Araştırma Makalesi
BibTex RIS Kaynak Göster

Ultrasound-Assisted Extraction of Okra Mucilage: Rheological Properties of its Aqueous Solutions

Yıl 2024, Cilt: 22 Sayı: 1, 1 - 13, 29.03.2024
https://doi.org/10.24323/akademik-gida.1460950

Öz

Using chemical and physicochemical techniques, we extracted the mucilaginous component of okra (Abelmoschus esculentus L.) by the ultrasound-assisted extraction method, then evaluated the resulting polysaccharide extract's rheological properties. Our investigation encompassed examining the flow behavior of polysaccharides extracted under different okra to distilled water ratios (1:10 and 1:30) and various polysaccharide concentrations (1, 2, 3 and 4%, w/v) over a temperature range of 10°C to 80°C. Employing the power law model, we derived parameters and found that okra polysaccharides displayed non-Newtonian pseudoplastic flow characteristics. The flow behavior index ranged from 0.234 to 0.947, with the consistency coefficient ranging from 4.37 to 244.50 mPa.s. Increasing temperature resulted in a decrease in both the consistency coefficient (K) and flow behavior index (n), while concentration elevation led to higher consistency coefficient values. However, the flow behavior index did not exhibit consistent trends with concentration variations. Three statistical parameters; correlation coefficient (R2), root mean square error (RMSE) and chi-square (χ2) were used to evaluate the fit of the power law model to the experimental data. Our study further explored temperature’s impact on the apparent viscosities of okra polysaccharide samples and modeled the influence of temperature on the consistency index using the Arrhenius equation. Samples with solid-to-solvent ratios of 1:10 and 1:30 showed increasing activation energy with concentration rise, with the highest value recorded at 275.84 kJ/mol for the 1:10 ratio sample with a 4% concentration. In SEM images, okra polymers exhibit irregular, wavy, rough textured surface, and amorphous appearance. These findings hold promise for optimizing ultrasound extraction protocols and enhancing the industrial utilization of mucilages through their rheological properties.

Kaynakça

  • [1] Wang, K., Li, M., Wen, X., Chen, X., He, Z., Ni, Y. (2018). Optimization of ultrasound-assisted extraction of okra (Abelmoschus esculentus (L.) moench) polysaccharides based on response surface methodology and antioxidant activity. International Journal of Biological Macromolecules, 15(114), 1056-1063.
  • [2] Demiray, E., Tülek, Y. (2016). Güneşte kurutulmuş bamyaların rehidrasyon kinetiği. Akademik Gıda, 14(4), 368-374.
  • [3] Rajalakshmi, M., Sangeetha, S. (2023). Okra mucilage - method of extraction and a novel strategy for pharmaceutical drug delivery system. Journal of Pharmaceutical Negative Results, 14, 2473-2481.
  • [4] Öncü Glaue, Ş., Akcan, T., Tavman, Ş. (2023). Thermal properties of ultrasound-extracted okra mucilage. Applied Sciences, 13(11).
  • [5] Ormanlı, E., Bayraktar, O., Şahar, U., Tavman, S., Kumcuoglu, S. (2022). Development and characterization of films based on okra polysaccharides and whey protein isolate. Journal of Food Measurement and Characterization, 17(1), 264-277.
  • [6] Lengsfeld, C., Titgemeyer, F., Faller, G., Hensel, A. (2004). Glycosylated compounds from okra inhibit adhesion of Helicobacter pylori to human gastric mucosa. Journal of Agricultural and Food Chemistry, 52(6), 1495-1503.
  • [7] Deters, A.M., Lengsfeld, C., Hensel, A. (2005). Oligo- and polysaccharides exhibit a structure-dependent bioactivity on human keratinocytes in vitro. Journal of Ethnopharmacology, 102(3), 391-399.
  • [8] Kumcuoglu, S., Yılmaz, T., Tavman, S. (2014). Ultrasound assisted extraction of lycopene from tomato processing wastes. Journal of Food Science and Technology, 51(12), 4102-4107.
  • [9] Zhu, W., Obara, H. (2022). The pre-shearing effect on the rheological properties of okra mucilage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, 129257-129266.
  • [10] Georgiadis, N., Ritzoulis, C., Sioura, G., Kornezou, P., Vasiliadou, C., Tsioptsias, C. (2011). Contribution of okra extracts to the stability and rheology of oil-in-water emulsions. Food Hydrocolloids, 25(5), 991-999.
  • [11] Kontogiorgos, V., Margelou, I., Georgiadis, N., Ritzoulis, C. (2012). Rheological characterization of okra pectins. Food Hydrocolloids, 29(2), 356-362.
  • [12] Goksen, G., Demir, D., Dhama, K., Kumar, M., Shao, P., Xie, F., Echegaray, N., Lorenzo, J.M. (2023). Mucilage polysaccharide as a plant secretion: Potential trends in food and biomedical applications. International Journal of Biological Macromolecules, 230, 123146-123163.
  • [13] Safwa, S.M., Rana, M.R., Ahmed, T., Rahman, S., Kabir, M.A.B. (2023). Maximization and characterization of ultrasonic-assisted extraction of taro corms mucilage using response surface optimization and comparison with conventional methods. Food Analytical Methods, 16(11), 1724-1737.
  • [14] Chalapud, M.C., Carrín, M.E. (2023). Ultrasound-assisted extraction of oilseeds-sustainability processes to obtain traditional and non-traditional food ingredients: A review. Comprehensive Reviews in Food Science and Food Safety, 22(3), 2161-2196.
  • [15] Sengkhamparn, N., Sagis, L.M.C., de Vries, R., Schols, H.A., Sajjaanantakul, T., Voragen, A.G.J. (2010). Physicochemical properties of pectins from okra (Abelmoschus esculentus (L.) moench). Food Hydrocolloids, 24(1), 35-41.
  • [16] Ndjouenkeu, R., Goycoolea, F.M., Morrisav, E.R. (1996). Rheology of okra and dika nut polysaccharides. Carbohydrate Polymers, 29(1), 263-269.
  • [17] Savouré, T., Dornier, M., Vachoud, L., Collignan, A. (2020). Clustering of instrumental methods to characterize the texture and the rheology of slimy okra (Abelmoschus esculentus) suspensions. Journal of texture studies, 51(3), 426-443.
  • [18] Ding, M., Liu, Y., Ye, Y.F., Zhang, J.C., Wang, J.H. (2021). Polysaccharides from the lignified okra: Physicochemical properties and rheological properties. Bioactive Carbohydrates and Dietary Fibre, 26, 100274.
  • [19] Turabi, E., Sumnu, G., Sahin, S. (2008). Rheological properties and quality of rice cakes formulated with different gums and an emulsifier blend. Food Hydrocolloids, 22(2), 305-312.
  • [20] Cevoli, C., Balestra, F., Ragni, L., Fabbri, A. (2013). Rheological characterisation of selected food hydrocolloids by traditional and simplified techniques. Food Hydrocolloids, 33(1), 142-150.
  • [21] Rao, M., Rizvi, S. (1995). Engineering properties of foods, marcel decker. Inc., New York, USA.
  • [22] Yılmaz, V.M.B., Süfer, Ö., Kumcuoğlu, S. (2017). Effects of temperature and hydrocolloids on the rheological characteristics of coating batters. Journal of Food Measurement and Characterization, 11(3), 1159-1166.
  • [23] Mohammadi Moghaddam, T., Razavi, S.M.A., Malekzadegan, F., Shaker Ardekani, A. (2009). Chemical composition and rheological characterization of pistachio green hull's marmalade. Journal of Texture Studies, 40(4), 390-405.
  • [24] Bai, L., Zhu, P., Wang, W., Wang, M. (2020). The influence of extraction ph on the chemical compositions, macromolecular characteristics, and rheological properties of polysaccharide: The case of okra polysaccharide. Food Hydrocolloids, 102, 105586-105596.
  • [25] Xu, K., Guo, M., Du, J. (2017). Molecular characteristics and rheological properties of water-extractable polysaccharides derived from okra (Abelmoschus esculentus L.). International journal of food properties, 20(1), 899-909.
  • [26] Li, Y., Wang, X., Lv, X., Wang, X., Wang, X., Cui, J., Yan, M. (2020). Extractions and rheological properties of polysaccharide from okra pulp under mild conditions. International Journal of Biological Macromolecules, 148, 510-517.
  • [27] Alamri, M.S., Mohamed, A.A., Hussain, S. (2013). Effects of alkaline-soluble okra gum on rheological and thermal properties of systems with wheat or corn starch. Food Hydrocolloids, 30(2), 541-551.
  • [28] Woolfe, M.L., Chaplin, M.F., Otchere, G. (1977). Studies on the mucilages extracted from okra fruits (Hibiscus esculentus L.) and baobab leaves (Adansonia digitata L.). Journal of the Science of Food and Agriculture, 28(6), 519-529.
  • [29] Zaharuddin, N.D., Noordin, M.I., Kadivar, A. (2014). The use of Hibiscus esculentus (okra) gum in sustaining the release of propranolol hydrochloride in a solid oral dosage form. BioMed Research International, 2014.
  • [30] Qasem, A.A.A., Alamri, M.S., Mohamed, A.A., Hussain, S., Mahmood, K., Ibraheem, M.A. (2017). Effect of okra gum on pasting and rheological properties of cake-batter. Journal of Food Measurement and Characterization, 11(2), 827-834.
  • [31] Santos, P.H., da Silva, L.H.M., Rodrigues, A.M.C., Souza, J.A.R. (2016). Influence of temperature, concentration and shear rate on the rheological behavior of malay apple (Syzygium malaccense) juice. Brazilian Journal of Food Technology, 19.
  • [32] Zhou, M., Parkhurst, A., Voss, H., Weller, C. (2004). Estimating rheological properties of yogurt using different versions of the Freundlich model and design matrices. Conference on Applied Statistics in Agriculture.
  • [33] Beigi, S., Sobati, M.A., Charkhi, A. (2015). An experimental investigation on drying kinetics of calcium carbonate. Journal of Particle Science and Technology, 1(3), 153-162.
  • [34] Marcotte, M., Taherian Hoshahili, A.R., Ramaswamy, H.S. (2001). Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Research International, 34(8), 695-703.
  • [35] Wang, C., Li, J., Cao, Y., Huang, J., Lin, H., Zhao, T., Liu, L., Shen, P., Julian McClements, D., Chen, J., Liu, C., Liu, J., Li, Q. (2023). Extraction and characterization of pectic polysaccharides from choerospondias axillaris peels: Comparison of hot water and ultrasound-assisted extraction methods. Food Chemistry, 401, 134156-134165.
  • [36] Nagpal, M., Aggarwal, G., Jain, K., Madan, J. (2017). Extraction of gum from Abelmoschus esculentus: Physicochemical peculiarity and antioxidant prepatent. Asian Journal of Pharmaceutical and Clinical Research, 10(9), 174-179.

Bamya Müsilajının Ultrason Destekli Ekstraksiyonu: Sulu Çözeltilerinin Reolojik Özellikleri

Yıl 2024, Cilt: 22 Sayı: 1, 1 - 13, 29.03.2024
https://doi.org/10.24323/akademik-gida.1460950

Öz

Kimyasal ve fizikokimyasal teknikler kullanılarak, bamyanın müsilajinöz bileşeni ultrason desteği ile ekstrakte edilmiş, ardından elde edilen polisakkarit ekstraktının reolojik özellikleri değerlendirilmiştir. Araştırmamız, 10°C ile 80°C sıcaklık aralığında farklı bamya-damıtık su oranları (1:10 ve 1:30) ve çeşitli polisakkarit konsantrasyonları (%1, 2, 3 ve 4, w/v) altında ekstrakte edilen polisakkaritlerin akış davranışlarının incelenmesini kapsamaktadır. Güç yasası modelini kullanarak parametreler türetilmiş ve bamya polisakkaritlerinin Newtonyen olmayan psödoplastik akış özellikleri gösterdiğini bulunmuştur. Akış davranış indeksi 0,234 ile 0,947 arasında değişirken, kıvam katsayısı 4,37 ile 244,50 mPa.s arasında değişmiştir. Artan sıcaklık hem kıvam katsayısında (K) hem de akış davranış indeksinde (n) düşüşe neden olurken, konsantrasyon artışı daha yüksek kıvam katsayısı değerlerine yol açmıştır. Ancak, akış davranış indeksi konsantrasyon değişimleri ile tutarlı eğilimler sergilememiştir. Güç yasası modelinin deneysel verilere uyumunu değerlendirmek için üç istatistiksel parametre; korelasyon katsayısı (R2), kök ortalama kare hatası (RMSE) ve ki-kare (χ2) kullanılmıştır. Çalışmamızda ayrıca sıcaklığın bamya polisakkarit örneklerinin görünür viskoziteleri üzerindeki etkisi araştırılmış ve Arrhenius denklemi kullanılarak sıcaklığın kıvam indeksi üzerindeki etkisi modellenmiştir. Bamya-damıtık su oranı 1:10 ve 1:30 olan numuneler konsantrasyon artışıyla birlikte artan aktivasyon enerjisi göstermiş, en yüksek değer %4 konsantrasyona sahip 1:10 oranlı numune için 275,84 kJ/mol olarak kaydedilmiştir. SEM görüntülerinde, bamya polimerleri düzensiz, dalgalı, pürüzlü dokulu yüzey ve amorf görünüm sergilemektedir. Bu bulgular, ultrason ekstraksiyon protokollerinin optimize edilmesi ve reolojik özellikleri aracılığıyla müsilajların endüstriyel kullanımının artırılması için umut vaat etmektedir.

Kaynakça

  • [1] Wang, K., Li, M., Wen, X., Chen, X., He, Z., Ni, Y. (2018). Optimization of ultrasound-assisted extraction of okra (Abelmoschus esculentus (L.) moench) polysaccharides based on response surface methodology and antioxidant activity. International Journal of Biological Macromolecules, 15(114), 1056-1063.
  • [2] Demiray, E., Tülek, Y. (2016). Güneşte kurutulmuş bamyaların rehidrasyon kinetiği. Akademik Gıda, 14(4), 368-374.
  • [3] Rajalakshmi, M., Sangeetha, S. (2023). Okra mucilage - method of extraction and a novel strategy for pharmaceutical drug delivery system. Journal of Pharmaceutical Negative Results, 14, 2473-2481.
  • [4] Öncü Glaue, Ş., Akcan, T., Tavman, Ş. (2023). Thermal properties of ultrasound-extracted okra mucilage. Applied Sciences, 13(11).
  • [5] Ormanlı, E., Bayraktar, O., Şahar, U., Tavman, S., Kumcuoglu, S. (2022). Development and characterization of films based on okra polysaccharides and whey protein isolate. Journal of Food Measurement and Characterization, 17(1), 264-277.
  • [6] Lengsfeld, C., Titgemeyer, F., Faller, G., Hensel, A. (2004). Glycosylated compounds from okra inhibit adhesion of Helicobacter pylori to human gastric mucosa. Journal of Agricultural and Food Chemistry, 52(6), 1495-1503.
  • [7] Deters, A.M., Lengsfeld, C., Hensel, A. (2005). Oligo- and polysaccharides exhibit a structure-dependent bioactivity on human keratinocytes in vitro. Journal of Ethnopharmacology, 102(3), 391-399.
  • [8] Kumcuoglu, S., Yılmaz, T., Tavman, S. (2014). Ultrasound assisted extraction of lycopene from tomato processing wastes. Journal of Food Science and Technology, 51(12), 4102-4107.
  • [9] Zhu, W., Obara, H. (2022). The pre-shearing effect on the rheological properties of okra mucilage. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, 129257-129266.
  • [10] Georgiadis, N., Ritzoulis, C., Sioura, G., Kornezou, P., Vasiliadou, C., Tsioptsias, C. (2011). Contribution of okra extracts to the stability and rheology of oil-in-water emulsions. Food Hydrocolloids, 25(5), 991-999.
  • [11] Kontogiorgos, V., Margelou, I., Georgiadis, N., Ritzoulis, C. (2012). Rheological characterization of okra pectins. Food Hydrocolloids, 29(2), 356-362.
  • [12] Goksen, G., Demir, D., Dhama, K., Kumar, M., Shao, P., Xie, F., Echegaray, N., Lorenzo, J.M. (2023). Mucilage polysaccharide as a plant secretion: Potential trends in food and biomedical applications. International Journal of Biological Macromolecules, 230, 123146-123163.
  • [13] Safwa, S.M., Rana, M.R., Ahmed, T., Rahman, S., Kabir, M.A.B. (2023). Maximization and characterization of ultrasonic-assisted extraction of taro corms mucilage using response surface optimization and comparison with conventional methods. Food Analytical Methods, 16(11), 1724-1737.
  • [14] Chalapud, M.C., Carrín, M.E. (2023). Ultrasound-assisted extraction of oilseeds-sustainability processes to obtain traditional and non-traditional food ingredients: A review. Comprehensive Reviews in Food Science and Food Safety, 22(3), 2161-2196.
  • [15] Sengkhamparn, N., Sagis, L.M.C., de Vries, R., Schols, H.A., Sajjaanantakul, T., Voragen, A.G.J. (2010). Physicochemical properties of pectins from okra (Abelmoschus esculentus (L.) moench). Food Hydrocolloids, 24(1), 35-41.
  • [16] Ndjouenkeu, R., Goycoolea, F.M., Morrisav, E.R. (1996). Rheology of okra and dika nut polysaccharides. Carbohydrate Polymers, 29(1), 263-269.
  • [17] Savouré, T., Dornier, M., Vachoud, L., Collignan, A. (2020). Clustering of instrumental methods to characterize the texture and the rheology of slimy okra (Abelmoschus esculentus) suspensions. Journal of texture studies, 51(3), 426-443.
  • [18] Ding, M., Liu, Y., Ye, Y.F., Zhang, J.C., Wang, J.H. (2021). Polysaccharides from the lignified okra: Physicochemical properties and rheological properties. Bioactive Carbohydrates and Dietary Fibre, 26, 100274.
  • [19] Turabi, E., Sumnu, G., Sahin, S. (2008). Rheological properties and quality of rice cakes formulated with different gums and an emulsifier blend. Food Hydrocolloids, 22(2), 305-312.
  • [20] Cevoli, C., Balestra, F., Ragni, L., Fabbri, A. (2013). Rheological characterisation of selected food hydrocolloids by traditional and simplified techniques. Food Hydrocolloids, 33(1), 142-150.
  • [21] Rao, M., Rizvi, S. (1995). Engineering properties of foods, marcel decker. Inc., New York, USA.
  • [22] Yılmaz, V.M.B., Süfer, Ö., Kumcuoğlu, S. (2017). Effects of temperature and hydrocolloids on the rheological characteristics of coating batters. Journal of Food Measurement and Characterization, 11(3), 1159-1166.
  • [23] Mohammadi Moghaddam, T., Razavi, S.M.A., Malekzadegan, F., Shaker Ardekani, A. (2009). Chemical composition and rheological characterization of pistachio green hull's marmalade. Journal of Texture Studies, 40(4), 390-405.
  • [24] Bai, L., Zhu, P., Wang, W., Wang, M. (2020). The influence of extraction ph on the chemical compositions, macromolecular characteristics, and rheological properties of polysaccharide: The case of okra polysaccharide. Food Hydrocolloids, 102, 105586-105596.
  • [25] Xu, K., Guo, M., Du, J. (2017). Molecular characteristics and rheological properties of water-extractable polysaccharides derived from okra (Abelmoschus esculentus L.). International journal of food properties, 20(1), 899-909.
  • [26] Li, Y., Wang, X., Lv, X., Wang, X., Wang, X., Cui, J., Yan, M. (2020). Extractions and rheological properties of polysaccharide from okra pulp under mild conditions. International Journal of Biological Macromolecules, 148, 510-517.
  • [27] Alamri, M.S., Mohamed, A.A., Hussain, S. (2013). Effects of alkaline-soluble okra gum on rheological and thermal properties of systems with wheat or corn starch. Food Hydrocolloids, 30(2), 541-551.
  • [28] Woolfe, M.L., Chaplin, M.F., Otchere, G. (1977). Studies on the mucilages extracted from okra fruits (Hibiscus esculentus L.) and baobab leaves (Adansonia digitata L.). Journal of the Science of Food and Agriculture, 28(6), 519-529.
  • [29] Zaharuddin, N.D., Noordin, M.I., Kadivar, A. (2014). The use of Hibiscus esculentus (okra) gum in sustaining the release of propranolol hydrochloride in a solid oral dosage form. BioMed Research International, 2014.
  • [30] Qasem, A.A.A., Alamri, M.S., Mohamed, A.A., Hussain, S., Mahmood, K., Ibraheem, M.A. (2017). Effect of okra gum on pasting and rheological properties of cake-batter. Journal of Food Measurement and Characterization, 11(2), 827-834.
  • [31] Santos, P.H., da Silva, L.H.M., Rodrigues, A.M.C., Souza, J.A.R. (2016). Influence of temperature, concentration and shear rate on the rheological behavior of malay apple (Syzygium malaccense) juice. Brazilian Journal of Food Technology, 19.
  • [32] Zhou, M., Parkhurst, A., Voss, H., Weller, C. (2004). Estimating rheological properties of yogurt using different versions of the Freundlich model and design matrices. Conference on Applied Statistics in Agriculture.
  • [33] Beigi, S., Sobati, M.A., Charkhi, A. (2015). An experimental investigation on drying kinetics of calcium carbonate. Journal of Particle Science and Technology, 1(3), 153-162.
  • [34] Marcotte, M., Taherian Hoshahili, A.R., Ramaswamy, H.S. (2001). Rheological properties of selected hydrocolloids as a function of concentration and temperature. Food Research International, 34(8), 695-703.
  • [35] Wang, C., Li, J., Cao, Y., Huang, J., Lin, H., Zhao, T., Liu, L., Shen, P., Julian McClements, D., Chen, J., Liu, C., Liu, J., Li, Q. (2023). Extraction and characterization of pectic polysaccharides from choerospondias axillaris peels: Comparison of hot water and ultrasound-assisted extraction methods. Food Chemistry, 401, 134156-134165.
  • [36] Nagpal, M., Aggarwal, G., Jain, K., Madan, J. (2017). Extraction of gum from Abelmoschus esculentus: Physicochemical peculiarity and antioxidant prepatent. Asian Journal of Pharmaceutical and Clinical Research, 10(9), 174-179.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Tolga Akcan 0000-0002-2488-5769

Şelale Öncü Glaue Bu kişi benim 0000-0003-4757-6640

Yayımlanma Tarihi 29 Mart 2024
Gönderilme Tarihi 25 Şubat 2024
Kabul Tarihi 24 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 22 Sayı: 1

Kaynak Göster

APA Akcan, T., & Öncü Glaue, Ş. (2024). Ultrasound-Assisted Extraction of Okra Mucilage: Rheological Properties of its Aqueous Solutions. Akademik Gıda, 22(1), 1-13. https://doi.org/10.24323/akademik-gida.1460950
AMA Akcan T, Öncü Glaue Ş. Ultrasound-Assisted Extraction of Okra Mucilage: Rheological Properties of its Aqueous Solutions. Akademik Gıda. Mart 2024;22(1):1-13. doi:10.24323/akademik-gida.1460950
Chicago Akcan, Tolga, ve Şelale Öncü Glaue. “Ultrasound-Assisted Extraction of Okra Mucilage: Rheological Properties of Its Aqueous Solutions”. Akademik Gıda 22, sy. 1 (Mart 2024): 1-13. https://doi.org/10.24323/akademik-gida.1460950.
EndNote Akcan T, Öncü Glaue Ş (01 Mart 2024) Ultrasound-Assisted Extraction of Okra Mucilage: Rheological Properties of its Aqueous Solutions. Akademik Gıda 22 1 1–13.
IEEE T. Akcan ve Ş. Öncü Glaue, “Ultrasound-Assisted Extraction of Okra Mucilage: Rheological Properties of its Aqueous Solutions”, Akademik Gıda, c. 22, sy. 1, ss. 1–13, 2024, doi: 10.24323/akademik-gida.1460950.
ISNAD Akcan, Tolga - Öncü Glaue, Şelale. “Ultrasound-Assisted Extraction of Okra Mucilage: Rheological Properties of Its Aqueous Solutions”. Akademik Gıda 22/1 (Mart 2024), 1-13. https://doi.org/10.24323/akademik-gida.1460950.
JAMA Akcan T, Öncü Glaue Ş. Ultrasound-Assisted Extraction of Okra Mucilage: Rheological Properties of its Aqueous Solutions. Akademik Gıda. 2024;22:1–13.
MLA Akcan, Tolga ve Şelale Öncü Glaue. “Ultrasound-Assisted Extraction of Okra Mucilage: Rheological Properties of Its Aqueous Solutions”. Akademik Gıda, c. 22, sy. 1, 2024, ss. 1-13, doi:10.24323/akademik-gida.1460950.
Vancouver Akcan T, Öncü Glaue Ş. Ultrasound-Assisted Extraction of Okra Mucilage: Rheological Properties of its Aqueous Solutions. Akademik Gıda. 2024;22(1):1-13.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).