Ovaryum kriyoprezervasyonu ve yeniden transplantasyondan sonra Dnmt3a ve Dnmt3b protein ifadelerinin düşmesi bu süreçte DNA metilasyonunun bozulduğunu gösterir
Yıl 2023,
Cilt: 9 Sayı: 1, 82 - 89, 01.01.2023
Fatma Uysal
,
Soner Çelik
Ferda Topal Celikkan
,
Çiler Çelik-özenci
,
Sinan Özkavukçu
,
Alp Can
Gökhan Akkoyunlu
Öz
Amaç DNA metilasyonu sürdürme ve de novo metilasyon süreçlerini içerir ve DNA metiltransferaz (Dnmt) enzimleri tarafından katalizlenir, ovaryum foliküllerinin gelişimi ile ilişkili genlerin metilasyonunda önemli role sahiptir. Çalışmamızın amacı, sıçanlarda ovaryum dokusunun kriyoprezervasyonu ve yeniden transplantasyonu sonrasında Dnmt3a ve Dnmt3b protein düzeylerinin ekspresyonunun değişip değişmediğini değerlendirmektir.
Yöntemler Kontrol (K), donmuş/çözdürülmüş (DÇ), transplante edilmiş (T) ve dondurulmuş/çözdürülmüş ve yeniden transplante edilmiş (DÇT) olmak üzere dört grup oluşturuldu. Ovaryum doku parçalarını dondurmak için yavaş dondurma tekniği kullanıldı ve Dnmt3a ve Dnmt3b proteinlerinin ekspresyonu immünohistokimya yöntemi ile değerlendirildi.
Result K ile karşılaştırıldığında, DÇ, T ve DÇT gruplarında ovaryum foliküllerinde Dnmt3a ve Dnmt3b ekspresyonu önemli ölçüde azaldı.
Sonuç Hem kriyoprezervasyon hem de yeniden transplantasyondan sonra değişen Dnmt enzimlerinin ekspresyonu sıçan folikülogenezi sırasında DNA metilasyonu süreçlerinin bozulması ile ilişkili olabilir.
Destekleyen Kurum
Bilimsel Araştırma Projeleri Koordinasyon Birimi, Akdeniz Üniversitesi
Proje Numarası
2013.02.0122.013 ve 2014.02.0122.013 numaralı proje numaraları ile bu araştırmaya kısmen destek vermiştir.
Teşekkür
Verileri sağlayan tüm yazarlara teşekkür ederiz.
Kaynakça
- 1. Huffman, S.R., Y. Pak, and R.M. Rivera, Superovulation induces alterations in the epigenome of zygotes, and results in differences in gene expression at the blastocyst stage in mice. Mol Reprod Dev, 2015. 82(3): p. 207-17.
- 2. Hu, W., et al., Effect of slow freeze versus vitrification on the oocyte: an animal model. Fertil Steril, 2012. 98(3): p. 752-760 e3.
- 3. Zhao, X.M., et al., Effect of vitrification on promoter CpG island methylation patterns and expression levels of DNA methyltransferase 1o, histone acetyltransferase 1, and deacetylase 1 in metaphase II mouse oocytes. Fertil Steril, 2013. 100(1): p. 256-61.
- 4. Halliday, J., et al., Beckwith-Wiedemann syndrome and IVF: a case-control study. Am J Hum Genet, 2004. 75(3): p. 526-8.
- 5. Hansen, M., et al., The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. New England Journal of Medicine, 2002. 346(10): p. 725-730.
- 6. Schieve, L.A., et al., Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med, 2002. 346(10): p. 731-7.
- 7. Jwa, J., et al., Risk of major congenital anomalies after assisted hatching: analysis of three-year data from the national assisted reproduction registry in Japan. Fertil Steril, 2015. 104(1): p. 71-8.
- 8. Meijerink, A.M., et al., Effect of maternal and treatment-related factors on the prevalence of birth defects after PESA-ICSI and TESE-ICSI: a retrospective cohort study. Acta Obstet Gynecol Scand, 2015. 94(11): p. 1245-53.
- 9. Pinborg, A., et al., Epigenetics and assisted reproductive technologies. Acta Obstet Gynecol Scand, 2016. 95(1): p. 10-5.
- 10. Fauque, P., et al., Assisted Reproductive Technology affects developmental kinetics, H19 Imprinting Control Region methylation and H19 gene expression in individual mouse embryos. BMC Dev Biol, 2007. 7: p. 116.
- 11. Uysal, F., G. Akkoyunlu, and S. Ozturk, Dynamic expression of DNA methyltransferases (DNMTs) in oocytes and early embryos. Biochimie, 2015. 116: p. 103-13.
- 12. Turek-Plewa, J. and P.P. Jagodzinski, The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett, 2005. 10(4): p. 631-47.
- 13. Bestor, T.H., The DNA methyltransferases of mammals. Hum Mol Genet, 2000. 9(16): p. 2395-402.
- 14. Fatemi, M., et al., Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. Eur J Biochem, 2002. 269(20): p. 4981-4.
- 15. Deplus, R., et al., Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res, 2002. 30(17): p. 3831-8.
- 16. Margot, J.B., A.E. Ehrenhofer-Murray, and H. Leonhardt, Interactions within the mammalian DNA methyltransferase family. BMC Mol Biol, 2003. 4: p. 7.
- 17. Goll, M.G., et al., Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science, 2006. 311(5759): p. 395-8.
- 18. Barau, J., et al., The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science, 2016. 354(6314): p. 909-912.
- 19. Chatterjee, A., et al., Effects of cryopreservation on the epigenetic profile of cells. Cryobiology, 2017. 74: p. 1-7.
- 20. Zhao, X.M., et al., Effect of 5-aza-2'-deoxycytidine on methylation of the putative imprinted control region of H19 during the in vitro development of vitrified bovine two-cell embryos. Fertil Steril, 2012. 98(1): p. 222-7.
- 21. Topal-Celikkan, F., et al., Mouse ovarian tissue vitrification on copper electron microscope grids versus slow freezing: a comparative ultrastructural study. Reprod Fertil Dev, 2014.
- 22. Magnusson, V., et al., Bovine oocyte vitrification: effect of ethylene glycol concentrations and meiotic stages. Anim Reprod Sci, 2008. 106(3-4): p. 265-73.
- 23. Milroy, C., et al., Differential methylation of pluripotency gene promoters in in vitro matured and vitrified, in vivo-matured mouse oocytes. Fertil Steril, 2011. 95(6): p. 2094-9.
- 24. Cheng, K.R., et al., Effect of oocyte vitrification on deoxyribonucleic acid methylation of H19, Peg3, and Snrpn differentially methylated regions in mouse blastocysts. Fertil Steril, 2014. 102(4): p. 1183-1190 e3.
- 25. Stinshoff, H., et al., Cryopreservation affects the quality of in vitro produced bovine embryos at the molecular level. Theriogenology, 2011. 76(8): p. 1433-41.
- 26. Demeestere, I., et al., Orthotopic and heterotopic ovarian tissue transplantation. Hum Reprod Update, 2009. 15(6): p. 649-65.
- 27. Celik, S., et al., Expression of inhibitor proteins that control primordial follicle reserve decreases in cryopreserved ovaries after autotransplantation. J Assist Reprod Genet, 2018. 35(4): p. 615-626.
- 28. Alivand, M.R., et al., Novel Epigenetic Controlling of Hypoxia Pathway Related to Overexpression and Promoter Hypomethylation of TET1 and TET2 in RPE Cells. J Cell Biochem, 2017.
- 29. Skowronski, K., et al., Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation. PLoS One, 2014. 9(7): p. e103243.
- 30. Watson, C.J., et al., Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum Mol Genet, 2014. 23(8): p. 2176-88.
Dnmt3a and Dnmt3b expressions decrease after cryopreservation and re-transplantation of ovarian tissue
Yıl 2023,
Cilt: 9 Sayı: 1, 82 - 89, 01.01.2023
Fatma Uysal
,
Soner Çelik
Ferda Topal Celikkan
,
Çiler Çelik-özenci
,
Sinan Özkavukçu
,
Alp Can
Gökhan Akkoyunlu
Öz
Objective DNA methylation includes maintenance and de novo methylation process that are catalyzed by DNA methyltransferase (Dnmt) enzymes and these enzymes possess crucial roles in methylation of genes associated with the development of ovarian follicles. The aim of this study is to evaluate whether expression of Dnmt3a and Dnmt3b protein levels change after cryopreservation and re-transplantation of ovarian tissue in rats.
Methods Four groups were designed as; fresh control (FC), frozen/thawed (FT), fresh re-transplanted (T), and frozen/thawed and re-transplanted (FTT). Slow freezing was used to cryopreserve the ovarian tissue pieces and expression of Dnmt3a and Dnmt3b proteins was assessed by immunohistochemistry.
Result Expression of Dnmt3a and Dnmt3b significantly decreased in ovarian follicles in FT, T and FTT groups when compared FC.
Conclusion Expression of Dnmt enzymes has been altered both after cryopreservation alone and following re-transplantation cycles which may lead to disturbed DNA methylation processes during rat folliculogenesis
Proje Numarası
2013.02.0122.013 ve 2014.02.0122.013 numaralı proje numaraları ile bu araştırmaya kısmen destek vermiştir.
Kaynakça
- 1. Huffman, S.R., Y. Pak, and R.M. Rivera, Superovulation induces alterations in the epigenome of zygotes, and results in differences in gene expression at the blastocyst stage in mice. Mol Reprod Dev, 2015. 82(3): p. 207-17.
- 2. Hu, W., et al., Effect of slow freeze versus vitrification on the oocyte: an animal model. Fertil Steril, 2012. 98(3): p. 752-760 e3.
- 3. Zhao, X.M., et al., Effect of vitrification on promoter CpG island methylation patterns and expression levels of DNA methyltransferase 1o, histone acetyltransferase 1, and deacetylase 1 in metaphase II mouse oocytes. Fertil Steril, 2013. 100(1): p. 256-61.
- 4. Halliday, J., et al., Beckwith-Wiedemann syndrome and IVF: a case-control study. Am J Hum Genet, 2004. 75(3): p. 526-8.
- 5. Hansen, M., et al., The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. New England Journal of Medicine, 2002. 346(10): p. 725-730.
- 6. Schieve, L.A., et al., Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med, 2002. 346(10): p. 731-7.
- 7. Jwa, J., et al., Risk of major congenital anomalies after assisted hatching: analysis of three-year data from the national assisted reproduction registry in Japan. Fertil Steril, 2015. 104(1): p. 71-8.
- 8. Meijerink, A.M., et al., Effect of maternal and treatment-related factors on the prevalence of birth defects after PESA-ICSI and TESE-ICSI: a retrospective cohort study. Acta Obstet Gynecol Scand, 2015. 94(11): p. 1245-53.
- 9. Pinborg, A., et al., Epigenetics and assisted reproductive technologies. Acta Obstet Gynecol Scand, 2016. 95(1): p. 10-5.
- 10. Fauque, P., et al., Assisted Reproductive Technology affects developmental kinetics, H19 Imprinting Control Region methylation and H19 gene expression in individual mouse embryos. BMC Dev Biol, 2007. 7: p. 116.
- 11. Uysal, F., G. Akkoyunlu, and S. Ozturk, Dynamic expression of DNA methyltransferases (DNMTs) in oocytes and early embryos. Biochimie, 2015. 116: p. 103-13.
- 12. Turek-Plewa, J. and P.P. Jagodzinski, The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett, 2005. 10(4): p. 631-47.
- 13. Bestor, T.H., The DNA methyltransferases of mammals. Hum Mol Genet, 2000. 9(16): p. 2395-402.
- 14. Fatemi, M., et al., Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. Eur J Biochem, 2002. 269(20): p. 4981-4.
- 15. Deplus, R., et al., Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res, 2002. 30(17): p. 3831-8.
- 16. Margot, J.B., A.E. Ehrenhofer-Murray, and H. Leonhardt, Interactions within the mammalian DNA methyltransferase family. BMC Mol Biol, 2003. 4: p. 7.
- 17. Goll, M.G., et al., Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science, 2006. 311(5759): p. 395-8.
- 18. Barau, J., et al., The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science, 2016. 354(6314): p. 909-912.
- 19. Chatterjee, A., et al., Effects of cryopreservation on the epigenetic profile of cells. Cryobiology, 2017. 74: p. 1-7.
- 20. Zhao, X.M., et al., Effect of 5-aza-2'-deoxycytidine on methylation of the putative imprinted control region of H19 during the in vitro development of vitrified bovine two-cell embryos. Fertil Steril, 2012. 98(1): p. 222-7.
- 21. Topal-Celikkan, F., et al., Mouse ovarian tissue vitrification on copper electron microscope grids versus slow freezing: a comparative ultrastructural study. Reprod Fertil Dev, 2014.
- 22. Magnusson, V., et al., Bovine oocyte vitrification: effect of ethylene glycol concentrations and meiotic stages. Anim Reprod Sci, 2008. 106(3-4): p. 265-73.
- 23. Milroy, C., et al., Differential methylation of pluripotency gene promoters in in vitro matured and vitrified, in vivo-matured mouse oocytes. Fertil Steril, 2011. 95(6): p. 2094-9.
- 24. Cheng, K.R., et al., Effect of oocyte vitrification on deoxyribonucleic acid methylation of H19, Peg3, and Snrpn differentially methylated regions in mouse blastocysts. Fertil Steril, 2014. 102(4): p. 1183-1190 e3.
- 25. Stinshoff, H., et al., Cryopreservation affects the quality of in vitro produced bovine embryos at the molecular level. Theriogenology, 2011. 76(8): p. 1433-41.
- 26. Demeestere, I., et al., Orthotopic and heterotopic ovarian tissue transplantation. Hum Reprod Update, 2009. 15(6): p. 649-65.
- 27. Celik, S., et al., Expression of inhibitor proteins that control primordial follicle reserve decreases in cryopreserved ovaries after autotransplantation. J Assist Reprod Genet, 2018. 35(4): p. 615-626.
- 28. Alivand, M.R., et al., Novel Epigenetic Controlling of Hypoxia Pathway Related to Overexpression and Promoter Hypomethylation of TET1 and TET2 in RPE Cells. J Cell Biochem, 2017.
- 29. Skowronski, K., et al., Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation. PLoS One, 2014. 9(7): p. e103243.
- 30. Watson, C.J., et al., Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum Mol Genet, 2014. 23(8): p. 2176-88.