra besin değerini arttırmak ve sağlık etkilerinden yararlanmak için çeşitli gıda ürünlerine eklenmektedir. Literatürdeki güncel veriler Spirulina’nın obezite, tip 2 diyabet gibi hastalıklar üzerinde olumlu etkileri olabileceğini göstermektedir. Spirulina’nın bu olumlu etkileri besin ögesi içeriği ve antioksidan ve anti-inflamatuvar aktivitelere sahip biyoaktif bileşen içeriği ile ilişkilidir. Olumlu sağlık etkilerinin yanı sıra Spirulina’yı besin takviyesi olarak kullanmanın bazı potansiyel riskleri bulunmaktadır. Bazı çalışmalarda Spirulina takviyelerinde ağır metal, siyanotoksin ve polisiklik aromatik hidrokarbonlar tespit edilmiştir. Bu derlemenin amacı, Spirulina’nın sağlık üzerine olumlu etkileri ve potansiyel risklerine ilişkin özelliklerini irdelemektir.

Kaynakça

  • [1] Martin-Girela, I., Albero, B., Tiwari, B.K., Miguel, E., Aznar, R. (2020). Screening of Contaminants of Emerging Concern in Microalgae Food Supplements. Separations, 7(2), 28.
  • [2] Rzymski, P., Jaskiewicz, M. (2017). Microalgal food supplements from the perspective of Polish consumers: patterns of use, adverse events, and beneficial effects. Journal of Applied Phycology, 29(4), 1841-1850.
  • [3] Koyande, A.K., Chew, K.W., Rambabu, K., Tao, Y., Chu, D.T., Show, P.L. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16-24.
  • [4] Andrade, L.M., Andrade, C.J., Dias, M., Nascimento, C.A.O., Mendes, M.A. (2018). Chlorella and Spirulina Microalgae as Sources of Functional Foods. Nutraceuticals, and Food Supplements, 6(1), 45-58.
  • [5] Serban, M.C., Sahebkar, A., Dragan, S., Stoichescu-Hogea, G., Ursoniu, S., Andrica, F., Maciej Banach, M. (2016). A systematic review and meta-analysis of the impact of Spirulina supplementation on plasma lipid concentrations. Clinical Nutrition, 35(4), 9842-9851.
  • [6] Al-Harbi, N.A. (2016). Heavy metals concentration in commercially available Spirulina products. Biosciences Biotechnology Research Asia, 9(1), 43-51.
  • [7] Grosshagauer, S., Kraemer, K., Somoza, V. (2020). The True Value of Spirulina. Journal of Agricultural and Food Chemistry, 68(14), 4109-4115.
  • [8] Gribovskay, I.V., Yan, N.A., Trubachev, I.N., Zinenko, G.K. (1980). Resistance of certain species of green and blue-green algae to an increased concentration of trace elements in the medium. Sid’ko, f. Ya, Belyanin, VN (Eds.),. In: Belyanin Parametricheskoe Upr. Biosint. Mikrovodoroslei, 49, 57.
  • [9] Sathasivam, R., Radhakrishnan, R., Hashem, A., Abd_Allah, E.F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709-722.
  • [10] Muslu, M.M., Gökçay, G.F. (2020). Sağlığın desteklenmesi ve sürdürülebilir beslenme için alternatif bir kaynak: Alg (yosunlar). Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi, 2(3), 221-237.
  • [11] da Silva Vaz, B., Moreira, J.B., de Morais, M.G., Costa, J.A.V. (2016). Microalgae as a new source of bioactive compounds in food supplements. Current Opinion in Food Science, 7, 73-77.
  • [12] Mobin, S., Alam, F. (2017). Some promising microalgal species for commercial applications: A review. Energy Procedia, 110, 510-517.
  • [13] Soni, R.A., Sudhakar, K., Rana, R.S. (2017). Spirulina–From growth to nutritional product: A review. Trends in Food Science & Technology, 69, 157-171.
  • [14] Sudhakar, K., Premalatha, M., Rajesh, M. (2014). Large-scale open pond algae biomass yield analysis in India: A case study. International Journal of Sustainable Energy, 33(2), 304e315.
  • [15] Yu, J., Ma, D., Qu, S., Liu, Y., Xia, H., Bian, F., Zhang, Y., Huang, C., Wu, R., Wu, J., You, S., Bi, Y. (2020). Effects of different probiotic combinations on the components and bioactivity of Spirulina. Journal of Basic Microbiology, 60(6), 543-557.
  • [16] Cuellar‐Bermúdez, S.P., Barba‐Davila, B., Serna‐Saldivar, S.O., Parra‐Saldivar, R., Rodriguez‐Rodriguez, J., Morales‐Davila, S., Goiris, K., Muylaert, K., Chuck-Hernández, C. (2017). Deodorization of Arthrospira platensis biomass for further scale‐ up food applications. Journal of the Science of Food and Agriculture, 97, 5123‐5130.
  • [17] Dewia, E.N., Amaliaa, U., Mel, M. (2016). The effect of different treatments to the amino acid contents of micro algae Spirulina sp. Aquatic Procedia, 7, 59‐65.
  • [18] Bao, J., Zhang, X., Zheng, J.H., Ren, D.F., Lu, J. (2018). Mixed fermentation of Spirulina platensis with Lactobacillus plantarum and Bacillus subtilis by random‐centroid optimization. Food Chemistry, 264, 64‐72.
  • [19] Finamore, A., Palmery, M., Bensehaila, S., Peluso, I. (2017). Antioxidant, immunomodulating, and microbial-modulating activities of the sustainable and ecofriendly Spirulina. Oxidative Medicine and Cellular Longevity, 2017, 3247528.
  • [20] Reboleira, J., Freitas, R., Pinteus, S., Silva, J., Alves, C., Pedrosa, R., Bernardino, S. (2019). Spirulina. In Nonvitamin and Nonmineral Nutritional Supplements (pp. 409-413). Academic Press.
  • [21] Aouir, A., Amiali, M., Bitam, A., Benchabane, A., Raghavan, V.G. (2017). Comparison of the biochemical composition of different Arthrospira platensis strains from Algeria, Chad and the USA. Journal of Food Measurement and Characterization, 11, 913-923.
  • [22] Muys, M., Sui, Y., Schwaiger, B., Lesueur, C., Vandenheuvel, D., Vermeir, P., Vlaeminck, S.E. (2019). High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies. Bioresource Technology, 275, 247-257.
  • [23] Sharoba, A.M. (2017). Spirulina: Functional Compounds And Health Benefits. In Plant Secondary Metabolites, Edited by M.W. Siddiqui & K.Prasad, Apple Academic Press, USA, 243p.
  • [24] Yücetepe, A., Özçelik, B. (2016). Bioactive peptides isolated from microalgae Spirulina platensis and their biofunctional activities. Akademik Gıda, 14(4), 412-417.
  • [25] de la Jara, A., Ruano-Rodriguez, C., Polifrone, M., Assunçao, P., Brito-Casillas, Y., Wägner, A.M., Majem, L.S. (2018). Impact of dietary Arthrospira (Spirulina) biomass consumption on human health: main health targets and systematic review. Journal of Applied Phycology, 30(4), 2403-2423.
  • [26] Wu, Q., Liu, L., Miron, A., Klímová, B., Wan, D., Kuča, K. (2016). The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Archives of toxicology, 90(8), 1817-1840.
  • [27] Yousefi, R., Saidpour, A., Mottaghi, A. (2019). The effects of Spirulina supplementation on metabolic syndrome components, its liver manifestation and related inflammatory markers: A systematic review. Complementary therapies in medicine, 42, 137-144.
  • [28] Yousefi, R., Mottaghi, A., Saidpour, A. (2018). Spirulina platensis effectively ameliorates anthropometric measurements and obesity-related metabolic disorders in obese or overweight healthy individuals: A randomized controlled trial. Complementary therapies in medicine, 40, 106-112.
  • [29] Moradi, S., Ziaei, R., Foshati, S., Mohammadi, H., Nachvak, S.M., Rouhani, M.H. (2019). Effects of Spirulina supplementation on obesity: A systematic review and meta-analysis of randomized clinical trials. Complementary therapies in medicine, 47, 102211.
  • [30] Zarezadeh, M., Faghfouri, A.H., Radkhah, N., Foroumandi, E., Khorshidi, M., Rasouli, A., Zarei, M., Honarvar, M.N., Karzar, N.H., Mamaghani, M.E. (2020). Spirulina supplementation and anthropometric indices: A systematic review and meta‐analysis of controlled clinical trials. Phytotherapy Research. 2020, 1-10.
  • [31] Zhao, B., Cui, Y., Fan, X., Qi, P., Liu, C., Zhou, X., Zhang, X. (2019). Antiobesity effects of Spirulina platensis protein hydrolysate by modulating brain-liver axis in high-fat diet fed mice. PLoS One, 14(6), e0218543.
  • [32] Hamedifard, Z., Milajerdi, A., Reiner, Ž., Taghizadeh, M., Kolahdooz, F., Asemi, Z. (2019). The effects of Spirulina on glycemic control and serum lipoproteins in patients with metabolic syndrome and related disorders: A systematic review and meta‐analysis of randomized controlled trials. Phytotherapy Research, 33(10), 2609-2621.
  • [33] Mazokopakis, E.E., Papadomanolaki, M.G., Fousteris, A.A., Kotsiris, D.A., Lampadakis, I.M., Ganotakis, E.S. (2014). The hepatoprotective and hypolipidemic effects of Spirulina (Arthrospira platensis) supplementation in a Cretan population with non-alcoholic fatty liver disease: a prospective pilot study. Annals of gastroenterology: quarterly publication of the Hellenic Society of Gastroenterology, 27(4), 387-394.
  • [34] Miczke, A., Szulinska, M., Hansdorfer-Korzon, R., Kregielska-Narozna, M., Suliburska, J., Walkowiak, J., Bogdański, P. (2016). Effects of Spirulina consumption on body weight, blood pressure, and endothelial function in overweight hypertensive Caucasians: a double-blind, placebo-controlled, randomized trial. European Review for Medical and Pharmacological Sciences, 20(1), 150-156.
  • [35] Sharif, N., Munir, N., Saleem, F., Aslam, F., Naz, S. (2014). Prolific anticancer bioactivity of algal extracts. Cell, 3(4), 8-21.
  • [36] Czerwonka, A., Kaławaj, K., Sławińska-Brych, A., Lemieszek, M.K., Bartnik, M., Wojtanowski, K.K., Zdzisińska, B., Rzeski, W. (2018). Anticancer effect of the water extract of a commercial Spirulina (Arthrospira platensis) product on the human lung cancer A549 cell line. Biomedicine & Pharmacotherapy, 106, 292-302.
  • [37] Abd, M.E.A.E.F., EL-Atty, M.M.A.D., Mohammed, B.S.E. (2019). Chemoprotective effects of chlorella vulgaris and Spirulina platensis on colon cancer induced by 1, 2 dimethylhydrazine. International Journal of Current Research in Life Sciences, 8(1), 3043-3049.
  • [38] Mahmoud, Y.I., Shehata, A.M., Fares, N.H., Mahmoud, A.A. (2020). Spirulina inhibits hepatocellular carcinoma through activating p53 and apoptosis and suppressing oxidative stress and angiogenesis. Life Sciences, 265, 118827.
  • [39] Zhou, P., Yang, X-L., Wang, X-G., Hu, B., Zhang L., Zhang, W., Si, H., Zhu, Y., Li B., Huang, C., Chen, H., Luo, Y., Gou, H., Jiang, R., Liu, M., Chen, Y., Shen, X., Wang, X., Zheng, X., Zhao, K., Chen, Q., Deng, F., Liu, L., Yan, B., Zhan, F., Wang, Y., Xiao, G., Shi, Z. (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270-273
  • [40] El-Sheekh, M., Abomohra, A.E.F. (2020). The Therapeutic Potential of Spirulina to Combat COVID-19 Infection. Egyptian Journal of Botany, 60(3), 605-609.
  • [41] Seyidoglu, N., Inan, S., Aydin, C. (2017). A prominent superfood: Spirulina platensis. Superfood and Functional Food The Development of Superfoods and Their Roles as Medicine, 1-27.
  • [42] Gao, F., Yang, Z.H., Li, C., Zeng, G.M., Ma, D.H., Zhou, L.A (2015). A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresource Technology, 179, 8-12.
  • [43] Rzymski, P., Budzulak, J., Niedzielski, P., Klimaszyk, P., Proch, J., Kozak, L., Poniedziałek, P. (2019). Essential and toxic elements in commercial microalgal food supplements. Journal of Applied Phycology, 31(6), 3567-3579.
  • [44] Jung, F., Krüger-Genge, A., Waldeck, P., Küpper, J.H. (2019). Spirulina platensis, a super food? Journal of Cellular Biotechnology, 5(1), 43-54.
  • [45] Jiang, Y., Xie, P., Chen, J., Liang, G. (2008). Detection of the hepatotoxic microcystins in 36 kinds of cyanobacteria Spirulina food products in China. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 25(7), 885-894.
  • [46] Roy-Lachapelle, A., Solliec, M., Bouchard, M.F., Sauve, S. (2017). Detection of Cyanotoxins in Algae Dietary Supplements. Toxins, 9, 76.
  • [47] Manali, K.M., Arunraj, R., Kumar, T., Ramya, M. (2017). Detection of microcystin producing cyanobacteria in Spirulina dietary supplements using multiplex HRM quantitative PCR. Journal of Applied Phycology, 29(3), 1279-1286.
  • [48] Zelinkova, Z., Wenzl, T. (2015). EU marker polycyclic aromatic hydrocarbons in food supplements: analytical approach and occurrence. Food Addit. Contam. Part A Chem Anal Control Expo Risk Assess, 32(11), 1914-1926.
  • [49] Rey-Salgueiro, L., Martínez-Carballo, E., García-Falcón, M.S., Simal-Gándara, J. (2008). Effects of a chemical company fire on the occurrence of polycyclic aromatic hydrocarbons in plant foods. Food Chemistry, 108(1), 347-353.
  • [50] Abdel-Shafy, H.I., Mansour, M.S. (2016). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107-123.
  • [51] Le, T.M., Knulst, A.C., Röckmann, H. (2014). Anaphylaxis to Spirulina confirmed by skin prick test with ingredients of Spirulina tablets. Food and Chemical Toxicology, 74, 309-310.
  • [52] National Institutes of Health. Office of Dietary Supplements. Nutrient Recommendations: Dietary Reference Intakes (DRI). https://ods.od.nih.gov/HealthInformation/Dietary_Reference_Intakes.aspx. Erişim Tarihi [12.05.2022]

Nutritional Properties of Spirulina Microalgae and Its Potential Effects on Human Health

Yıl 2022, Cilt: 20 Sayı: 3, 296 - 304, 11.10.2022
https://doi.org/10.24323/akademik-gida.1187159

Öz

In parallel with the rapid increase in the world population, the interest on the use of dietary supplements continues to increase. Although the use of algae in human nutrition dates back to ancient times, their use as a dietary supplement has increased in recent years. Especially Spirulina is one of the most widely consumed microalgae. In addition to its use as a dietary supplement in pills, tablets, capsules, powder, and gels, Spirulina has been integrated into various food products to increase its nutritional value and to benefit from its effects on human health. Current data in the literature show that Spirulina may have positive effects on diseases like obesity and type 2 diabetes. These positive effects of Spirulina are related to its nutrient content and bioactive compounds showing antioxidant and anti-inflammatory activities. Apart from the positive health effects, there are some potential risks in using Spirulina as a dietary supplements. In some studies, heavy metals, cyanotoxins, polycyclic aromatic hydrocarbons has been detected in Spirulina supplements. The purpose of this review is to evaluate the positive effects and potential risks of Spirulina on human health.

Kaynakça

  • [1] Martin-Girela, I., Albero, B., Tiwari, B.K., Miguel, E., Aznar, R. (2020). Screening of Contaminants of Emerging Concern in Microalgae Food Supplements. Separations, 7(2), 28.
  • [2] Rzymski, P., Jaskiewicz, M. (2017). Microalgal food supplements from the perspective of Polish consumers: patterns of use, adverse events, and beneficial effects. Journal of Applied Phycology, 29(4), 1841-1850.
  • [3] Koyande, A.K., Chew, K.W., Rambabu, K., Tao, Y., Chu, D.T., Show, P.L. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16-24.
  • [4] Andrade, L.M., Andrade, C.J., Dias, M., Nascimento, C.A.O., Mendes, M.A. (2018). Chlorella and Spirulina Microalgae as Sources of Functional Foods. Nutraceuticals, and Food Supplements, 6(1), 45-58.
  • [5] Serban, M.C., Sahebkar, A., Dragan, S., Stoichescu-Hogea, G., Ursoniu, S., Andrica, F., Maciej Banach, M. (2016). A systematic review and meta-analysis of the impact of Spirulina supplementation on plasma lipid concentrations. Clinical Nutrition, 35(4), 9842-9851.
  • [6] Al-Harbi, N.A. (2016). Heavy metals concentration in commercially available Spirulina products. Biosciences Biotechnology Research Asia, 9(1), 43-51.
  • [7] Grosshagauer, S., Kraemer, K., Somoza, V. (2020). The True Value of Spirulina. Journal of Agricultural and Food Chemistry, 68(14), 4109-4115.
  • [8] Gribovskay, I.V., Yan, N.A., Trubachev, I.N., Zinenko, G.K. (1980). Resistance of certain species of green and blue-green algae to an increased concentration of trace elements in the medium. Sid’ko, f. Ya, Belyanin, VN (Eds.),. In: Belyanin Parametricheskoe Upr. Biosint. Mikrovodoroslei, 49, 57.
  • [9] Sathasivam, R., Radhakrishnan, R., Hashem, A., Abd_Allah, E.F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709-722.
  • [10] Muslu, M.M., Gökçay, G.F. (2020). Sağlığın desteklenmesi ve sürdürülebilir beslenme için alternatif bir kaynak: Alg (yosunlar). Bandırma Onyedi Eylül Üniversitesi Sağlık Bilimleri ve Araştırmaları Dergisi, 2(3), 221-237.
  • [11] da Silva Vaz, B., Moreira, J.B., de Morais, M.G., Costa, J.A.V. (2016). Microalgae as a new source of bioactive compounds in food supplements. Current Opinion in Food Science, 7, 73-77.
  • [12] Mobin, S., Alam, F. (2017). Some promising microalgal species for commercial applications: A review. Energy Procedia, 110, 510-517.
  • [13] Soni, R.A., Sudhakar, K., Rana, R.S. (2017). Spirulina–From growth to nutritional product: A review. Trends in Food Science & Technology, 69, 157-171.
  • [14] Sudhakar, K., Premalatha, M., Rajesh, M. (2014). Large-scale open pond algae biomass yield analysis in India: A case study. International Journal of Sustainable Energy, 33(2), 304e315.
  • [15] Yu, J., Ma, D., Qu, S., Liu, Y., Xia, H., Bian, F., Zhang, Y., Huang, C., Wu, R., Wu, J., You, S., Bi, Y. (2020). Effects of different probiotic combinations on the components and bioactivity of Spirulina. Journal of Basic Microbiology, 60(6), 543-557.
  • [16] Cuellar‐Bermúdez, S.P., Barba‐Davila, B., Serna‐Saldivar, S.O., Parra‐Saldivar, R., Rodriguez‐Rodriguez, J., Morales‐Davila, S., Goiris, K., Muylaert, K., Chuck-Hernández, C. (2017). Deodorization of Arthrospira platensis biomass for further scale‐ up food applications. Journal of the Science of Food and Agriculture, 97, 5123‐5130.
  • [17] Dewia, E.N., Amaliaa, U., Mel, M. (2016). The effect of different treatments to the amino acid contents of micro algae Spirulina sp. Aquatic Procedia, 7, 59‐65.
  • [18] Bao, J., Zhang, X., Zheng, J.H., Ren, D.F., Lu, J. (2018). Mixed fermentation of Spirulina platensis with Lactobacillus plantarum and Bacillus subtilis by random‐centroid optimization. Food Chemistry, 264, 64‐72.
  • [19] Finamore, A., Palmery, M., Bensehaila, S., Peluso, I. (2017). Antioxidant, immunomodulating, and microbial-modulating activities of the sustainable and ecofriendly Spirulina. Oxidative Medicine and Cellular Longevity, 2017, 3247528.
  • [20] Reboleira, J., Freitas, R., Pinteus, S., Silva, J., Alves, C., Pedrosa, R., Bernardino, S. (2019). Spirulina. In Nonvitamin and Nonmineral Nutritional Supplements (pp. 409-413). Academic Press.
  • [21] Aouir, A., Amiali, M., Bitam, A., Benchabane, A., Raghavan, V.G. (2017). Comparison of the biochemical composition of different Arthrospira platensis strains from Algeria, Chad and the USA. Journal of Food Measurement and Characterization, 11, 913-923.
  • [22] Muys, M., Sui, Y., Schwaiger, B., Lesueur, C., Vandenheuvel, D., Vermeir, P., Vlaeminck, S.E. (2019). High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies. Bioresource Technology, 275, 247-257.
  • [23] Sharoba, A.M. (2017). Spirulina: Functional Compounds And Health Benefits. In Plant Secondary Metabolites, Edited by M.W. Siddiqui & K.Prasad, Apple Academic Press, USA, 243p.
  • [24] Yücetepe, A., Özçelik, B. (2016). Bioactive peptides isolated from microalgae Spirulina platensis and their biofunctional activities. Akademik Gıda, 14(4), 412-417.
  • [25] de la Jara, A., Ruano-Rodriguez, C., Polifrone, M., Assunçao, P., Brito-Casillas, Y., Wägner, A.M., Majem, L.S. (2018). Impact of dietary Arthrospira (Spirulina) biomass consumption on human health: main health targets and systematic review. Journal of Applied Phycology, 30(4), 2403-2423.
  • [26] Wu, Q., Liu, L., Miron, A., Klímová, B., Wan, D., Kuča, K. (2016). The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Archives of toxicology, 90(8), 1817-1840.
  • [27] Yousefi, R., Saidpour, A., Mottaghi, A. (2019). The effects of Spirulina supplementation on metabolic syndrome components, its liver manifestation and related inflammatory markers: A systematic review. Complementary therapies in medicine, 42, 137-144.
  • [28] Yousefi, R., Mottaghi, A., Saidpour, A. (2018). Spirulina platensis effectively ameliorates anthropometric measurements and obesity-related metabolic disorders in obese or overweight healthy individuals: A randomized controlled trial. Complementary therapies in medicine, 40, 106-112.
  • [29] Moradi, S., Ziaei, R., Foshati, S., Mohammadi, H., Nachvak, S.M., Rouhani, M.H. (2019). Effects of Spirulina supplementation on obesity: A systematic review and meta-analysis of randomized clinical trials. Complementary therapies in medicine, 47, 102211.
  • [30] Zarezadeh, M., Faghfouri, A.H., Radkhah, N., Foroumandi, E., Khorshidi, M., Rasouli, A., Zarei, M., Honarvar, M.N., Karzar, N.H., Mamaghani, M.E. (2020). Spirulina supplementation and anthropometric indices: A systematic review and meta‐analysis of controlled clinical trials. Phytotherapy Research. 2020, 1-10.
  • [31] Zhao, B., Cui, Y., Fan, X., Qi, P., Liu, C., Zhou, X., Zhang, X. (2019). Antiobesity effects of Spirulina platensis protein hydrolysate by modulating brain-liver axis in high-fat diet fed mice. PLoS One, 14(6), e0218543.
  • [32] Hamedifard, Z., Milajerdi, A., Reiner, Ž., Taghizadeh, M., Kolahdooz, F., Asemi, Z. (2019). The effects of Spirulina on glycemic control and serum lipoproteins in patients with metabolic syndrome and related disorders: A systematic review and meta‐analysis of randomized controlled trials. Phytotherapy Research, 33(10), 2609-2621.
  • [33] Mazokopakis, E.E., Papadomanolaki, M.G., Fousteris, A.A., Kotsiris, D.A., Lampadakis, I.M., Ganotakis, E.S. (2014). The hepatoprotective and hypolipidemic effects of Spirulina (Arthrospira platensis) supplementation in a Cretan population with non-alcoholic fatty liver disease: a prospective pilot study. Annals of gastroenterology: quarterly publication of the Hellenic Society of Gastroenterology, 27(4), 387-394.
  • [34] Miczke, A., Szulinska, M., Hansdorfer-Korzon, R., Kregielska-Narozna, M., Suliburska, J., Walkowiak, J., Bogdański, P. (2016). Effects of Spirulina consumption on body weight, blood pressure, and endothelial function in overweight hypertensive Caucasians: a double-blind, placebo-controlled, randomized trial. European Review for Medical and Pharmacological Sciences, 20(1), 150-156.
  • [35] Sharif, N., Munir, N., Saleem, F., Aslam, F., Naz, S. (2014). Prolific anticancer bioactivity of algal extracts. Cell, 3(4), 8-21.
  • [36] Czerwonka, A., Kaławaj, K., Sławińska-Brych, A., Lemieszek, M.K., Bartnik, M., Wojtanowski, K.K., Zdzisińska, B., Rzeski, W. (2018). Anticancer effect of the water extract of a commercial Spirulina (Arthrospira platensis) product on the human lung cancer A549 cell line. Biomedicine & Pharmacotherapy, 106, 292-302.
  • [37] Abd, M.E.A.E.F., EL-Atty, M.M.A.D., Mohammed, B.S.E. (2019). Chemoprotective effects of chlorella vulgaris and Spirulina platensis on colon cancer induced by 1, 2 dimethylhydrazine. International Journal of Current Research in Life Sciences, 8(1), 3043-3049.
  • [38] Mahmoud, Y.I., Shehata, A.M., Fares, N.H., Mahmoud, A.A. (2020). Spirulina inhibits hepatocellular carcinoma through activating p53 and apoptosis and suppressing oxidative stress and angiogenesis. Life Sciences, 265, 118827.
  • [39] Zhou, P., Yang, X-L., Wang, X-G., Hu, B., Zhang L., Zhang, W., Si, H., Zhu, Y., Li B., Huang, C., Chen, H., Luo, Y., Gou, H., Jiang, R., Liu, M., Chen, Y., Shen, X., Wang, X., Zheng, X., Zhao, K., Chen, Q., Deng, F., Liu, L., Yan, B., Zhan, F., Wang, Y., Xiao, G., Shi, Z. (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270-273
  • [40] El-Sheekh, M., Abomohra, A.E.F. (2020). The Therapeutic Potential of Spirulina to Combat COVID-19 Infection. Egyptian Journal of Botany, 60(3), 605-609.
  • [41] Seyidoglu, N., Inan, S., Aydin, C. (2017). A prominent superfood: Spirulina platensis. Superfood and Functional Food The Development of Superfoods and Their Roles as Medicine, 1-27.
  • [42] Gao, F., Yang, Z.H., Li, C., Zeng, G.M., Ma, D.H., Zhou, L.A (2015). A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresource Technology, 179, 8-12.
  • [43] Rzymski, P., Budzulak, J., Niedzielski, P., Klimaszyk, P., Proch, J., Kozak, L., Poniedziałek, P. (2019). Essential and toxic elements in commercial microalgal food supplements. Journal of Applied Phycology, 31(6), 3567-3579.
  • [44] Jung, F., Krüger-Genge, A., Waldeck, P., Küpper, J.H. (2019). Spirulina platensis, a super food? Journal of Cellular Biotechnology, 5(1), 43-54.
  • [45] Jiang, Y., Xie, P., Chen, J., Liang, G. (2008). Detection of the hepatotoxic microcystins in 36 kinds of cyanobacteria Spirulina food products in China. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 25(7), 885-894.
  • [46] Roy-Lachapelle, A., Solliec, M., Bouchard, M.F., Sauve, S. (2017). Detection of Cyanotoxins in Algae Dietary Supplements. Toxins, 9, 76.
  • [47] Manali, K.M., Arunraj, R., Kumar, T., Ramya, M. (2017). Detection of microcystin producing cyanobacteria in Spirulina dietary supplements using multiplex HRM quantitative PCR. Journal of Applied Phycology, 29(3), 1279-1286.
  • [48] Zelinkova, Z., Wenzl, T. (2015). EU marker polycyclic aromatic hydrocarbons in food supplements: analytical approach and occurrence. Food Addit. Contam. Part A Chem Anal Control Expo Risk Assess, 32(11), 1914-1926.
  • [49] Rey-Salgueiro, L., Martínez-Carballo, E., García-Falcón, M.S., Simal-Gándara, J. (2008). Effects of a chemical company fire on the occurrence of polycyclic aromatic hydrocarbons in plant foods. Food Chemistry, 108(1), 347-353.
  • [50] Abdel-Shafy, H.I., Mansour, M.S. (2016). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107-123.
  • [51] Le, T.M., Knulst, A.C., Röckmann, H. (2014). Anaphylaxis to Spirulina confirmed by skin prick test with ingredients of Spirulina tablets. Food and Chemical Toxicology, 74, 309-310.
  • [52] National Institutes of Health. Office of Dietary Supplements. Nutrient Recommendations: Dietary Reference Intakes (DRI). https://ods.od.nih.gov/HealthInformation/Dietary_Reference_Intakes.aspx. Erişim Tarihi [12.05.2022]
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Derleme Makaleler
Yazarlar

Tuğçe Özlü Bu kişi benim 0000-0002-0139-676X

Banu Bayram Bu kişi benim 0000-0001-8214-4179

Yayımlanma Tarihi 11 Ekim 2022
Gönderilme Tarihi 5 Şubat 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 20 Sayı: 3

Kaynak Göster

APA Özlü, T., & Bayram, B. (2022). Spirulina Mikroalginin Besinsel Özellikleri ve Sağlık Üzerine Potansiyel Etkileri. Akademik Gıda, 20(3), 296-304. https://doi.org/10.24323/akademik-gida.1187159
AMA Özlü T, Bayram B. Spirulina Mikroalginin Besinsel Özellikleri ve Sağlık Üzerine Potansiyel Etkileri. Akademik Gıda. Ekim 2022;20(3):296-304. doi:10.24323/akademik-gida.1187159
Chicago Özlü, Tuğçe, ve Banu Bayram. “Spirulina Mikroalginin Besinsel Özellikleri Ve Sağlık Üzerine Potansiyel Etkileri”. Akademik Gıda 20, sy. 3 (Ekim 2022): 296-304. https://doi.org/10.24323/akademik-gida.1187159.
EndNote Özlü T, Bayram B (01 Ekim 2022) Spirulina Mikroalginin Besinsel Özellikleri ve Sağlık Üzerine Potansiyel Etkileri. Akademik Gıda 20 3 296–304.
IEEE T. Özlü ve B. Bayram, “Spirulina Mikroalginin Besinsel Özellikleri ve Sağlık Üzerine Potansiyel Etkileri”, Akademik Gıda, c. 20, sy. 3, ss. 296–304, 2022, doi: 10.24323/akademik-gida.1187159.
ISNAD Özlü, Tuğçe - Bayram, Banu. “Spirulina Mikroalginin Besinsel Özellikleri Ve Sağlık Üzerine Potansiyel Etkileri”. Akademik Gıda 20/3 (Ekim 2022), 296-304. https://doi.org/10.24323/akademik-gida.1187159.
JAMA Özlü T, Bayram B. Spirulina Mikroalginin Besinsel Özellikleri ve Sağlık Üzerine Potansiyel Etkileri. Akademik Gıda. 2022;20:296–304.
MLA Özlü, Tuğçe ve Banu Bayram. “Spirulina Mikroalginin Besinsel Özellikleri Ve Sağlık Üzerine Potansiyel Etkileri”. Akademik Gıda, c. 20, sy. 3, 2022, ss. 296-04, doi:10.24323/akademik-gida.1187159.
Vancouver Özlü T, Bayram B. Spirulina Mikroalginin Besinsel Özellikleri ve Sağlık Üzerine Potansiyel Etkileri. Akademik Gıda. 2022;20(3):296-304.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).