Derleme
BibTex RIS Kaynak Göster

Effect of Electromagnetic Fields on Bone Tissue

Yıl 2023, , 215 - 226, 31.12.2023
https://doi.org/10.17827/aktd.1343480

Öz

One of the most important and indispensable factors in our daily lives is undoubtedly the widespread use of technological devices. Especially in recent years, these devices (cell phones, base stations, local area networks etc.), which have entered our lives in parallel with the incredibly rapid development of the communication age, have brought some negativities while providing easier to our life. The fact that Elektromagnetic Fields (EMFs) take a long time to have an effect and that their potential adverse effects are not well known to the public has gradually caused growing concern. The discovery of bioelectric potentials such as piezoelectric, pyroelectric, biofluorescense and ferroelectric in bone raised the possibility that applied EMFs could modify the behavior of bone cells. In this direction, extremely low frequency EMF’s could stimulate osteoblastic activity by inhibition of osteoclasts or by some hormonal changes on bone. Almost, nowadays we are floating in artificial electromagnetic fields, researchers has reported that exposure to uncontrolled EMFs cause adverse effects in cells and tissues such as signal transduction, cell membrane structure, ion channels, molecular interactions and DNA damage. On the other hand, exposure to controlled electromagnetic fields has been reported to speed up the repair of fractures/damages in bone and cartilage. In this review, EMFs on bone tissue of humans and experimental animals are compiled and presented; bone mineral density, bone endurance, bone marrow, bone cells, bone volume, bone formation and on bone fractures information about the effects.

Kaynakça

  • 1. Verma GP. Fundamentals of Histology: 105-119. India, New Age International, 2001.
  • 2. Junqueria LC, Carnerio J, Kelley RO. Basic Histology, 6 th ed (Published by Prentice-Hall International Inc): 136-153. Manchester, United Kingdom, İnternational Edition, 1989.
  • 3. Abraham KL. Histoloji ve hücre biyolojisi patolojiye giriş, (ed Demir R ): 533-564. İstanbul, Palme Yayıncılık, 2006.
  • 4. Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. Bone biology. J Bone Joint Surg Am. 2010;77:1256-1275.
  • 5. Ross M, Pawlina W. Histology a Text and Atlas with Correlated Cell and Molecular Biyology, 6th ed 218- 244. Philadelphia, Macmilan Company, 2011.
  • 6. Lanyon LE. Osteocytes, strain detection, bone modeling and remodeling. Calcif Tissue Int. 1993;53:102-107.
  • 7. Standring S. Gray’s anatomy: The anatomical basis of clinical practice. 41th ed. 81-123. London, Elsevier pres, 2016.
  • 8. Reginato A, Wang W, Olsen B. Developmental biology of bone. In: Marcus R, Feldman DD, Kelsey J (Eds): Osteoporosis. San Diego, 2001;1:189-212.
  • 9. Raisz LG. Physiology and pathophysiology of bone remodeling. Clin Chem. 1999;45(8):1353-1358.
  • 10. Akay MT. Genel histoloji. 6.baskı 126–149. Ankara, Palme Yayıncılık, 2006.
  • 11. Gökçimen A. Genel Tıbbi Histoloji. 975-7929-82-4. Isparta, SDÜ Basımevi, 2006.
  • 12. Gupta MC, Maitra S. Bone grafts and bone morphogenetic proteins in spine fusion. Cell Tissue Bank. 2002;3(4):255-67.
  • 13. Meram İ. The effects of estrogen treatment on the trace elements and vitamins in menopausal women. Mersin Üni. Tıp Fak. Derg. 2001;4:472-478.
  • 14. Shoback D. Update in osteoporosis and metabolic bone disorders. J Clin Endoc & Metabo, 2007;92(3):747–753.
  • 15. Barrett KE, Barman SM, Boitano S, Brooks HL. Ganong'un Tıbbi Fizyolojisi. 385-388. Gökbel H. (Edt), Nobel Tıp Kitabevleri, İstanbul, 2015.
  • 16. Unur E, Ülger H, Ekinci N. Anatomi. 7-11. Kıvılcım Kitapevi, Kayseri, 2014.
  • 17. Majchrzak E, Dzıatkıewıcz G, Paruch M. The Modelling Of Heating A Tissue Subjected To External Electromagnetic Field. Acta Of Bioengineering And Biomechanics, 2008;10(2):29-37.
  • 18. Funk RH, Monsees TK. Effects of electromagnetic fields on cells: physiological and therapeutical approaches and molecular mechanisms of interaction. A review. Cells Tissues Organs, 2006;182(2):59-78.
  • 19. Ciombor DM, Lester G, Aaron RK, Neame P, Caterson B. Low frequency EMF regulates chondrocyte differentiation and expression of matrix proteins. J Orthop Res. 2002;20(1):40-50.
  • 20. Kong YY, William JB, Penninger MJ. Osteoprotegerin ligand: a regulator of immune responses and bone physiology. Immunol Today, 2010;21(10):495-502.
  • 21. Pacchierotti F, Ardoino L, Benassi B, Consales C, Cordelli E, Eleuteri P, et al. Effects of Radiofrequency Electromagnetic Field (RF-EMF) exposure on male fertility and pregnancy and birth outcomes: Protocols for a systematic review of experimental studies in non-human mammals and in human sperm exposed in vitro. Environ Int. 2021;157:106806.
  • 22. Mahmoudabadi FS, Ziaei S, Firoozabadi M, Kazemnejad A. Use of mobile phone during pregnancy and the risk of spontaneous abortion. J Environ Health Sci Eng. 2015;13:34.
  • 23. Lei T, Liang Z, Li F, Tang C, Xie K, Wang P et al. Pulsed electromagnetic fields (PEMF) attenuate changes in vertebral bone mass, architecture and strength in ovariectomized mice. Elsevier, 2018;108:10-19.
  • 24. Selvamurugan N, Kwok S, Vasilov, Jefcoat SC, Partridge. Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression. J Orthop Re. 2007;25(9):1213-1220.
  • 25. Schnoke M, Midura RJ. Pulsed electromagnetic fields rapidly modulate intracellular signaling events in osteoblastic cells: comparison to parathyroid hormone and insulin. J Orthop Res. 2007;25(7):933–940.
  • 26. Sert C, Mustafa D, Düz MZ, Asken F, Kaya A. The preventive effect on bone loss of 50 Hz, 1 mT electromagnetic field in ovariectomized rats. J. Bone and Min. Metab, 2002;20:345-349.
  • 27. Kyle C, Walter Hong-Song C. Pulsed electromagnetic fields prevent osteoporosis in an ovariectomized female rat model: A prostoglandin E2- associated Process. Bioelectromagnetics, 2003;24:189-198.
  • 28. Petecchia L, Sbrana F, Utzeri R, Vercellino M, Usai C, Visai L et al. Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca2+-related mechanisms. Sci Rep. 2015;5:1-13.
  • 29. Cantürk Tan F, Karamazı Y, Uçar S, Daşdağ S, Yalçın B, Tan B. The prenatale effect to ossification of exposure to radiofrequency-electromagnetic field. Acta Physiologica, 2018;225:66-66.
  • 30. Gonzalez Riola J, Pamies JA, Hernandez ER, Revilla M, Seco C, Villa LF et al. Influence of electromagnetic fields on bone mass and growth in developing rats: A morphometric, densitometric and histomorphometric study. Calcif. Tissue Int, 1997;60:533-537.
  • 31. Magras IN, Xenos TD. RF radiation-induced changes in the prenatal development of mice. Bioelectromagnetics, 1997;18:455–461.
  • 32. Jing D, Cai J, Wu Y, Shen G, Zhai M, Tong S, et al. Moderate-intensity rotating magnetic fields do not affect bone quality and bone remodeling in hindlimb suspended rats. PloS One, 2014;9(7):1-11.
  • 33. Hannay G, Leavesley D, Pearcy M, Timing of pulsed electromagnetic field stimulation does not affect the promotion of bone cell development. Bioelectromagnetics, 2005;26(8):670-6.
  • 34. Fukada E, Yasuda I. On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 1957;12(10):1158-1162.
  • 35. Rubin CT, Hausman MR. The cellular basis of Wolff`s Law. Orthopedic Surgery and Degenerative Arthritis, 1988;14(3):503-515.
  • 36. Hastings GW, Mahmud FA. Electrical effects in bone. J Biomed Eng. 1988;10:515-521.
  • 37. Pawlikowski M. Electric phenomenon in bones as a result of piezoelectricity of hydroxyapatite. Arch Clin Biomed Res. 2017;1(3):132-139.
  • 38. Dobrev I, Sim JH, Pfiffner F, Huber AM, Röösli C. Performance evaluation of a novel piezoelectric subcutaneous bone conduction device. Hear Res. 2018;370:94-104.
  • 39. Wieland DC, Krywka C, Mick E, Willumeit Römer R, Bader R, Kluess D. Investigation of the inverse piezoelectric effect of trabecular bone on a micrometer length scale using synchrotron radiation. Acta Biomater. 2015;25:339-346.
  • 40. Eriksson C. Electrical properties in bone. Biochemistry and physiology of bone, 4nd (ed Bourne GH ): 329–384. New York, Academic Press, 1976.
  • 41. Bassett CAL, Pawluk RJ, Pilla AA. Acceleration of fracture repair by electromagnetic fields. A surgically noninvasive method. Ann N Acad Sci. 1974;238:242-261.
  • 42. Fitzsimmons RJ, Farley J, Adey WR, Baylink DJ. Frequency dependence of increased cell proliferation, in vivo, in exposures to a low-amplitude, low frequency electric field. J Cell Physiol. 1989;139:586-591.
  • 43. Colson DJ, Browett JP, Fiddian NJ, Watson B. Treatment of delayed non-union of fractures using PEMF. J Biomed Eng. 1988;10(4):301-304.
  • 44. Lynch AF, MacAuley P. Treatment of bone non-union by electromagnetic theraphy. IJMS. 1985;154(4):153-155.
  • 45. He Z, Selvamurugan N, Warshaw J, Partridge NC. Pulsed electromagnetic fields inhibit human osteoclast formation and gene expression via osteoblasts. Bone. 2018;106:194-203.
  • 46. Sharrard WJW, Sutcliffe ML, Robson MJ, Maceachern AG. The treatment of fibrous non-union of fractures by pulsing electromagnetic stimulation. J Bone and Joint Surgery, 1982;64(2):189-193.
  • 47. Fassina L, Visai L, Benazzo F, Benedetti L, Calligaro A, De Angelis MG et al. Effects of electromagnetic stimulation on calcified matrix production by SAOS–2 cells over a Polyuretane porous scaffold. Tissue Eng. 2006;12(7):1985-99.
  • 48. Mohajerani H, Tabeie F, Vossoughi F, Jafari E, Assadi M. Effect of pulsed electromagnetic field on mandibular fracture healing: A randomized control trial, (RCT). J Stomatol Oral Maxillofac Surg. 2019;120(5):390-396.
  • 49. Emre M. Biyofiziksel stimülasyonun kemik ve kıkırdak dokusu üzerine etkileri. Proceedings Book: 744-754. Adana, V. International Congress on Natural and Health Sciences, 2019.
  • 50. Bassett CA. Beneficial effects of electromagnetics fields. J. Cell Bio Chemistry, 1993;51(4):387-93.
  • 51. Watkins JP, Auer JA, Morgan SJ, Gay S. Healing of surgically created defects in the equine superficial digital fleksor tendon: effects of pulsing electromagnatic field therapy on collagen type transformation and tissue morphologic reorganization. American Journal of Veterinary Research, 1985;46:2097-2103.
  • 52. Huegel J, Choi DS, Nuss CA, Minnig MCC, Tucker JJ, Kuntz AF. Effects of pulsed electromagnetic field therapy at different frequencies and durations on rotator cuff tendon-to-bone healing in a rat model. J Shoulder Elbow Surg. 2018;27(3):553-560.
  • 53. Frank C, Schachar N, Dittrich D, Shrive N, Phil D, deHaas Wet al. Electromagnetic stimulation of ligament healing in rabbits. Clinical Orthopedics and Realeted Research, 1983;175:263-272.
  • 54. Lee HJ, Lee JS, Pack JK, Choi HD, Kim N, Kim SH, et al. Lack of teratogenicity after combined exposure of pregnant mice to CDMA and WCDMA radiofrequency electromagnetic fields. Radiation research. 2009;172(5):648-52.
  • 55. Fragopoulou AF, Koussoulakos SL, Margaritis LH. Cranial and postcranial skeletal variations induced in mouse embryos by mobile phone radiation. Pathophysiology. 2010;17(3):169-77.
  • 56. Akdag MZ, Dasdag S, Erdal N, Buyukbayram H, Gurgul S. The effect of long-term extremely low-frequency magnetic field on geometric and biomechanical properties of rats bone. Electromagn Biol Med. 2010;29(1-2):9-18.
  • 57. Alchalabi ASH, Aklilu E, Aziz AR, Rahim H, Ronald SH, Malek MF et al. Impact of electromagnetic radiation exposure during pregnancy on embryonic skeletal development in rats. Asian Pacific Journal of Reproduction, 2017;6(3):104-111.
  • 58. Tsai MT, Chang WH, Chang K, Hou RJ, Wu TW. Pulsed electromagnetic fields affect osteoblast proliferation and differentitaion in bone tissue engineering. Bioelectromagnetics, 2007;28(7):519-28.
  • 59. Li WY, Li XY, Tian YH, Chen XR. Pulsed electromagnetic fields prevented the decrease of bone formation in hindlimb-suspended rats by activating sAC/cAMP/PKA/CREB signaling path way. Bioelectromagnetics, 2018;39:569-584.
  • 60. Atay T, Aslan A, Heybeli N, Aydoğan HN, Baydar ML, Ermol C, et al. Effects of 1800 MHz electromagnetic field emitted from cellular phones on bone tissue. Balkan Med J. 2009;26(4):292-296.
  • 61. Berman E, Carter HB, House D. Observations of Syrian hamster fetuses after exposure to 2450-MHz microwaves. J Microw Power, 1982;17(2):107-12.
  • 62. El-Sayed A, Badr HS, Yahia R, Salem SM, Kandil AM. Effects of thirty minute mobile phone irradiation on morphological and physiological parameters and gene expression in pregnant rats and their fetuses. African Journal of Biotechnology, 2011;10(26):19670-19680.

Elektromanyetik Alanların Kemik Dokusu Üzerine Etkisi

Yıl 2023, , 215 - 226, 31.12.2023
https://doi.org/10.17827/aktd.1343480

Öz

Günlük yaşantımızda en önemli ve vazgeçilmez unsurların başında hiç şüphesiz teknolojik cihazların yaygın kullanımı gelmektedir. Özellikle son yıllarda iletişim çağının inanılmaz bir hızla gelişimine paralel olarak yaşamımıza giren bu cihazlar (cep telefonları, baz istasyonları, yerel alan ağları vs.) bir taraftan yaşantımıza kolaylıklar sağlarken diğer taraftan birtakım olumsuzlukları beraberinde getirmişlerdir. Elektromanyetik alan’ların (EMA) etkisini uzun süre sonra göstermesi ve muhtemel olumsuz etkilerinin kamuoyu tarafından yeteri kadar bilinmemesi giderek artan bir endişeye neden olmuştur. Kemikte piezoelektrik, pyroelektrik, biyofloresans ve ferroelektrik gibi biyoelektrik potansiyellerin keşfi ile birlikte, EMA’ların kemik hücrelerinin davranışlarını etkileyebileceği iddia edilmiştir. Bu doğrultuda, oldukça düşük frekanslı EMA’ların osteoklastik aktiviteyi baskılayarak veya bazı hormonal değişiklikler gerçekleştirerek, osteoblastik aktiviteyi arttırdığına dair çalışmalar mevcuttur. Adeta yapay elektromanyetik alanlar içinde yüzer halde bulunduğumuz günümüzde, çeşitli araştırmacılar tarafından hemen tüm ortamlarda bulunan ve kontrolsüz EMA kaynaklarına maruz kalma sonucu hücre ve dokularda sinyal iletimi, hücre zar yapısı, iyon kanalları, moleküler etkileşimler ve DNA hasarı gibi olumsuz etkilere neden olabileceği rapor edilmiştir. Diğer yandan, kontrollü elektromanyetik alanlara maruz kalmanın ise kemik ve kıkırdaktaki kırık/hasarların onarımını hızlandırdığı bildirilmiştir. Bu derlemede, insan ve deney hayvanlarının kemik dokularında EMA’ların; kemik mineral yoğunluğu, kemik dayanıklılığı, kemik hücreleri, kemik hacmi, kemik formasyonu ve kemik kırıkları üzerine ne tür etkileri olduğuna dair bilgiler derlenip sunulmuştur.

Kaynakça

  • 1. Verma GP. Fundamentals of Histology: 105-119. India, New Age International, 2001.
  • 2. Junqueria LC, Carnerio J, Kelley RO. Basic Histology, 6 th ed (Published by Prentice-Hall International Inc): 136-153. Manchester, United Kingdom, İnternational Edition, 1989.
  • 3. Abraham KL. Histoloji ve hücre biyolojisi patolojiye giriş, (ed Demir R ): 533-564. İstanbul, Palme Yayıncılık, 2006.
  • 4. Buckwalter JA, Glimcher MJ, Cooper RR, Recker R. Bone biology. J Bone Joint Surg Am. 2010;77:1256-1275.
  • 5. Ross M, Pawlina W. Histology a Text and Atlas with Correlated Cell and Molecular Biyology, 6th ed 218- 244. Philadelphia, Macmilan Company, 2011.
  • 6. Lanyon LE. Osteocytes, strain detection, bone modeling and remodeling. Calcif Tissue Int. 1993;53:102-107.
  • 7. Standring S. Gray’s anatomy: The anatomical basis of clinical practice. 41th ed. 81-123. London, Elsevier pres, 2016.
  • 8. Reginato A, Wang W, Olsen B. Developmental biology of bone. In: Marcus R, Feldman DD, Kelsey J (Eds): Osteoporosis. San Diego, 2001;1:189-212.
  • 9. Raisz LG. Physiology and pathophysiology of bone remodeling. Clin Chem. 1999;45(8):1353-1358.
  • 10. Akay MT. Genel histoloji. 6.baskı 126–149. Ankara, Palme Yayıncılık, 2006.
  • 11. Gökçimen A. Genel Tıbbi Histoloji. 975-7929-82-4. Isparta, SDÜ Basımevi, 2006.
  • 12. Gupta MC, Maitra S. Bone grafts and bone morphogenetic proteins in spine fusion. Cell Tissue Bank. 2002;3(4):255-67.
  • 13. Meram İ. The effects of estrogen treatment on the trace elements and vitamins in menopausal women. Mersin Üni. Tıp Fak. Derg. 2001;4:472-478.
  • 14. Shoback D. Update in osteoporosis and metabolic bone disorders. J Clin Endoc & Metabo, 2007;92(3):747–753.
  • 15. Barrett KE, Barman SM, Boitano S, Brooks HL. Ganong'un Tıbbi Fizyolojisi. 385-388. Gökbel H. (Edt), Nobel Tıp Kitabevleri, İstanbul, 2015.
  • 16. Unur E, Ülger H, Ekinci N. Anatomi. 7-11. Kıvılcım Kitapevi, Kayseri, 2014.
  • 17. Majchrzak E, Dzıatkıewıcz G, Paruch M. The Modelling Of Heating A Tissue Subjected To External Electromagnetic Field. Acta Of Bioengineering And Biomechanics, 2008;10(2):29-37.
  • 18. Funk RH, Monsees TK. Effects of electromagnetic fields on cells: physiological and therapeutical approaches and molecular mechanisms of interaction. A review. Cells Tissues Organs, 2006;182(2):59-78.
  • 19. Ciombor DM, Lester G, Aaron RK, Neame P, Caterson B. Low frequency EMF regulates chondrocyte differentiation and expression of matrix proteins. J Orthop Res. 2002;20(1):40-50.
  • 20. Kong YY, William JB, Penninger MJ. Osteoprotegerin ligand: a regulator of immune responses and bone physiology. Immunol Today, 2010;21(10):495-502.
  • 21. Pacchierotti F, Ardoino L, Benassi B, Consales C, Cordelli E, Eleuteri P, et al. Effects of Radiofrequency Electromagnetic Field (RF-EMF) exposure on male fertility and pregnancy and birth outcomes: Protocols for a systematic review of experimental studies in non-human mammals and in human sperm exposed in vitro. Environ Int. 2021;157:106806.
  • 22. Mahmoudabadi FS, Ziaei S, Firoozabadi M, Kazemnejad A. Use of mobile phone during pregnancy and the risk of spontaneous abortion. J Environ Health Sci Eng. 2015;13:34.
  • 23. Lei T, Liang Z, Li F, Tang C, Xie K, Wang P et al. Pulsed electromagnetic fields (PEMF) attenuate changes in vertebral bone mass, architecture and strength in ovariectomized mice. Elsevier, 2018;108:10-19.
  • 24. Selvamurugan N, Kwok S, Vasilov, Jefcoat SC, Partridge. Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression. J Orthop Re. 2007;25(9):1213-1220.
  • 25. Schnoke M, Midura RJ. Pulsed electromagnetic fields rapidly modulate intracellular signaling events in osteoblastic cells: comparison to parathyroid hormone and insulin. J Orthop Res. 2007;25(7):933–940.
  • 26. Sert C, Mustafa D, Düz MZ, Asken F, Kaya A. The preventive effect on bone loss of 50 Hz, 1 mT electromagnetic field in ovariectomized rats. J. Bone and Min. Metab, 2002;20:345-349.
  • 27. Kyle C, Walter Hong-Song C. Pulsed electromagnetic fields prevent osteoporosis in an ovariectomized female rat model: A prostoglandin E2- associated Process. Bioelectromagnetics, 2003;24:189-198.
  • 28. Petecchia L, Sbrana F, Utzeri R, Vercellino M, Usai C, Visai L et al. Electro-magnetic field promotes osteogenic differentiation of BM-hMSCs through a selective action on Ca2+-related mechanisms. Sci Rep. 2015;5:1-13.
  • 29. Cantürk Tan F, Karamazı Y, Uçar S, Daşdağ S, Yalçın B, Tan B. The prenatale effect to ossification of exposure to radiofrequency-electromagnetic field. Acta Physiologica, 2018;225:66-66.
  • 30. Gonzalez Riola J, Pamies JA, Hernandez ER, Revilla M, Seco C, Villa LF et al. Influence of electromagnetic fields on bone mass and growth in developing rats: A morphometric, densitometric and histomorphometric study. Calcif. Tissue Int, 1997;60:533-537.
  • 31. Magras IN, Xenos TD. RF radiation-induced changes in the prenatal development of mice. Bioelectromagnetics, 1997;18:455–461.
  • 32. Jing D, Cai J, Wu Y, Shen G, Zhai M, Tong S, et al. Moderate-intensity rotating magnetic fields do not affect bone quality and bone remodeling in hindlimb suspended rats. PloS One, 2014;9(7):1-11.
  • 33. Hannay G, Leavesley D, Pearcy M, Timing of pulsed electromagnetic field stimulation does not affect the promotion of bone cell development. Bioelectromagnetics, 2005;26(8):670-6.
  • 34. Fukada E, Yasuda I. On the piezoelectric effect of bone. J. Phys. Soc. Jpn. 1957;12(10):1158-1162.
  • 35. Rubin CT, Hausman MR. The cellular basis of Wolff`s Law. Orthopedic Surgery and Degenerative Arthritis, 1988;14(3):503-515.
  • 36. Hastings GW, Mahmud FA. Electrical effects in bone. J Biomed Eng. 1988;10:515-521.
  • 37. Pawlikowski M. Electric phenomenon in bones as a result of piezoelectricity of hydroxyapatite. Arch Clin Biomed Res. 2017;1(3):132-139.
  • 38. Dobrev I, Sim JH, Pfiffner F, Huber AM, Röösli C. Performance evaluation of a novel piezoelectric subcutaneous bone conduction device. Hear Res. 2018;370:94-104.
  • 39. Wieland DC, Krywka C, Mick E, Willumeit Römer R, Bader R, Kluess D. Investigation of the inverse piezoelectric effect of trabecular bone on a micrometer length scale using synchrotron radiation. Acta Biomater. 2015;25:339-346.
  • 40. Eriksson C. Electrical properties in bone. Biochemistry and physiology of bone, 4nd (ed Bourne GH ): 329–384. New York, Academic Press, 1976.
  • 41. Bassett CAL, Pawluk RJ, Pilla AA. Acceleration of fracture repair by electromagnetic fields. A surgically noninvasive method. Ann N Acad Sci. 1974;238:242-261.
  • 42. Fitzsimmons RJ, Farley J, Adey WR, Baylink DJ. Frequency dependence of increased cell proliferation, in vivo, in exposures to a low-amplitude, low frequency electric field. J Cell Physiol. 1989;139:586-591.
  • 43. Colson DJ, Browett JP, Fiddian NJ, Watson B. Treatment of delayed non-union of fractures using PEMF. J Biomed Eng. 1988;10(4):301-304.
  • 44. Lynch AF, MacAuley P. Treatment of bone non-union by electromagnetic theraphy. IJMS. 1985;154(4):153-155.
  • 45. He Z, Selvamurugan N, Warshaw J, Partridge NC. Pulsed electromagnetic fields inhibit human osteoclast formation and gene expression via osteoblasts. Bone. 2018;106:194-203.
  • 46. Sharrard WJW, Sutcliffe ML, Robson MJ, Maceachern AG. The treatment of fibrous non-union of fractures by pulsing electromagnetic stimulation. J Bone and Joint Surgery, 1982;64(2):189-193.
  • 47. Fassina L, Visai L, Benazzo F, Benedetti L, Calligaro A, De Angelis MG et al. Effects of electromagnetic stimulation on calcified matrix production by SAOS–2 cells over a Polyuretane porous scaffold. Tissue Eng. 2006;12(7):1985-99.
  • 48. Mohajerani H, Tabeie F, Vossoughi F, Jafari E, Assadi M. Effect of pulsed electromagnetic field on mandibular fracture healing: A randomized control trial, (RCT). J Stomatol Oral Maxillofac Surg. 2019;120(5):390-396.
  • 49. Emre M. Biyofiziksel stimülasyonun kemik ve kıkırdak dokusu üzerine etkileri. Proceedings Book: 744-754. Adana, V. International Congress on Natural and Health Sciences, 2019.
  • 50. Bassett CA. Beneficial effects of electromagnetics fields. J. Cell Bio Chemistry, 1993;51(4):387-93.
  • 51. Watkins JP, Auer JA, Morgan SJ, Gay S. Healing of surgically created defects in the equine superficial digital fleksor tendon: effects of pulsing electromagnatic field therapy on collagen type transformation and tissue morphologic reorganization. American Journal of Veterinary Research, 1985;46:2097-2103.
  • 52. Huegel J, Choi DS, Nuss CA, Minnig MCC, Tucker JJ, Kuntz AF. Effects of pulsed electromagnetic field therapy at different frequencies and durations on rotator cuff tendon-to-bone healing in a rat model. J Shoulder Elbow Surg. 2018;27(3):553-560.
  • 53. Frank C, Schachar N, Dittrich D, Shrive N, Phil D, deHaas Wet al. Electromagnetic stimulation of ligament healing in rabbits. Clinical Orthopedics and Realeted Research, 1983;175:263-272.
  • 54. Lee HJ, Lee JS, Pack JK, Choi HD, Kim N, Kim SH, et al. Lack of teratogenicity after combined exposure of pregnant mice to CDMA and WCDMA radiofrequency electromagnetic fields. Radiation research. 2009;172(5):648-52.
  • 55. Fragopoulou AF, Koussoulakos SL, Margaritis LH. Cranial and postcranial skeletal variations induced in mouse embryos by mobile phone radiation. Pathophysiology. 2010;17(3):169-77.
  • 56. Akdag MZ, Dasdag S, Erdal N, Buyukbayram H, Gurgul S. The effect of long-term extremely low-frequency magnetic field on geometric and biomechanical properties of rats bone. Electromagn Biol Med. 2010;29(1-2):9-18.
  • 57. Alchalabi ASH, Aklilu E, Aziz AR, Rahim H, Ronald SH, Malek MF et al. Impact of electromagnetic radiation exposure during pregnancy on embryonic skeletal development in rats. Asian Pacific Journal of Reproduction, 2017;6(3):104-111.
  • 58. Tsai MT, Chang WH, Chang K, Hou RJ, Wu TW. Pulsed electromagnetic fields affect osteoblast proliferation and differentitaion in bone tissue engineering. Bioelectromagnetics, 2007;28(7):519-28.
  • 59. Li WY, Li XY, Tian YH, Chen XR. Pulsed electromagnetic fields prevented the decrease of bone formation in hindlimb-suspended rats by activating sAC/cAMP/PKA/CREB signaling path way. Bioelectromagnetics, 2018;39:569-584.
  • 60. Atay T, Aslan A, Heybeli N, Aydoğan HN, Baydar ML, Ermol C, et al. Effects of 1800 MHz electromagnetic field emitted from cellular phones on bone tissue. Balkan Med J. 2009;26(4):292-296.
  • 61. Berman E, Carter HB, House D. Observations of Syrian hamster fetuses after exposure to 2450-MHz microwaves. J Microw Power, 1982;17(2):107-12.
  • 62. El-Sayed A, Badr HS, Yahia R, Salem SM, Kandil AM. Effects of thirty minute mobile phone irradiation on morphological and physiological parameters and gene expression in pregnant rats and their fetuses. African Journal of Biotechnology, 2011;10(26):19670-19680.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Hizmetleri ve Sistemleri (Diğer)
Bölüm Derleme
Yazarlar

Yasin Karamazı 0000-0002-0352-5377

Mustafa Emre 0000-0001-9897-6674

Yayımlanma Tarihi 31 Aralık 2023
Kabul Tarihi 15 Kasım 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

AMA Karamazı Y, Emre M. Elektromanyetik Alanların Kemik Dokusu Üzerine Etkisi. aktd. Aralık 2023;32(4):215-226. doi:10.17827/aktd.1343480