Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Photon Percent Deep Dose and Beam Profile Parameters for a period of ten years in the Elekta Synergy Platform Linear Accelarator Device

Yıl 2022, , 173 - 178, 01.05.2022
https://doi.org/10.53394/akd.1057712

Öz

ABSTRACT
Objective: Quality control of the accuracy of radiation therapy requires a series of dosimetric and geometric tests during and before the treatment period. In this study, it is aimed to examine the Percent Depth Dose (PDD) and Beam Profile (BP) parameters obtained during the parts replacement due to breakdown and / or during the annual Linear Accelarator (LINAC) quality control processes for a period of ten years, and to evaluate the deviations between the measurement parameters transferred to Treatment Planning System.
Material and Methods: In this study, the PDD and BP parameters obtained during the LINAC quality control processes for Elekta brand, Synergy Platform model Linear accelerator, located in the Radiation Oncology Department of the University of Health Sciences, XXX Training and Research Hospital, between November 2011 and September 2020 were included.
Results: For the 6 MV, the highest difference was found to be 2.1 mm for the R50 in March 2013. For the 18 MV, the largest difference was 2.2 mm for the R90 in February 2020. The biggest difference for the Flatness parameter obtained from the BP curve was found to be 2.0% in the AB direction in December 2014 for 6 MV.
Conclusion: In situations where the energy and profile parameters of LINAC devices are likely to change, water phantom measurements should be made and re-evaluated according to the values transferred to the treatment planning system.
Key Words: Linear Accelarator, Percent Depth Dose, Beam Profile

Kaynakça

  • 1. Biltekin F, Yazıcı G, Cengiz M, Doğan A, Ünlü B, Yeğiner M, Özyiğit G. Dosimetric and Mechanical Stability of CyberKnife Robotic Radiosurgery Unit: 5 Years’ Clinical Experience. Turk J Oncol 2016;31(2):45-50.
  • 2. Hossaina M, Rhoadesaa J. On beam quality and flatness of radiotherapy megavoltage photon beams. Australas Phys Eng Sci Med. 2016; 39(1): 135–145.
  • 3. Şahiner T, Kurt M, Eker S, Gül SS. Lineer hızlandırıcı radyoterapi cihazının yapısında bulunan monitör iyon odasının kalite kontrol testlerinin uygunluğunun belirlenmesi. FNG & Bilim Tıp Dergisi 2015;1(3):115-123.
  • 4. Thwaites DI, Centre EC, Hospital WG, Kingdom U, Mijnheer BJ, Mills JA. Quality Assurance of External Beam Radiotherapy. Chapter 12 Quality Assurance. 2003; 407-450.
  • 5. Mackie TR. Linac Based Radiosurgery and Stereotactic Radiotherapy. Depts. Of Medical Physics, Human Oncology, and Engineering Physics University of Wisconsin seminar 2015; 35-38.
  • 6. Uddin T. Quality control of modern linear accelerator dose stability long and short-term. Conf.Proc.C 1205201.2012; 2660-2662.
  • 7. Islam MM, Khan KA, Bhuiyan MMH. Measurement of Percentage Depth Dose of a Linear Accelerator for 6 MV and 10 MV Photon Energies. Nuclear Science and Applications. 2015; 24: 1&2
  • 8. Packard C. Calculation of percentage depth dose. Radiology Society of North America. 82nd scientific assembly and annual meeting, Chicago, Illiois. 2009; 130(5): 44-48.
  • 9. Klein E, Hanley J, Bayouth J, Yin F, Simon W, Dresser S, Serago C, Aguirre F, Ma L, Arjomandy B, Liu C, Sandin C, Holmes T. Task group 142 report: quality assurance of medical accelerators. Med Phys. 2009; 36:4197–4212.
  • 10. Kerns JR, Followill D, Lowenstein J, Molineu A, Alvarez P,Taylor PA, Kry SF. Reference dosimetry data and modeling challenges for Elekta accelerators based on IROC-Houston Site Visit Data. Med Phys. 2018; 45(5): 2337–2344.
  • 11. Smith K, Balter P, Duhon J, White GA, Vassy DL, Miller RA, Serago CF, FairobenT LA. AAPM Medical Physics Practice Guideline 8.a.: Linear accelerator performance tests. J Appl Clin Med Phys. 2017; 18(4):23–39.
  • 12. Kutcher GJ, Coia L, Gillin M, Hanson S, Leibel S, Morton RJ, Palta J, Purdy J, Reinstein LE, Svensson GK, Weller M, Wingfield L. Comprehensive QA for radiation oncology: Report of AAPM radiation therapy committee task group 40. Med Phys. 1994; 21(4):381–618.
  • 13. International Atomic Energy Agency Absorbe dosebdetermination in external beam radiotherapy: an internationalbcode of practice for dosimetry based on standards of absorbe dose to water. Tecnical Reports Series No: 398, Vienna, Austria. 2000.
  • 14. Day MJ and Aird EG. Central Axis Depth Dose Data for Use in Radiotherapy. BJR, Sup 25, 1996; 90s.
  • 15. IEC (International Electrotechnical Commission), “Medical electrical equipment-Medical electron accelarators-Functional performance characteristics,” Standard IEC-60976, IEC, Geneva. 2007.
  • 16. Peng JL, Kahler D, Li JG, Amdur RJ, Vanek KN, Liu C. Feasibility study of performing IGRT system daily QA using a commercial QA device. J Appl Clin Med Phys. 2011;12 (3): 3535.

Elekta Synergy Platform Lineer Hızlandırıcı Cihazında On yıllık periyod için Foton Yüzde Derin Doz ve Işın Profil Parametrelerinin Değerlendirilmesi

Yıl 2022, , 173 - 178, 01.05.2022
https://doi.org/10.53394/akd.1057712

Öz

ÖZ
Amaç: Radyasyon tedavisinin doğruluğunun kalite kontrolü, tedavi öncesi ve devam ettiği tüm süre boyunca dozimetrik ve geometrik bir dizi test gerektirmektedir. Çalışmada, on yıllık periyod için, arıza sebebiyle parça değişimi ve/veya yıllık Lineer Hızlandırıcı Cihazı kalite kontrol işlemleri boyunca elde edilen Yüzde Derin Doz (YDD) ve Işın Profil (IP) parametrelerini incelemek ve Tedavi Planlama Sistemine (TPS) aktarılan ölçüm parametreleri ile aralarındaki farkları değerlendirmek amaçlanmıştır.
Gereç ve Yöntemler: Çalışmaya, 2011 Kasım – 2020 Eylül tarihleri arasında, Sağlık Bilimleri Üniversitesi, XXX Eğitim ve Araştırma Hastanesi, Radyasyon Onkolojisi bölümünde bulunan Elekta marka, Synergy Platform model Lineer hızlandırıcı’ da, cihaz kalite kontrol işlemleri sırasında elde edilen YDD ve IP parametreleri dahil edilmiştir.
Bulgular: 6 MV için, en yüksek fark, R50 için 2013 Mart ayında 2.1 mm olarak bulunmuştur. 18 MV için, en yüksek fark R90 için 2020 Şubat ayında 2.2 mm’dir. IP eğrisinden elde edilen düzgünlük parametresi için en büyük fark, 6 MV için AB yönde 2014 Aralık ayında %2.0 olarak bulunmuştur.
Sonuç: Lineer Hızlandırıcı cihazlarının özellikle enerji ve profil parametrelerin değişme olasılığı içeren durumlarda, su fantomu ölçümlerinin yapılması ve tedavi planlama sistemine aktarılan değerlere göre tekrar değerlendirilmesi gerekmektedir.
Anahtar Sözcükler: Lineer Hızlandırıcı, Yüzde Derin Doz, Işın Profil

Kaynakça

  • 1. Biltekin F, Yazıcı G, Cengiz M, Doğan A, Ünlü B, Yeğiner M, Özyiğit G. Dosimetric and Mechanical Stability of CyberKnife Robotic Radiosurgery Unit: 5 Years’ Clinical Experience. Turk J Oncol 2016;31(2):45-50.
  • 2. Hossaina M, Rhoadesaa J. On beam quality and flatness of radiotherapy megavoltage photon beams. Australas Phys Eng Sci Med. 2016; 39(1): 135–145.
  • 3. Şahiner T, Kurt M, Eker S, Gül SS. Lineer hızlandırıcı radyoterapi cihazının yapısında bulunan monitör iyon odasının kalite kontrol testlerinin uygunluğunun belirlenmesi. FNG & Bilim Tıp Dergisi 2015;1(3):115-123.
  • 4. Thwaites DI, Centre EC, Hospital WG, Kingdom U, Mijnheer BJ, Mills JA. Quality Assurance of External Beam Radiotherapy. Chapter 12 Quality Assurance. 2003; 407-450.
  • 5. Mackie TR. Linac Based Radiosurgery and Stereotactic Radiotherapy. Depts. Of Medical Physics, Human Oncology, and Engineering Physics University of Wisconsin seminar 2015; 35-38.
  • 6. Uddin T. Quality control of modern linear accelerator dose stability long and short-term. Conf.Proc.C 1205201.2012; 2660-2662.
  • 7. Islam MM, Khan KA, Bhuiyan MMH. Measurement of Percentage Depth Dose of a Linear Accelerator for 6 MV and 10 MV Photon Energies. Nuclear Science and Applications. 2015; 24: 1&2
  • 8. Packard C. Calculation of percentage depth dose. Radiology Society of North America. 82nd scientific assembly and annual meeting, Chicago, Illiois. 2009; 130(5): 44-48.
  • 9. Klein E, Hanley J, Bayouth J, Yin F, Simon W, Dresser S, Serago C, Aguirre F, Ma L, Arjomandy B, Liu C, Sandin C, Holmes T. Task group 142 report: quality assurance of medical accelerators. Med Phys. 2009; 36:4197–4212.
  • 10. Kerns JR, Followill D, Lowenstein J, Molineu A, Alvarez P,Taylor PA, Kry SF. Reference dosimetry data and modeling challenges for Elekta accelerators based on IROC-Houston Site Visit Data. Med Phys. 2018; 45(5): 2337–2344.
  • 11. Smith K, Balter P, Duhon J, White GA, Vassy DL, Miller RA, Serago CF, FairobenT LA. AAPM Medical Physics Practice Guideline 8.a.: Linear accelerator performance tests. J Appl Clin Med Phys. 2017; 18(4):23–39.
  • 12. Kutcher GJ, Coia L, Gillin M, Hanson S, Leibel S, Morton RJ, Palta J, Purdy J, Reinstein LE, Svensson GK, Weller M, Wingfield L. Comprehensive QA for radiation oncology: Report of AAPM radiation therapy committee task group 40. Med Phys. 1994; 21(4):381–618.
  • 13. International Atomic Energy Agency Absorbe dosebdetermination in external beam radiotherapy: an internationalbcode of practice for dosimetry based on standards of absorbe dose to water. Tecnical Reports Series No: 398, Vienna, Austria. 2000.
  • 14. Day MJ and Aird EG. Central Axis Depth Dose Data for Use in Radiotherapy. BJR, Sup 25, 1996; 90s.
  • 15. IEC (International Electrotechnical Commission), “Medical electrical equipment-Medical electron accelarators-Functional performance characteristics,” Standard IEC-60976, IEC, Geneva. 2007.
  • 16. Peng JL, Kahler D, Li JG, Amdur RJ, Vanek KN, Liu C. Feasibility study of performing IGRT system daily QA using a commercial QA device. J Appl Clin Med Phys. 2011;12 (3): 3535.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Aysun İnal Bu kişi benim 0000-0002-1647-9787

İsmail Hakkı Sarpün Bu kişi benim 0000-0002-9788-699X

Yayımlanma Tarihi 1 Mayıs 2022
Gönderilme Tarihi 14 Aralık 2020
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

Vancouver İnal A, Sarpün İH. Elekta Synergy Platform Lineer Hızlandırıcı Cihazında On yıllık periyod için Foton Yüzde Derin Doz ve Işın Profil Parametrelerinin Değerlendirilmesi. Akd Tıp D. 2022;8(2):173-8.