Derleme
BibTex RIS Kaynak Göster

Üzümsü Meyvelerin Biyoaktif Bileşenleri ile İnsan Sağlığı Üzerine Etkileri

Yıl 2022, Cilt: 20 Sayı: 4, 442 - 453, 27.12.2022
https://doi.org/10.24323/akademik-gida.1224830

Öz

Üzümsü meyveler ve ürünleri günümüzde “fonksiyonel gıdalar” olarak bilinmekte ve gıda endüstrisinde artan bir ilgi görmektedir. Başta antosiyaninler olmak üzere diğer meyvelere göre daha yüksek antioksidan kapasitesine sahip üzümsü meyvelerin hastalıklara yakalanma riskleri ile hastalık semptomlarını azaltarak, sağlık üzerine koruyucu etkileri olduğu düşünülmektedir. Türkiye, 2021 Türkiye İstatistik Kurumu (TUİK) verilerine göre meyve üretiminde dünyada beşinci sırada yer almasına rağmen üzümsü meyvelerin üretim miktarı düşük olup bu meyvelerin önemi hala anlaşılamamış durumdadır. Bu nedenle, sağlığı olumlu yönde etkilediği düşünülen üzümsü meyvelere olan ilginin ülkemizde artırılması, hem bilimsel açıdan hem de üretimini artırabilmek amacıyla ekonomik açıdan oldukça önemlidir. Bu derlemenin amacı üzümsü meyvelerin içerdiği biyoaktif bileşenler ile insan sağlığı üzerine etkilerini son on yılda yapılmış klinik çalışmalarla değerlendirmektir. Bu amaçla planlanan sistematik olmayan derlemede, Dergipark, PubMed, Elsevier ve Google Scholar veri tabanlarında yapılan literatür taraması sonucu toplam 32 uluslararası klinik çalışma derlemeye dahil edilmiştir. Türkiye’de insanlar üzerinde yapılmış bir klinik çalışmaya rastlanmamıştır. Sonuçlar, üzümsü meyvelerin sağlığı olumlu yönde etkileyerek antioksidan, anti-inflamatuar, anti-diyabet, kardiyovasküler sistemi koruyucu, lipid metabolizmasını iyileştirici, hipertansiyondan koruyucu, kolon kanseri semptomlarını azaltıcı etkisi ile mikrobiyotayı olumlu yönde etkileyebileceğini göstermektedir. Kesin mekanizmaları ve uzun dönem etkilerinin anlaşılabilmesi için daha fazla klinik çalışmaya ihtiyaç vardır.

Kaynakça

  • [1] Van Duyn, M.A., Pivonka, E. (2000). Overview of the health benefits of fruit and vegetable consumption for the dietetics professional: selected literature. Journal of the American Dietetic Association, 100(12), 1511-1521.
  • [2] Slavin, J.L., Lloyd, B. (2012). Health benefits of fruits and vegetables. Advances in Nutrition, 3(4), 506-516.
  • [3] Çağlar, M., Demirci, M. (2018). Üzümsü meyvelerde bulunan fenolik bileşikler ve beslenmedeki önemi. Avrupa Bilim ve Teknoloji Dergisi, 7(11), 18-26.
  • [4] Lavefve, L., Howard, L.R., Carbonero, F. (2020). Berry polyphenols metabolism and impact on human gut microbiota and health. Food & Function, 11(1), 45-65.
  • [5] Del Bo, C., Martini, D., Porrini, M., Klimis-Zacas, D., Riso, P. (2015). Berries and oxidative stress markers: an overview of human intervention studies. Food & Function, 6(9), 2890-2917.
  • [6] Paredes-López, O., Cervantes-Ceja, M.L., Vigna-Pérez, M., Hernández-Pérez, T. (2010). Berries: improving human health and healthy aging, and promoting quality life-a review. Plant Foods for Human Nutrition, 65(3), 299-308.
  • [7] Hidalgo, G.I., Almajano, M.P. (2017). Red fruits: extraction of antioxidants, phenolic content, and radical scavenging determination: a review. Antioxidants, 6(1), 7.
  • [8] Olas, B. (2017). The multifunctionality of berries toward blood platelets and the role of berry phenolics in cardiovascular disorders. Platelets, 28(6), 540-549.
  • [9] Olas, B. (2016). Sea buckthorn as a source of important bioactive compounds in cardiovascular diseases. Food and Chemical Toxicology, 97, 199-204.
  • [10] Kristo, A.S., Klimis-Zacas, D., Sikalidis, A.K. (2016). Protective role of dietary berries in cancer. Antioxidants, 5(4), 37.
  • [11] Wightman, J.D., Heuberger, R.A. (2015). Effect of grape and other berries on cardiovascular health. Journal of the Science of Food and Agriculture, 95(8), 1584-1597.
  • [12] Cassidy, A. (2018). Berry anthocyanin intake and cardiovascular health. Molecular Aspects of Medicine, 61, 76-82.
  • [13] Giampieri, F., Forbes-Hernandez, T.Y., Gasparrini, M., Alvarez-Suarez, J.M., Afrin, S., Bompadre, S., Quiles, J.L., Mezzetti, B., Battino, M. (2015). Strawberry as a health promoter: an evidence based review. Food & Function, 6(5), 1386-1398.
  • [14] Nile, S.H., Park, S.W. (2014). Edible berries: Bioactive components and their effect on human health. Nutrition, 30(2), 134-144.
  • [15] Chrubasik, C., Li, G., Chrubasik, S. (2010). The clinical effectiveness of chokeberry: a systematic review. Phytotherapy Research, 24(8), 1107-1114.
  • [16] Olas, B. (2018). Berry phenolic antioxidants–implications for human health? Frontiers in Pharmacology, 9, 78.
  • [17] Türkiye İstatistik Kurumu, (2021). Meyve üretim miktarı. Erişim adresi: https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2021-37249 (Erişim tarihi: 26.11.2022).
  • [18] Bayram, H.M., Öztürkcan, A. (2020). Antosiyanince zengin kiraz grubu meyvelerin insan sağlığı üzerine etkilerini inceleyen klinik çalışmalara bir bakış. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi, 11(4), 230–254.
  • [19] Manganaris, G.A., Goulas, V., Vicente, A.R., Terry, L.A. (2014). Berry antioxidants: small fruits providing large benefits. Journal of the Science of Food and Agriculture, 94(5), 825-833.
  • [20] Okatan, V. (2018). Phenolic compounds and phytochemicals in fruits of black mulberry (Morus nigra L.) genotypes from the Aegean region in Turkey. Folia Horticulturae, 30(1), 93-101.
  • [21] Benvenuti, S., Pellati, F., Melegari, M.A., Bertelli, D. (2004). Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. Journal of Food Science, 69(3), FCT164-FCT169.
  • [22] Viapiana, A., Wesolowski, M. (2017). The phenolic contents and antioxidant activities of infusions of Sambucus nigra L. Plant Foods for Human Nutrition, 72(1), 82-87.
  • [23] Doshi, P., Adsule, P., Banerjee, K. (2006). Phenolic composition and antioxidant activity in grapevine parts and berries (Vitis vinifera L.) cv. Kishmish Chornyi (Sharad Seedless) during maturation. International Journal of Food Science & Technology, 41(s1), 1-9.
  • [24] Del Rio, D., Borges, G., Crozier, A. (2010). Berry flavonoids and phenolics: bioavailability and evidence of protective effects. British Journal of Nutrition, 104(S3), S67-S90.
  • [25] Giampieri, F., Tulipani, S., Alvarez-Suarez, J.M., Quiles, J. L., Mezzetti, B., Battino, M. (2012). The strawberry: composition, nutritional quality, and impact on human health. Nutrition, 28(1), 9-19.
  • [26] Zanotti, I., Dall'Asta, M., Mena, P., Mele, L., Bruni, R., Ray, S., Del Rio, D. (2015). Atheroprotective effects of (poly) phenols: a focus on cell cholesterol metabolism. Food & Function, 6(1), 13-31.
  • [27] Puupponen-Pimiä, R., Nohynek, L., Alakomi, H.L., Oksman-Caldentey, K.M. (2005). Bioactive berry compounds-novel tools against human pathogens. Applied Microbiology and Biotechnology, 67(1), 8-18.
  • [28] Szajdek, A., Borowska, E.J. (2008). Bioactive compounds and health-promoting properties of berry fruits: a review. Plant Foods for Human Nutrition, 63(4), 147-156.
  • [29] Mullen, W., McGinn, J., Lean, M.E., MacLean, M.R., Gardner, P., Duthie, G.G., Yokota, T., Crozier, A. (2002). Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. Journal of Agricultural and Food Chemistry, 50(18), 5191-5196.
  • [30] da Silva Pinto, M., Lajolo, F.M., Genovese, M.I. (2008). Bioactive compounds and quantification of total ellagic acid in strawberries (Fragaria x ananassa Duch.). Food Chemistry, 107(4), 1629-1635.
  • [31] Bobinaitė, R., Viškelis, P., Venskutonis, P.R. (2012). Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chemistry, 132(3), 1495-1501.
  • [32] Zia-Ul-Haq, M., Riaz, M., De Feo, V., Jaafar, H.Z., Moga, M. (2014). Rubus fruticosus L.: constituents, biological activities and health related uses. Molecules, 19(8), 10998-11029.
  • [33] Zalewska-Korona, M., Kalbarczyk, J. (2009). Antioxidant capacity, ascorbic acid and phenolics content in wild edible fruits. Journal of Fruit and Ornamental Plant Research, 17(2), 115-120.
  • [34] Skupień, K. (2006). Evaluation of chemical composition of fresh and frozen blueberry fruit (Vaccinium corymbosum L.). Acta Scientiarum Polonorum Hortorum Cultus, 5(1), 19-25.
  • [35] Oszmiański, J., Kolniak‐Ostek, J., Lachowicz, S., Gorzelany, J., Matłok, N. (2017). Phytochemical compounds and antioxidant activity in different cultivars of Cranberry (Vaccinium macrocarpon L). Journal of Food Science, 82(11), 2569-2575.
  • [36] Orsavová, J., Hlaváčová, I., Mlček, J., Snopek, L., Mišurcová, L. (2019). Contribution of phenolic compounds, ascorbic acid and vitamin E to antioxidant activity of currant (Ribes L.) and gooseberry (Ribes uva-crispa L.) fruits. Food Chemistry, 284, 323-333.
  • [37] Nour, V., Trandafir, I., Ionica, M.E. (2011). Ascorbic acid, anthocyanins, organic acids and mineral content of some black and red currant cultivars. Fruits, 66(5), 353-362.
  • [38] Eyduran, S.P., Akin, M., Ercisli, S., Eyduran, E., Maghradze, D. (2015). Sugars, organic acids, and phenolic compounds of ancient grape cultivars (Vitis vinifera L.) from Igdir province of Eastern Turkey. Biological Research, 48(1), 2. [39] Özcan, M.M., Hacıseferoğulları, H. (2007). The strawberry (Arbutus unedo L.) fruits: chemical composition, physical properties and mineral contents. Journal of Food Engineering, 78(3), 1022-1028.
  • [40] Ercisli, S., Tosun, M., Duralija, B., Voća, S., Sengul, M., Turan, M. (2010). Phytochemical content of some black (Morus nigra L.) and purple (Morus rubra L.) mulberry genotypes. Food Technology and Biotechnology, 48(1), 102-106.
  • [41] Müller, D., Schantz, M., Richling, E. (2012). High performance liquid chromatography analysis of anthocyanins in bilberries (Vaccinium myrtillus L.), blueberries (Vaccinium corymbosum L.), and corresponding juices. Journal of Food Science, 77(4), C340-C345.
  • [42] Cásedas, G., Les, F., Gómez-Serranillos, M.P., Smith, C., López, V. (2017). Anthocyanin profile, antioxidant activity and enzyme inhibiting properties of blueberry and cranberry juices: A comparative study. Food & Function, 8(11), 4187-4193.
  • [43] Silva, P., Ferreira, S., Nunes, F.M. (2017). Elderberry (Sambucus nigra L.) by-products a source of anthocyanins and antioxidant polyphenols. Industrial Crops and Products, 95, 227-234.
  • [44] Dusi, N., Cecchetto, F., Brambilla, P. (2015). Studies on Psychiatric Disorders. Magnetic Resonance spectroscopy studies in bipolar disorders patients: focus on the potential role of oxidative stress. Edited by Muszalska, A., Chauhan, V.,& Grignon, S., Springer Science and Business Media New York, England, 172p.
  • [45] Tulipani, S., Alvarez-Suarez, J.M., Busco, F., Bompadre, S., Quiles, J.L., Mezzetti, B., Battino, M. (2011). Strawberry consumption improves plasma antioxidant status and erythrocyte resistance to oxidative haemolysis in humans. Food Chemistry, 128(1), 180-186.
  • [46] Tulipani, S., Armeni, T., Giampieri, F., Alvarez-Suarez, J. M., Gonzalez-Paramás, A. M., Santos-Buelga, C., Busco, F., Principato, G., Bompadre, S., Quiles, J.L., Mezzetti, B., Battino, M. (2014). Strawberry intake increases blood fluid, erythrocyte and mononuclear cell defenses against oxidative challenge. Food Chemistry, 156, 87-93.
  • [47] Lee, J.E., Park, E., Lee, J.E., Auh, J.H., Choi, H.K., Lee, J., Cho, S., Kim, J.H. (2011). Effects of a Rubus coreanus Miquel supplement on plasma antioxidant capacity in healthy Korean men. Nutrition Research and Practice, 5(5), 429-434.
  • [48] Kuntz, S., Kunz, C., Herrmann, J., Borsch, C.H., Abel, G., Fröhling, B., Fröhling, B., Dietrich, H., Rudloff, S. (2014). Anthocyanins from fruit juices improve the antioxidant status of healthy young female volunteers without affecting anti-inflammatory parameters: results from the randomised, double-blind, placebo-controlled, cross-over ANTHONIA (ANTHOcyanins in Nutrition Investigation Alliance) study. British Journal of Nutrition, 112(6), 925-936.
  • [49] Basu, A., Betts, N.M., Ortiz, J., Simmons, B., Wu, M., Lyons, T.J. (2011). Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutrition Research, 31(3), 190-196.
  • [50] Simão, T.N.C., Lozovoy, M.A.B., Simão, A.N.C., Oliveira, S.R., Venturini, D., Morimoto, H.K., Miglioranza, L.H.S., Dichi, I. (2013). Reduced-energy cranberry juice increases folic acid and adiponectin and reduces homocysteine and oxidative stress in patients with the metabolic syndrome. British Journal of Nutrition, 110(10), 1885-1894.
  • [51] Edirisinghe, I., Burton-Freeman, B. (2016). Anti-diabetic actions of Berry polyphenols–Review on proposed mechanisms of action. Journal of Berry Research, 6(2), 237-250.
  • [52] International Diabetes Federation, (2019). International Diabetes Federation Atlas. Erişim adresi: https://www.diabetesatlas.org/en/. (Erişim tarihi: 12.15.2020).
  • [53] T. C. Sağlık Bakanlığı Türkiye Halk Sağlığı Kurumu, (2015). Türkiye Diyabet Programı 2015-2020. Erişim adresi: https://extranet.who.int/ncdccs/Data/TUR_D1_T%C3%BCrkiye%20Diyabet%20Program%C4%B1%202015-2020.pdf (Erişim tarihi: 01.01.2021).
  • [54] Törrönen, R., Kolehmainen, M., Sarkkinen, E., Mykkänen, H., Niskanen, L. (2012). Postprandial glucose, insulin, and free fatty acid responses to sucrose consumed with blackcurrants and lingonberries in healthy women. The American Journal of Clinical Nutrition, 96(3), 527-533.
  • [55] Edirisinghe, I., Banaszewski, K., Cappozzo, J., Sandhya, K., Ellis, C.L., Tadapaneni, R., Kappagoda, C.T., Burton-Freeman, B.M. (2011). Strawberry anthocyanin and its association with postprandial inflammation and insulin. British Journal of Nutrition, 106(6), 913-922.
  • [56] Solverson, P.M., Rumpler, W.V., Leger, J.L., Redan, B.W., Ferruzzi, M.G., Baer, D.J., Castonguay, T.W., Novotny, J.A. (2018). Blackberry feeding increases fat oxidation and improves insulin sensitivity in overweight and obese males. Nutrients, 10(8), 1048.
  • [57] Stull, A.J., Cash, K.C., Johnson, W.D., Champagne, C.M., Cefalu, W.T. (2010). Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. The Journal of Nutrition, 140(10), 1764-1768.
  • [58] Park, E., Edirisinghe, I., Wei, H., Vijayakumar, L.P., Banaszewski, K., Cappozzo, J.C., Burton‐Freeman, B. (2016). A dose–response evaluation of freeze‐dried strawberries independent of fiber content on metabolic indices in abdominally obese individuals with insulin resistance in a randomized, single‐blinded, diet‐controlled crossover trial. Molecular Nutrition & Food Research, 60(5), 1099-1109.
  • [59] Li, D., Zhang, Y., Liu, Y., Sun, R., Xia, M. (2015). Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. The Journal of Nutrition, 145(4), 742-748.
  • [60] Onat, A., Can, G., Yüksel, H., Ademoğlu, E., Enginel-Ünaltuna, N., Kaya, A., Altay, S. (2017). TEKHARF 2017: Tıp Dünyasının Kronik Hastalıklara Yaklaşımına Öncülük. Logos Yayıncılık Tic. A.Ş., Gayrettepe, İstanbul.
  • [61] Del Bó, C., Riso, P., Campolo, J., Møller, P., Loft, S., Klimis-Zacas, D., Brambilla, A., Rizzolo, A., Porrini, M. (2013). A single portion of blueberry (Vaccinium corymbosum L) improves protection against DNA damage but not vascular function in healthy male volunteers. Nutrition Research, 33(3), 220-227.
  • [62] Dohadwala, M.M., Holbrook, M., Hamburg, N.M., Shenouda, S.M., Chung, W.B., Titas, M., Kluge, M.A., Wang, N., Palmisano, J., Milbury, P.E., Blumberg, J.B., Vita, J.A. (2011). Effects of cranberry juice consumption on vascular function in patients with coronary artery disease. The American Journal of Clinical Nutrition, 93(5), 934-940.
  • [63] Flammer, A.J., Martin, E.A., Gössl, M., Widmer, R.J., Lennon, R.J., Sexton, J A., Loeffler, D., Khosla, S., Lerman, L.O., Lerman, A. (2013). Polyphenol-rich cranberry juice has a neutral effect on endothelial function but decreases the fraction of osteocalcin-expressing endothelial progenitor cells. European Journal of Nutrition, 52(1), 289-296.
  • [64] Nyberg, S., Gerring, E., Gjellan, S., Vergara, M., Lindström, T., Nystrom, F.H. (2013). Effects of exercise with or without blueberries in the diet on cardio-metabolic risk factors: An exploratory pilot study in healthy subjects. Upsala Journal of Medical Sciences, 118(4), 247-255.
  • [65] Ivanova, D., Tasinov, O., Kiselova-Kaneva, Y. (2014). Improved lipid profile and increased serum antioxidant capacity in healthy volunteers after Sambucus ebulus L. fruit infusion consumption. International Journal of Food Sciences and Nutrition, 65(6), 740-744.
  • [66] Basu, A., Betts, N.M., Nguyen, A., Newman, E.D., Fu, D., Lyons, T.J. (2014). Freeze-dried strawberries lower serum cholesterol and lipid peroxidation in adults with abdominal adiposity and elevated serum lipids. The Journal of Nutrition, 144(6), 830-837.
  • [67] Puupponen‐Pimiä, R., Seppänen‐Laakso, T., Kankainen, M., Maukonen, J., Törrönen, R., Kolehmainen, M., Leppänen, T., Moilanen, E., Nohynek, L., Aura, A.M., Poutanen, K., Tómas-Barberán, F.A., Espín, J.C., Oksman-Caldentey, K.M. (2013). Effects of ellagitannin‐rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome. Molecular Nutrition & Food Research, 57(12), 2258-2263.
  • [68] Aghababaee, S.K., Vafa, M., Shidfar, F., Tahavorgar, A., Gohari, M., Katebi, D., Mohammadi, V. (2015). Effects of blackberry (Morus nigra L.) consumption on serum concentration of lipoproteins, apo AI, apo B, and high-sensitivity-C-reactive protein and blood pressure in dyslipidemic patients. Journal of Research in Medical Sciences, 20(7), 684-691.
  • [69] Aydoğdu, S., Güler, K., Bayram, F., Altun, B., Derici, Ü., Abacı, A., Tükek, T., Sabuncu, T., Arıcı, M., Erdem Y. (2019). 2019 Turkish Hypertension Consensus Report. Türk Kardiyoloji Derneği Arşivi, 47(6), 535-546.
  • [70] Johnson, S.A., Figueroa, A., Navaei, N., Wong, A., Kalfon, R., Ormsbee, L.T., Feresin, R.G., Elam, M.L., Hooshmand, S., Payton, M.E., Arjmandi, B.H. (2015). Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre-and stage 1-hypertension: a randomized, double-blind, placebo-controlled clinical trial. Journal of the Academy of Nutrition and Dietetics, 115(3), 369-377.
  • [71] Stull, A.J., Cash, K.C., Champagne, C.M., Gupta, A.K., Boston, R., Beyl, R.A., Johnson, W.D., Cefalu, W.T. (2015). Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. Nutrients, 7(6), 4107-4123.
  • [72] Riso, P., Klimis-Zacas, D., Del Bo, C., Martini, D., Campolo, J., Vendrame, S., Møller, P., Loft, S., De Maria, R., Porrini, M. (2013). Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. European Journal of Nutrition, 52(3), 949-961.
  • [73] Ruel, G., Lapointe, A., Pomerleau, S., Couture, P., Lemieux, S., Lamarche, B., Couillard, C. (2013). Evidence that cranberry juice may improve augmentation index in overweight men. Nutrition Research, 33(1), 41-49.
  • [74] Thanikachalam, K., Khan, G. (2019). Colorectal cancer and nutrition. Nutrients, 11(1), 164.
  • [75] Wang, L.S., Arnold, M., Huang, Y.W., Sardo, C., Seguin, C., Martin, E., Huang, T.H.M., Riedl, K., Schwartz, S., Frankel, W., Pearl, D., Xu, Y., Winston, J.-3rd., Yang, G.Y., Stoner, G. (2011). Modulation of genetic and epigenetic biomarkers of colorectal cancer in humans by black raspberries: a phase I pilot study. Clinical Cancer Research, 17(3), 598-610.
  • [76] Mentor-Marcel, R.A., Bobe, G., Sardo, C., Wang, L.S., Kuo, C.T., Stoner, G., Colburn, N.H. (2012). Plasma cytokines as potential response indicators to dietary freeze-dried black raspberries in colorectal cancer patients. Nutrition and Cancer, 64(6), 820-825.
  • [77] Pan, P., Skaer, C.W., Stirdivant, S.M., Young, M R., Stoner, G.D., Lechner, J.F., Huang, Y.W., Wang, L.S. (2015). Beneficial regulation of metabolic profiles by black raspberries in human colorectal cancer patients. Cancer Prevention Research, 8(8), 743-750.
  • [78] Wang, B., Yao, M., Lv, L., Ling, Z., Li, L. (2017). The human microbiota in health and disease. Engineering, 3(1), 71-82.
  • [79] Bayram, H.M., Öztürkcan, A. (2020). Gıda katkı maddelerinin mikrobiyota üzerine etkisi. Gıda, 45(5), 1030-1046.
  • [80] Vendrame, S., Guglielmetti, S., Riso, P., Arioli, S., Klimis-Zacas, D., Porrini, M. (2011). Six-week consumption of a wild blueberry powder drink increases bifidobacteria in the human gut. Journal of Agricultural and Food Chemistry, 59(24), 12815-12820.
  • [81] Guglielmetti, S., Fracassetti, D., Taverniti, V., Del Bo’, C., Vendrame, S., Klimis-Zacas, D., Arioli, S., Riso, P., Porrini, M. (2013). Differential modulation of human intestinal bifidobacterium populations after consumption of a wild blueberry (Vaccinium angustifolium) drink. Journal of Agricultural and Food Chemistry, 61(34), 8134-8140.
  • [82] Molan, A.L., Liu, Z., Plimmer, G. (2014). Evaluation of the effect of blackcurrant products on gut microbiota and on markers of risk for colon cancer in humans. Phytotherapy Research, 28(3), 416-422.
  • [83] Hester, S.N., Mastaloudis, A., Gray, R., Antony, J.M., Evans, M., Wood, S.M. (2018). Efficacy of an anthocyanin and prebiotic blend on intestinal environment in obese male and female subjects. Journal of Nutrition and Metabolism, 2018, 7497260.
  • [84] World Health Organization, (2020). Obesity rate. Erişim adresi: https://www.indexmundi.com/g/g.aspx?c=tu&v=2228 (Erişim tarihi: 23.03.2020).

Bioactive Components of Berry Fruits and Their Effects on Human Health

Yıl 2022, Cilt: 20 Sayı: 4, 442 - 453, 27.12.2022
https://doi.org/10.24323/akademik-gida.1224830

Öz

Berry fruits and their products are known as “functional foods” and have a growing interest in the food industry. Berries have high antioxidant capacity and anthocyanin contents in comparison to other fruits, and they are considered to have protective effects on human health by reducing the risks and symptoms of diseases. Although Turkey is in a prominent position with fruit production, having in the fifth place in the world according to the 2019 Turkey Statistical Institute (TUIK) data, the amount of berry fruit production is low, and its importance is still poorly understood. For this reason, it is very important to increase the interest in berry fruits, which are thought to have a positive effect on health, in our country, both scientifically and economically in order to increase their production. This review aims to evaluate the bioactive compounds of berry fruits and their health effects on human with clinical studies conducted in the last decade. To reach this goal, a literature search was conducted in DergiPark, PubMed, Elsevier and Google Scholar databases and a total of 32 international clinical studies were included in this non-systematic review. No clinical human study was found in Turkey. Results showed that berry fruits have anti-oxidant, anti-inflammatory, anti-diabetes effect and protective effect on the cardiovascular system, effect of improved lipid metabolism, anti-hypertension effect, and reducing effect of colon cancer symptoms and beneficial effects on microbiota by positively affecting human health. More clinical studies are needed to understand the exact mechanisms and long-term effects.

Kaynakça

  • [1] Van Duyn, M.A., Pivonka, E. (2000). Overview of the health benefits of fruit and vegetable consumption for the dietetics professional: selected literature. Journal of the American Dietetic Association, 100(12), 1511-1521.
  • [2] Slavin, J.L., Lloyd, B. (2012). Health benefits of fruits and vegetables. Advances in Nutrition, 3(4), 506-516.
  • [3] Çağlar, M., Demirci, M. (2018). Üzümsü meyvelerde bulunan fenolik bileşikler ve beslenmedeki önemi. Avrupa Bilim ve Teknoloji Dergisi, 7(11), 18-26.
  • [4] Lavefve, L., Howard, L.R., Carbonero, F. (2020). Berry polyphenols metabolism and impact on human gut microbiota and health. Food & Function, 11(1), 45-65.
  • [5] Del Bo, C., Martini, D., Porrini, M., Klimis-Zacas, D., Riso, P. (2015). Berries and oxidative stress markers: an overview of human intervention studies. Food & Function, 6(9), 2890-2917.
  • [6] Paredes-López, O., Cervantes-Ceja, M.L., Vigna-Pérez, M., Hernández-Pérez, T. (2010). Berries: improving human health and healthy aging, and promoting quality life-a review. Plant Foods for Human Nutrition, 65(3), 299-308.
  • [7] Hidalgo, G.I., Almajano, M.P. (2017). Red fruits: extraction of antioxidants, phenolic content, and radical scavenging determination: a review. Antioxidants, 6(1), 7.
  • [8] Olas, B. (2017). The multifunctionality of berries toward blood platelets and the role of berry phenolics in cardiovascular disorders. Platelets, 28(6), 540-549.
  • [9] Olas, B. (2016). Sea buckthorn as a source of important bioactive compounds in cardiovascular diseases. Food and Chemical Toxicology, 97, 199-204.
  • [10] Kristo, A.S., Klimis-Zacas, D., Sikalidis, A.K. (2016). Protective role of dietary berries in cancer. Antioxidants, 5(4), 37.
  • [11] Wightman, J.D., Heuberger, R.A. (2015). Effect of grape and other berries on cardiovascular health. Journal of the Science of Food and Agriculture, 95(8), 1584-1597.
  • [12] Cassidy, A. (2018). Berry anthocyanin intake and cardiovascular health. Molecular Aspects of Medicine, 61, 76-82.
  • [13] Giampieri, F., Forbes-Hernandez, T.Y., Gasparrini, M., Alvarez-Suarez, J.M., Afrin, S., Bompadre, S., Quiles, J.L., Mezzetti, B., Battino, M. (2015). Strawberry as a health promoter: an evidence based review. Food & Function, 6(5), 1386-1398.
  • [14] Nile, S.H., Park, S.W. (2014). Edible berries: Bioactive components and their effect on human health. Nutrition, 30(2), 134-144.
  • [15] Chrubasik, C., Li, G., Chrubasik, S. (2010). The clinical effectiveness of chokeberry: a systematic review. Phytotherapy Research, 24(8), 1107-1114.
  • [16] Olas, B. (2018). Berry phenolic antioxidants–implications for human health? Frontiers in Pharmacology, 9, 78.
  • [17] Türkiye İstatistik Kurumu, (2021). Meyve üretim miktarı. Erişim adresi: https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2021-37249 (Erişim tarihi: 26.11.2022).
  • [18] Bayram, H.M., Öztürkcan, A. (2020). Antosiyanince zengin kiraz grubu meyvelerin insan sağlığı üzerine etkilerini inceleyen klinik çalışmalara bir bakış. İstanbul Gelişim Üniversitesi Sağlık Bilimleri Dergisi, 11(4), 230–254.
  • [19] Manganaris, G.A., Goulas, V., Vicente, A.R., Terry, L.A. (2014). Berry antioxidants: small fruits providing large benefits. Journal of the Science of Food and Agriculture, 94(5), 825-833.
  • [20] Okatan, V. (2018). Phenolic compounds and phytochemicals in fruits of black mulberry (Morus nigra L.) genotypes from the Aegean region in Turkey. Folia Horticulturae, 30(1), 93-101.
  • [21] Benvenuti, S., Pellati, F., Melegari, M.A., Bertelli, D. (2004). Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. Journal of Food Science, 69(3), FCT164-FCT169.
  • [22] Viapiana, A., Wesolowski, M. (2017). The phenolic contents and antioxidant activities of infusions of Sambucus nigra L. Plant Foods for Human Nutrition, 72(1), 82-87.
  • [23] Doshi, P., Adsule, P., Banerjee, K. (2006). Phenolic composition and antioxidant activity in grapevine parts and berries (Vitis vinifera L.) cv. Kishmish Chornyi (Sharad Seedless) during maturation. International Journal of Food Science & Technology, 41(s1), 1-9.
  • [24] Del Rio, D., Borges, G., Crozier, A. (2010). Berry flavonoids and phenolics: bioavailability and evidence of protective effects. British Journal of Nutrition, 104(S3), S67-S90.
  • [25] Giampieri, F., Tulipani, S., Alvarez-Suarez, J.M., Quiles, J. L., Mezzetti, B., Battino, M. (2012). The strawberry: composition, nutritional quality, and impact on human health. Nutrition, 28(1), 9-19.
  • [26] Zanotti, I., Dall'Asta, M., Mena, P., Mele, L., Bruni, R., Ray, S., Del Rio, D. (2015). Atheroprotective effects of (poly) phenols: a focus on cell cholesterol metabolism. Food & Function, 6(1), 13-31.
  • [27] Puupponen-Pimiä, R., Nohynek, L., Alakomi, H.L., Oksman-Caldentey, K.M. (2005). Bioactive berry compounds-novel tools against human pathogens. Applied Microbiology and Biotechnology, 67(1), 8-18.
  • [28] Szajdek, A., Borowska, E.J. (2008). Bioactive compounds and health-promoting properties of berry fruits: a review. Plant Foods for Human Nutrition, 63(4), 147-156.
  • [29] Mullen, W., McGinn, J., Lean, M.E., MacLean, M.R., Gardner, P., Duthie, G.G., Yokota, T., Crozier, A. (2002). Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. Journal of Agricultural and Food Chemistry, 50(18), 5191-5196.
  • [30] da Silva Pinto, M., Lajolo, F.M., Genovese, M.I. (2008). Bioactive compounds and quantification of total ellagic acid in strawberries (Fragaria x ananassa Duch.). Food Chemistry, 107(4), 1629-1635.
  • [31] Bobinaitė, R., Viškelis, P., Venskutonis, P.R. (2012). Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chemistry, 132(3), 1495-1501.
  • [32] Zia-Ul-Haq, M., Riaz, M., De Feo, V., Jaafar, H.Z., Moga, M. (2014). Rubus fruticosus L.: constituents, biological activities and health related uses. Molecules, 19(8), 10998-11029.
  • [33] Zalewska-Korona, M., Kalbarczyk, J. (2009). Antioxidant capacity, ascorbic acid and phenolics content in wild edible fruits. Journal of Fruit and Ornamental Plant Research, 17(2), 115-120.
  • [34] Skupień, K. (2006). Evaluation of chemical composition of fresh and frozen blueberry fruit (Vaccinium corymbosum L.). Acta Scientiarum Polonorum Hortorum Cultus, 5(1), 19-25.
  • [35] Oszmiański, J., Kolniak‐Ostek, J., Lachowicz, S., Gorzelany, J., Matłok, N. (2017). Phytochemical compounds and antioxidant activity in different cultivars of Cranberry (Vaccinium macrocarpon L). Journal of Food Science, 82(11), 2569-2575.
  • [36] Orsavová, J., Hlaváčová, I., Mlček, J., Snopek, L., Mišurcová, L. (2019). Contribution of phenolic compounds, ascorbic acid and vitamin E to antioxidant activity of currant (Ribes L.) and gooseberry (Ribes uva-crispa L.) fruits. Food Chemistry, 284, 323-333.
  • [37] Nour, V., Trandafir, I., Ionica, M.E. (2011). Ascorbic acid, anthocyanins, organic acids and mineral content of some black and red currant cultivars. Fruits, 66(5), 353-362.
  • [38] Eyduran, S.P., Akin, M., Ercisli, S., Eyduran, E., Maghradze, D. (2015). Sugars, organic acids, and phenolic compounds of ancient grape cultivars (Vitis vinifera L.) from Igdir province of Eastern Turkey. Biological Research, 48(1), 2. [39] Özcan, M.M., Hacıseferoğulları, H. (2007). The strawberry (Arbutus unedo L.) fruits: chemical composition, physical properties and mineral contents. Journal of Food Engineering, 78(3), 1022-1028.
  • [40] Ercisli, S., Tosun, M., Duralija, B., Voća, S., Sengul, M., Turan, M. (2010). Phytochemical content of some black (Morus nigra L.) and purple (Morus rubra L.) mulberry genotypes. Food Technology and Biotechnology, 48(1), 102-106.
  • [41] Müller, D., Schantz, M., Richling, E. (2012). High performance liquid chromatography analysis of anthocyanins in bilberries (Vaccinium myrtillus L.), blueberries (Vaccinium corymbosum L.), and corresponding juices. Journal of Food Science, 77(4), C340-C345.
  • [42] Cásedas, G., Les, F., Gómez-Serranillos, M.P., Smith, C., López, V. (2017). Anthocyanin profile, antioxidant activity and enzyme inhibiting properties of blueberry and cranberry juices: A comparative study. Food & Function, 8(11), 4187-4193.
  • [43] Silva, P., Ferreira, S., Nunes, F.M. (2017). Elderberry (Sambucus nigra L.) by-products a source of anthocyanins and antioxidant polyphenols. Industrial Crops and Products, 95, 227-234.
  • [44] Dusi, N., Cecchetto, F., Brambilla, P. (2015). Studies on Psychiatric Disorders. Magnetic Resonance spectroscopy studies in bipolar disorders patients: focus on the potential role of oxidative stress. Edited by Muszalska, A., Chauhan, V.,& Grignon, S., Springer Science and Business Media New York, England, 172p.
  • [45] Tulipani, S., Alvarez-Suarez, J.M., Busco, F., Bompadre, S., Quiles, J.L., Mezzetti, B., Battino, M. (2011). Strawberry consumption improves plasma antioxidant status and erythrocyte resistance to oxidative haemolysis in humans. Food Chemistry, 128(1), 180-186.
  • [46] Tulipani, S., Armeni, T., Giampieri, F., Alvarez-Suarez, J. M., Gonzalez-Paramás, A. M., Santos-Buelga, C., Busco, F., Principato, G., Bompadre, S., Quiles, J.L., Mezzetti, B., Battino, M. (2014). Strawberry intake increases blood fluid, erythrocyte and mononuclear cell defenses against oxidative challenge. Food Chemistry, 156, 87-93.
  • [47] Lee, J.E., Park, E., Lee, J.E., Auh, J.H., Choi, H.K., Lee, J., Cho, S., Kim, J.H. (2011). Effects of a Rubus coreanus Miquel supplement on plasma antioxidant capacity in healthy Korean men. Nutrition Research and Practice, 5(5), 429-434.
  • [48] Kuntz, S., Kunz, C., Herrmann, J., Borsch, C.H., Abel, G., Fröhling, B., Fröhling, B., Dietrich, H., Rudloff, S. (2014). Anthocyanins from fruit juices improve the antioxidant status of healthy young female volunteers without affecting anti-inflammatory parameters: results from the randomised, double-blind, placebo-controlled, cross-over ANTHONIA (ANTHOcyanins in Nutrition Investigation Alliance) study. British Journal of Nutrition, 112(6), 925-936.
  • [49] Basu, A., Betts, N.M., Ortiz, J., Simmons, B., Wu, M., Lyons, T.J. (2011). Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome. Nutrition Research, 31(3), 190-196.
  • [50] Simão, T.N.C., Lozovoy, M.A.B., Simão, A.N.C., Oliveira, S.R., Venturini, D., Morimoto, H.K., Miglioranza, L.H.S., Dichi, I. (2013). Reduced-energy cranberry juice increases folic acid and adiponectin and reduces homocysteine and oxidative stress in patients with the metabolic syndrome. British Journal of Nutrition, 110(10), 1885-1894.
  • [51] Edirisinghe, I., Burton-Freeman, B. (2016). Anti-diabetic actions of Berry polyphenols–Review on proposed mechanisms of action. Journal of Berry Research, 6(2), 237-250.
  • [52] International Diabetes Federation, (2019). International Diabetes Federation Atlas. Erişim adresi: https://www.diabetesatlas.org/en/. (Erişim tarihi: 12.15.2020).
  • [53] T. C. Sağlık Bakanlığı Türkiye Halk Sağlığı Kurumu, (2015). Türkiye Diyabet Programı 2015-2020. Erişim adresi: https://extranet.who.int/ncdccs/Data/TUR_D1_T%C3%BCrkiye%20Diyabet%20Program%C4%B1%202015-2020.pdf (Erişim tarihi: 01.01.2021).
  • [54] Törrönen, R., Kolehmainen, M., Sarkkinen, E., Mykkänen, H., Niskanen, L. (2012). Postprandial glucose, insulin, and free fatty acid responses to sucrose consumed with blackcurrants and lingonberries in healthy women. The American Journal of Clinical Nutrition, 96(3), 527-533.
  • [55] Edirisinghe, I., Banaszewski, K., Cappozzo, J., Sandhya, K., Ellis, C.L., Tadapaneni, R., Kappagoda, C.T., Burton-Freeman, B.M. (2011). Strawberry anthocyanin and its association with postprandial inflammation and insulin. British Journal of Nutrition, 106(6), 913-922.
  • [56] Solverson, P.M., Rumpler, W.V., Leger, J.L., Redan, B.W., Ferruzzi, M.G., Baer, D.J., Castonguay, T.W., Novotny, J.A. (2018). Blackberry feeding increases fat oxidation and improves insulin sensitivity in overweight and obese males. Nutrients, 10(8), 1048.
  • [57] Stull, A.J., Cash, K.C., Johnson, W.D., Champagne, C.M., Cefalu, W.T. (2010). Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. The Journal of Nutrition, 140(10), 1764-1768.
  • [58] Park, E., Edirisinghe, I., Wei, H., Vijayakumar, L.P., Banaszewski, K., Cappozzo, J.C., Burton‐Freeman, B. (2016). A dose–response evaluation of freeze‐dried strawberries independent of fiber content on metabolic indices in abdominally obese individuals with insulin resistance in a randomized, single‐blinded, diet‐controlled crossover trial. Molecular Nutrition & Food Research, 60(5), 1099-1109.
  • [59] Li, D., Zhang, Y., Liu, Y., Sun, R., Xia, M. (2015). Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. The Journal of Nutrition, 145(4), 742-748.
  • [60] Onat, A., Can, G., Yüksel, H., Ademoğlu, E., Enginel-Ünaltuna, N., Kaya, A., Altay, S. (2017). TEKHARF 2017: Tıp Dünyasının Kronik Hastalıklara Yaklaşımına Öncülük. Logos Yayıncılık Tic. A.Ş., Gayrettepe, İstanbul.
  • [61] Del Bó, C., Riso, P., Campolo, J., Møller, P., Loft, S., Klimis-Zacas, D., Brambilla, A., Rizzolo, A., Porrini, M. (2013). A single portion of blueberry (Vaccinium corymbosum L) improves protection against DNA damage but not vascular function in healthy male volunteers. Nutrition Research, 33(3), 220-227.
  • [62] Dohadwala, M.M., Holbrook, M., Hamburg, N.M., Shenouda, S.M., Chung, W.B., Titas, M., Kluge, M.A., Wang, N., Palmisano, J., Milbury, P.E., Blumberg, J.B., Vita, J.A. (2011). Effects of cranberry juice consumption on vascular function in patients with coronary artery disease. The American Journal of Clinical Nutrition, 93(5), 934-940.
  • [63] Flammer, A.J., Martin, E.A., Gössl, M., Widmer, R.J., Lennon, R.J., Sexton, J A., Loeffler, D., Khosla, S., Lerman, L.O., Lerman, A. (2013). Polyphenol-rich cranberry juice has a neutral effect on endothelial function but decreases the fraction of osteocalcin-expressing endothelial progenitor cells. European Journal of Nutrition, 52(1), 289-296.
  • [64] Nyberg, S., Gerring, E., Gjellan, S., Vergara, M., Lindström, T., Nystrom, F.H. (2013). Effects of exercise with or without blueberries in the diet on cardio-metabolic risk factors: An exploratory pilot study in healthy subjects. Upsala Journal of Medical Sciences, 118(4), 247-255.
  • [65] Ivanova, D., Tasinov, O., Kiselova-Kaneva, Y. (2014). Improved lipid profile and increased serum antioxidant capacity in healthy volunteers after Sambucus ebulus L. fruit infusion consumption. International Journal of Food Sciences and Nutrition, 65(6), 740-744.
  • [66] Basu, A., Betts, N.M., Nguyen, A., Newman, E.D., Fu, D., Lyons, T.J. (2014). Freeze-dried strawberries lower serum cholesterol and lipid peroxidation in adults with abdominal adiposity and elevated serum lipids. The Journal of Nutrition, 144(6), 830-837.
  • [67] Puupponen‐Pimiä, R., Seppänen‐Laakso, T., Kankainen, M., Maukonen, J., Törrönen, R., Kolehmainen, M., Leppänen, T., Moilanen, E., Nohynek, L., Aura, A.M., Poutanen, K., Tómas-Barberán, F.A., Espín, J.C., Oksman-Caldentey, K.M. (2013). Effects of ellagitannin‐rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome. Molecular Nutrition & Food Research, 57(12), 2258-2263.
  • [68] Aghababaee, S.K., Vafa, M., Shidfar, F., Tahavorgar, A., Gohari, M., Katebi, D., Mohammadi, V. (2015). Effects of blackberry (Morus nigra L.) consumption on serum concentration of lipoproteins, apo AI, apo B, and high-sensitivity-C-reactive protein and blood pressure in dyslipidemic patients. Journal of Research in Medical Sciences, 20(7), 684-691.
  • [69] Aydoğdu, S., Güler, K., Bayram, F., Altun, B., Derici, Ü., Abacı, A., Tükek, T., Sabuncu, T., Arıcı, M., Erdem Y. (2019). 2019 Turkish Hypertension Consensus Report. Türk Kardiyoloji Derneği Arşivi, 47(6), 535-546.
  • [70] Johnson, S.A., Figueroa, A., Navaei, N., Wong, A., Kalfon, R., Ormsbee, L.T., Feresin, R.G., Elam, M.L., Hooshmand, S., Payton, M.E., Arjmandi, B.H. (2015). Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre-and stage 1-hypertension: a randomized, double-blind, placebo-controlled clinical trial. Journal of the Academy of Nutrition and Dietetics, 115(3), 369-377.
  • [71] Stull, A.J., Cash, K.C., Champagne, C.M., Gupta, A.K., Boston, R., Beyl, R.A., Johnson, W.D., Cefalu, W.T. (2015). Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. Nutrients, 7(6), 4107-4123.
  • [72] Riso, P., Klimis-Zacas, D., Del Bo, C., Martini, D., Campolo, J., Vendrame, S., Møller, P., Loft, S., De Maria, R., Porrini, M. (2013). Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. European Journal of Nutrition, 52(3), 949-961.
  • [73] Ruel, G., Lapointe, A., Pomerleau, S., Couture, P., Lemieux, S., Lamarche, B., Couillard, C. (2013). Evidence that cranberry juice may improve augmentation index in overweight men. Nutrition Research, 33(1), 41-49.
  • [74] Thanikachalam, K., Khan, G. (2019). Colorectal cancer and nutrition. Nutrients, 11(1), 164.
  • [75] Wang, L.S., Arnold, M., Huang, Y.W., Sardo, C., Seguin, C., Martin, E., Huang, T.H.M., Riedl, K., Schwartz, S., Frankel, W., Pearl, D., Xu, Y., Winston, J.-3rd., Yang, G.Y., Stoner, G. (2011). Modulation of genetic and epigenetic biomarkers of colorectal cancer in humans by black raspberries: a phase I pilot study. Clinical Cancer Research, 17(3), 598-610.
  • [76] Mentor-Marcel, R.A., Bobe, G., Sardo, C., Wang, L.S., Kuo, C.T., Stoner, G., Colburn, N.H. (2012). Plasma cytokines as potential response indicators to dietary freeze-dried black raspberries in colorectal cancer patients. Nutrition and Cancer, 64(6), 820-825.
  • [77] Pan, P., Skaer, C.W., Stirdivant, S.M., Young, M R., Stoner, G.D., Lechner, J.F., Huang, Y.W., Wang, L.S. (2015). Beneficial regulation of metabolic profiles by black raspberries in human colorectal cancer patients. Cancer Prevention Research, 8(8), 743-750.
  • [78] Wang, B., Yao, M., Lv, L., Ling, Z., Li, L. (2017). The human microbiota in health and disease. Engineering, 3(1), 71-82.
  • [79] Bayram, H.M., Öztürkcan, A. (2020). Gıda katkı maddelerinin mikrobiyota üzerine etkisi. Gıda, 45(5), 1030-1046.
  • [80] Vendrame, S., Guglielmetti, S., Riso, P., Arioli, S., Klimis-Zacas, D., Porrini, M. (2011). Six-week consumption of a wild blueberry powder drink increases bifidobacteria in the human gut. Journal of Agricultural and Food Chemistry, 59(24), 12815-12820.
  • [81] Guglielmetti, S., Fracassetti, D., Taverniti, V., Del Bo’, C., Vendrame, S., Klimis-Zacas, D., Arioli, S., Riso, P., Porrini, M. (2013). Differential modulation of human intestinal bifidobacterium populations after consumption of a wild blueberry (Vaccinium angustifolium) drink. Journal of Agricultural and Food Chemistry, 61(34), 8134-8140.
  • [82] Molan, A.L., Liu, Z., Plimmer, G. (2014). Evaluation of the effect of blackcurrant products on gut microbiota and on markers of risk for colon cancer in humans. Phytotherapy Research, 28(3), 416-422.
  • [83] Hester, S.N., Mastaloudis, A., Gray, R., Antony, J.M., Evans, M., Wood, S.M. (2018). Efficacy of an anthocyanin and prebiotic blend on intestinal environment in obese male and female subjects. Journal of Nutrition and Metabolism, 2018, 7497260.
  • [84] World Health Organization, (2020). Obesity rate. Erişim adresi: https://www.indexmundi.com/g/g.aspx?c=tu&v=2228 (Erişim tarihi: 23.03.2020).
Toplam 83 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Derleme Makaleler
Yazarlar

Hatice Merve Bayram Bu kişi benim 0000-0002-7073-2907

Arda Öztürkcan Bu kişi benim 0000-0001-7982-6988

Yayımlanma Tarihi 27 Aralık 2022
Gönderilme Tarihi 6 Temmuz 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 20 Sayı: 4

Kaynak Göster

APA Bayram, H. M., & Öztürkcan, A. (2022). Üzümsü Meyvelerin Biyoaktif Bileşenleri ile İnsan Sağlığı Üzerine Etkileri. Akademik Gıda, 20(4), 442-453. https://doi.org/10.24323/akademik-gida.1224830
AMA Bayram HM, Öztürkcan A. Üzümsü Meyvelerin Biyoaktif Bileşenleri ile İnsan Sağlığı Üzerine Etkileri. Akademik Gıda. Aralık 2022;20(4):442-453. doi:10.24323/akademik-gida.1224830
Chicago Bayram, Hatice Merve, ve Arda Öztürkcan. “Üzümsü Meyvelerin Biyoaktif Bileşenleri Ile İnsan Sağlığı Üzerine Etkileri”. Akademik Gıda 20, sy. 4 (Aralık 2022): 442-53. https://doi.org/10.24323/akademik-gida.1224830.
EndNote Bayram HM, Öztürkcan A (01 Aralık 2022) Üzümsü Meyvelerin Biyoaktif Bileşenleri ile İnsan Sağlığı Üzerine Etkileri. Akademik Gıda 20 4 442–453.
IEEE H. M. Bayram ve A. Öztürkcan, “Üzümsü Meyvelerin Biyoaktif Bileşenleri ile İnsan Sağlığı Üzerine Etkileri”, Akademik Gıda, c. 20, sy. 4, ss. 442–453, 2022, doi: 10.24323/akademik-gida.1224830.
ISNAD Bayram, Hatice Merve - Öztürkcan, Arda. “Üzümsü Meyvelerin Biyoaktif Bileşenleri Ile İnsan Sağlığı Üzerine Etkileri”. Akademik Gıda 20/4 (Aralık 2022), 442-453. https://doi.org/10.24323/akademik-gida.1224830.
JAMA Bayram HM, Öztürkcan A. Üzümsü Meyvelerin Biyoaktif Bileşenleri ile İnsan Sağlığı Üzerine Etkileri. Akademik Gıda. 2022;20:442–453.
MLA Bayram, Hatice Merve ve Arda Öztürkcan. “Üzümsü Meyvelerin Biyoaktif Bileşenleri Ile İnsan Sağlığı Üzerine Etkileri”. Akademik Gıda, c. 20, sy. 4, 2022, ss. 442-53, doi:10.24323/akademik-gida.1224830.
Vancouver Bayram HM, Öztürkcan A. Üzümsü Meyvelerin Biyoaktif Bileşenleri ile İnsan Sağlığı Üzerine Etkileri. Akademik Gıda. 2022;20(4):442-53.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).