Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüksek Yoğunluklu Ultrason ve Yüksek Basınçlı Homojenizasyona Maruz Bırakılan Bezelye Proteini Nanoemülsiyonlarının Depolanması Sırasında Emülsifiye Edici Özellik, Parçacık Boyutu, Bulanıklık ve Lipid Oksidasyonundaki Değişimler

Yıl 2022, Cilt: 20 Sayı: 4, 336 - 342, 27.12.2022
https://doi.org/10.24323/akademik-gida.1224299

Öz

Mevcut çalışmada, ısıl olmayan iki teknolojinin (yüksek basınçlı homojenizasyon (HPH) ve yüksek yoğunluklu ultrason (HIU)) bezelye proteini nanoemülsiyonunun (PPN) emülsiyonlaştırma özellikleri, parçacık boyutu, bulanıklık ve lipit oksidasyonu üzerindeki etkisi 7 günlük depolama süresince araştırılmıştır. Tüm muameleler arasında %100 genlikte 10 dakikalık HIU’ya maruz bırakılan numuneler en küçük parçacık boyutunu sergilemiştir (198.3 nm). Aynı örnek, 7 günlük depolama sırasında en az lipid oksidasyonunu göstermiştir (98 mmol/kg). Parçacık boyutları ile bulanıklık arasında pozitif bir ilişki tespit edilmiştir. HIU ile muamele edilmiş tüm PPN’ler daha az bulanıklık ve daha küçük parçacık boyutu sergilerken, kontrol PPN numuneleri en bulanık yapıyı (4.05) ve en büyük parçacık boyutunu (413,9 nm) sergilemiştir. Parçacık boyutu ve lipid oksidasyonu değişkenleri arasında da benzer pozitif bir ilişki bulunmuştur. HIU ile muamele edilmiş tüm PPN'ler, daha düşük lipid oksidasyonu ve daha küçük damlacık boyutu sergilerken, kontrol PPN'leri, en büyük damlacık boyutuyla en yüksek lipid oksidasyonunu göstermiştir. Son olarak, muameleler arasında, %100 genlikte 10 dakika HIU’ya maruz kalan PPN'ler en yüksek EAI'yi (212 m2g-1) ve ESI'yi (59 min) gösterirken, kontrol PPN’ler en düşük EAI’yi (69 m2g-1) ve ESI’yi (21 min) göstermiştir.

Kaynakça

  • [1] Jiang, S., Yildiz, G., Ding, J., Andrade, J., Rababah, T.M., Almajwalc, A., Abulmeatyc, M.M., Feng, H. (2019). Pea protein nanoemulsion and nanocomplex as carriers for protection of cholecalciferol (vitamin D3). Food and Bioprocess Technology, 12(6), 1031-1040.
  • [2] Mason, T.J., Paniwnyk, L., Lorimer, J.P. (1996). The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3, 253-260.
  • [3] Jambrak, A.R., Mason, T.M., Lelas, V., Herceg, Z., Herceg, I.L. (2008). Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. Journal of Food Engineering, 86, 281-287.
  • [4] Chen, L., Chen, J., Ren, J., Zhao, M. (2011). Effects of ultrasound pretreatment on the enzymatic hydrolysis of soy protein isolates and on the emulsifying properties of hydrolysates. Journal of Agricultural and Food Chemistry, 59(6), 2600-2609.
  • [5] Yildiz, G., Andrade, J., Engeseth, N.C., Feng, H. (2017). Functionalizing soy protein nano-aggregates with pH-shifting and mano-thermo-sonication. Journal of Colloid and Interface Science, 505, 836-846.
  • [6] Jiang, S., Ding, J., Andrade, J., Rababah, T.M., Almajwal, A., Abulmeaty, M.M., Feng, H. (2017). Modifying the physicochemical properties of pea protein by pH-shifting and ultrasound combined treatments. Ultrasonics Sonochemistry, 38, 835-842.
  • [7] Min, H., McClements, D.J., Decker, E.A. (2003). Lipid oxidation in corn oil-in-water emulsions stabilized by casein, whey protein isolate, and soy protein isolate. Journal of Agricultural and Food Chemistry, 51, 1696-1700.
  • [8] Lee, H., Yildiz, G., Dos Santos, L.C., Jiang, S., Andrade, J., Engeseth, N.C., Feng, H. (2016). Soy protein nano-aggregates with improved functional properties prepared by sequential pH treatment and ultrasonication. Food Hydrocolloids, 55, 200-209.
  • [9] Jambrak, A.R., Mason, T.J., Lelas, V., Paniwnyk, L., Herceg, Z. (2014). Effect of ultrasound treatment on particle size and molecular weight of whey proteins. Journal of Food Engineering, 121, 15-23.
  • [10] Karki, B., Lamsal, B.P., Jung, S., van Leeuwen, J., (Hans), Pometto, A.L., III Grewell, D. (2010). Enhancing protein and sugar release from defatted soy flakes using ultrasound technology. Journal of Food Engineering, 96(2), 270-278.
  • [11] Puppo, M.C., Speroni, F., Chapleau, N., De Lamballerie-Anton, M., Anon, M.C., Anton, M. (2005). Effect of high-pressure treatment on emulsifying properties of soybean proteins. Food Hydrocolloids, 19, 289-296.
  • [12] Arzeni, C., Martinez, K., Zema, P., Arias, A., Perez, O.E., Pilosof, A.M.R. (2012). Comparative study of high intensity ultrasound effects on food proteins functionality. Journal of Food Engineering, 108(3), 463-472.
  • [13] Gordon, L., Pilosof, A.M.R. (2010). Application of high-intensity ultrasounds to control the size of whey proteins particles. Food Biophysics, 5, 203-210.
  • [14] Hu, H., Wu, J., Li-Chan, E.C.Y., Zhu, L., Zhang, F., Xu, X., Fan, G., Wang, L., Huang, X., Pan, S. (2013). Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocolloids, 30(2), 647-655.
  • [15] Gregory, J. (1998). Turbidity and beyond. Filtration & Separation, 35(1), 63-67.
  • [16] Zisu, B., Lee, J., Chandrapala, J., Bhaskaracharya, R., Palmer, M., Kentish, S., Ashokkumar, M. (2011). Effect of ultrasound on the physical and functional properties of reconstituted whey protein powders. Journal of Dairy Research, 78, 226-232.

Changes in Emulsifying Properties, Droplet Size, Turbidity and Lipid Oxidation of Pea Protein Nanoemulsions Exposed to High-Intensity Ultrasound and High-Pressure Homogenization during Storage

Yıl 2022, Cilt: 20 Sayı: 4, 336 - 342, 27.12.2022
https://doi.org/10.24323/akademik-gida.1224299

Öz

The current work was conducted to explore the influence of two non-thermal technologies (high pressure homogenization (HPH) and high-intensity ultrasound (HIU)) on emulsifying properties, droplet size, turbidity and lipid oxidation of pea protein-stabilized nanoemulsions (PPNs) during seven days of storage. The smallest droplet size (198.3 nm) was obtained for the samples exposed to 10 min HIU at 100% amplitude among all treatments. The same sample also showed the least lipid oxidation (98 mmol/kg) during storage. There was a positive relationship between droplet size and turbidity values. All HIU-treated PPNs exhibited less turbidity and smaller droplet size where the control PPN samples demonstrated the most turbid structure (4.05) with the biggest droplet size (413.9 nm). Similar positive relationship was also found between the variables of droplet size and lipid oxidation. All HIU-treated PPNs exhibited less lipid oxidation and smaller droplet size where the control PPNs demonstrated the most lipid oxidation with the biggest droplet size. Last but not least, among the treatments, the PPNs exposed to 10 min HIU at 100% amplitude showed the highest emulsifying activity index (EAI, 212 m2g-1) and emulsifying stability index (ESI, 59 min), whereas the PPNs with no treatment showed the lowest EAI (69 m2g-1) and ESI (21 min).

Kaynakça

  • [1] Jiang, S., Yildiz, G., Ding, J., Andrade, J., Rababah, T.M., Almajwalc, A., Abulmeatyc, M.M., Feng, H. (2019). Pea protein nanoemulsion and nanocomplex as carriers for protection of cholecalciferol (vitamin D3). Food and Bioprocess Technology, 12(6), 1031-1040.
  • [2] Mason, T.J., Paniwnyk, L., Lorimer, J.P. (1996). The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3, 253-260.
  • [3] Jambrak, A.R., Mason, T.M., Lelas, V., Herceg, Z., Herceg, I.L. (2008). Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. Journal of Food Engineering, 86, 281-287.
  • [4] Chen, L., Chen, J., Ren, J., Zhao, M. (2011). Effects of ultrasound pretreatment on the enzymatic hydrolysis of soy protein isolates and on the emulsifying properties of hydrolysates. Journal of Agricultural and Food Chemistry, 59(6), 2600-2609.
  • [5] Yildiz, G., Andrade, J., Engeseth, N.C., Feng, H. (2017). Functionalizing soy protein nano-aggregates with pH-shifting and mano-thermo-sonication. Journal of Colloid and Interface Science, 505, 836-846.
  • [6] Jiang, S., Ding, J., Andrade, J., Rababah, T.M., Almajwal, A., Abulmeaty, M.M., Feng, H. (2017). Modifying the physicochemical properties of pea protein by pH-shifting and ultrasound combined treatments. Ultrasonics Sonochemistry, 38, 835-842.
  • [7] Min, H., McClements, D.J., Decker, E.A. (2003). Lipid oxidation in corn oil-in-water emulsions stabilized by casein, whey protein isolate, and soy protein isolate. Journal of Agricultural and Food Chemistry, 51, 1696-1700.
  • [8] Lee, H., Yildiz, G., Dos Santos, L.C., Jiang, S., Andrade, J., Engeseth, N.C., Feng, H. (2016). Soy protein nano-aggregates with improved functional properties prepared by sequential pH treatment and ultrasonication. Food Hydrocolloids, 55, 200-209.
  • [9] Jambrak, A.R., Mason, T.J., Lelas, V., Paniwnyk, L., Herceg, Z. (2014). Effect of ultrasound treatment on particle size and molecular weight of whey proteins. Journal of Food Engineering, 121, 15-23.
  • [10] Karki, B., Lamsal, B.P., Jung, S., van Leeuwen, J., (Hans), Pometto, A.L., III Grewell, D. (2010). Enhancing protein and sugar release from defatted soy flakes using ultrasound technology. Journal of Food Engineering, 96(2), 270-278.
  • [11] Puppo, M.C., Speroni, F., Chapleau, N., De Lamballerie-Anton, M., Anon, M.C., Anton, M. (2005). Effect of high-pressure treatment on emulsifying properties of soybean proteins. Food Hydrocolloids, 19, 289-296.
  • [12] Arzeni, C., Martinez, K., Zema, P., Arias, A., Perez, O.E., Pilosof, A.M.R. (2012). Comparative study of high intensity ultrasound effects on food proteins functionality. Journal of Food Engineering, 108(3), 463-472.
  • [13] Gordon, L., Pilosof, A.M.R. (2010). Application of high-intensity ultrasounds to control the size of whey proteins particles. Food Biophysics, 5, 203-210.
  • [14] Hu, H., Wu, J., Li-Chan, E.C.Y., Zhu, L., Zhang, F., Xu, X., Fan, G., Wang, L., Huang, X., Pan, S. (2013). Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocolloids, 30(2), 647-655.
  • [15] Gregory, J. (1998). Turbidity and beyond. Filtration & Separation, 35(1), 63-67.
  • [16] Zisu, B., Lee, J., Chandrapala, J., Bhaskaracharya, R., Palmer, M., Kentish, S., Ashokkumar, M. (2011). Effect of ultrasound on the physical and functional properties of reconstituted whey protein powders. Journal of Dairy Research, 78, 226-232.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Gülçin Yıldız Bu kişi benim 0000-0001-6229-7338

Yayımlanma Tarihi 27 Aralık 2022
Gönderilme Tarihi 29 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 20 Sayı: 4

Kaynak Göster

APA Yıldız, G. (2022). Changes in Emulsifying Properties, Droplet Size, Turbidity and Lipid Oxidation of Pea Protein Nanoemulsions Exposed to High-Intensity Ultrasound and High-Pressure Homogenization during Storage. Akademik Gıda, 20(4), 336-342. https://doi.org/10.24323/akademik-gida.1224299
AMA Yıldız G. Changes in Emulsifying Properties, Droplet Size, Turbidity and Lipid Oxidation of Pea Protein Nanoemulsions Exposed to High-Intensity Ultrasound and High-Pressure Homogenization during Storage. Akademik Gıda. Aralık 2022;20(4):336-342. doi:10.24323/akademik-gida.1224299
Chicago Yıldız, Gülçin. “Changes in Emulsifying Properties, Droplet Size, Turbidity and Lipid Oxidation of Pea Protein Nanoemulsions Exposed to High-Intensity Ultrasound and High-Pressure Homogenization During Storage”. Akademik Gıda 20, sy. 4 (Aralık 2022): 336-42. https://doi.org/10.24323/akademik-gida.1224299.
EndNote Yıldız G (01 Aralık 2022) Changes in Emulsifying Properties, Droplet Size, Turbidity and Lipid Oxidation of Pea Protein Nanoemulsions Exposed to High-Intensity Ultrasound and High-Pressure Homogenization during Storage. Akademik Gıda 20 4 336–342.
IEEE G. Yıldız, “Changes in Emulsifying Properties, Droplet Size, Turbidity and Lipid Oxidation of Pea Protein Nanoemulsions Exposed to High-Intensity Ultrasound and High-Pressure Homogenization during Storage”, Akademik Gıda, c. 20, sy. 4, ss. 336–342, 2022, doi: 10.24323/akademik-gida.1224299.
ISNAD Yıldız, Gülçin. “Changes in Emulsifying Properties, Droplet Size, Turbidity and Lipid Oxidation of Pea Protein Nanoemulsions Exposed to High-Intensity Ultrasound and High-Pressure Homogenization During Storage”. Akademik Gıda 20/4 (Aralık 2022), 336-342. https://doi.org/10.24323/akademik-gida.1224299.
JAMA Yıldız G. Changes in Emulsifying Properties, Droplet Size, Turbidity and Lipid Oxidation of Pea Protein Nanoemulsions Exposed to High-Intensity Ultrasound and High-Pressure Homogenization during Storage. Akademik Gıda. 2022;20:336–342.
MLA Yıldız, Gülçin. “Changes in Emulsifying Properties, Droplet Size, Turbidity and Lipid Oxidation of Pea Protein Nanoemulsions Exposed to High-Intensity Ultrasound and High-Pressure Homogenization During Storage”. Akademik Gıda, c. 20, sy. 4, 2022, ss. 336-42, doi:10.24323/akademik-gida.1224299.
Vancouver Yıldız G. Changes in Emulsifying Properties, Droplet Size, Turbidity and Lipid Oxidation of Pea Protein Nanoemulsions Exposed to High-Intensity Ultrasound and High-Pressure Homogenization during Storage. Akademik Gıda. 2022;20(4):336-42.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).