Araştırma Makalesi
BibTex RIS Kaynak Göster

Dy3+ Katkılı BaB4O7 Bileşiğinin Sentezlenmesi ve Optiksel Özelliklerinin Araştırılması

Yıl 2022, , 33 - 44, 28.02.2022
https://doi.org/10.35414/akufemubid.1011824

Öz

Bu çalışmada disprosyum (Dy3+) katkılı baryum tetraborat (BaB4O7) bileşikleri katı hal sentez, mikrodalga yardımlı ve yüksek sıcaklık katı hal sentez metotları kullanılarak üretildiler. Bileşiklerin kristal yapısı, morfolojisi, kimyasal bağ oluşumları, Fotolüminesans (PL) ve Radyolüminesans (RL) özellikleri sırasıyla X ışınları toz kırınımı (XRD), taramalı elektron mikroskobu (SEM), Fourier Transform Infrared Spektroskopisi (FTIR), flüoresans ve X-ışını Lüminesans spektrometreler yardımıyla araştırılmıştır. Termal davranışın karakterize edilmesinde Diferansiyel-Termogravimetrik (DTA/TGA) termal analiz kullanılmıştır. XRD desenleri katkısız ve Dy3+ katkılı BaB4O7 bileşiklerin başarılı bir şekilde sentezlendiğini göstermektedir. FTIR sonuçları baryum tetraboratın sahip olduğu düzlemsel borat yapısını desteklemiştir. Dy3+ katkılı BaB4O7 bileşiklerinin fotolüminesans ışıma spektrumu 351 nm’de uyarılarak 430-700 nm bölgesinde üç ışıma bandı kaydedilmiştir. Dy3+ metal iyonunun muhtemel olan mavi ışıma 4F9/26H15/2 (463 nm), sarı ışıma 4F9/26H13/2 (575 nm) ve zayıf pik 4F9/26H11/2 (683 nm) enerji geçişleri gözlenmiştir. Radyolüminesans spektrumları Dy3+ metal iyonuna ait enerji geçişlerini ve fotolüminesans spektrum sonuçlarını desteklemiştir.

Destekleyen Kurum

TÜBİTAK Bilim İnsanı Destek Programları Başkanlığı

Proje Numarası

2218 Yurt İçi Doktora Sonrası Araştırma Burs Programı

Teşekkür

Bu çalışma TÜBİTAK 2218 Yurt İçi Doktora Sonrası Araştırma Burs Programı kapsamında desteklenmiştir. Bu çalışmayı gerçekleştirirken her türlü imkân ve desteği sağlayan Prof. Dr. Enver BULUR ve Prof. Dr. Ayşen YILMAZ hocalarıma sonsuz teşekkürlerimi sunarım.

Kaynakça

  • Akselrod, M. S., Larsen, N.A., Whitley, V., McKeever, S.W.S., 1998. Thermal quenching of F-center luminescence in Al2O3:C. Journal of Applied Physics. 84, 6, 3364-3373.
  • Blasse, G., 1988. Luminescence of inorganic solids: From isolated centres to concentrated systems. Progress in Solid State Chemistry, 18, 2, 79 – 171.
  • Blasse, G., Grabmaier, B.C., 1994. Luminescent Materials. Springer.VerJag Berlin.
  • Depci, T., Ozbayoglu, G., Yilmaz, A., 2010. Comparison of Different Synthesis Methods to Produce Lithium Triborate and Their Effects on Its Thermoluminescent Property. Metallurgical and Materials Transactions A, 41, 2584–2594.
  • Dey, R., Pandey, A., Rai, V.K., 2014. The Er3+–Yb3+ codoped La2O3 phosphor in finger print detection and optical heating. Spectrochimica Acta Part A, 128, 508-513.
  • Dey, R., Pandey, A., Rai, V.K., 2014. Er3+–Yb3+ and Eu3+–Er3+–Yb3+ codoped Y2O3 phosphors as optical heater. Sensors and Actuators B, 190, 512-515.
  • Engelsen, D.D., Fern, G.R., Ireland, T.G., Yang, F., Silver, J., 2020. Photoluminescence and cathodoluminescence of BaAl2O4:Eu2+ and undoped BaAl2O4: evidence for F-centres. Optical Materials Express, 10, 8/1, 1962-1980.
  • Fawad, U., Kim, H.J., Khan, S., Khan, M., Ali, L., 2016. Photoluminescent properties of white-light-emitting Li6Y(BO3)3:Dy3+ phosphor. Solid State Sciences, 62, 1-5.
  • Feldmann, C., Jüstel, T., Ronda, C.R., Schmidt, P.J., 2003. Inorganic Luminescent Materials: 100 Years of Research and Application. Advanced Functional Materials, 13, 7, 511–516.
  • Gou, J., Wang, Y., Li, F., 2008. The luminescence properties of Dy3+-activated SrB4O7 under VUV excitation. Journal of Luminescence, 128, 728–731.
  • Gul, G.C., Kurtuluş, F., 2017. RE (Y, Er, Gd, La, Nd, Sm, Dy)-doped SrBPO5 colorful phosphors: definition of structural unit cell parameters and optical properties. Optik, 139, 265-271.
  • Höppe, H.A., 2009. Recent Developments in the Field of Inorganic Phosphors. Angewandte Chemie International Edition, 48, 20, 3572-3582.
  • Hussin, R., Hamdan, S., Halim, D.N.F.A., Husin, M.S., 2010. The origin of emission in strontium magnesium pyrophosphate doped with Dy2O3. Materials Chemistry and Physics, 121, 1–2, 37–41.
  • İflazoğlu, S., Yılmaz, A, Bulur, E., 2020. Structural, photo, optical and thermal luminescent properties of beta barium metaborate. Journal of Alloys and Compounds, 829, 154430.
  • Jamalaiah, B.C. and Rasool, S.N., 2016. Luminescence properties of GdAl3(BO3)4: Dy3+ phosphors for white-LEDs. Materials Today: Proceedings, 3, 4019-4022.
  • Jamalaiah, B.C., Venkatramaiah, N., Rao T.S., Rasool, S.N., Rao, B.N., Ram, D.V.R., Reddy A.S.N., 2020. UV excited SrAl2O4:Tb3+ nanophosphors for photonic applications. Materials Science in Semiconductor Processing, 105, 104722-104726.
  • Jeon, Y., Bharat, L.K., Yu J.S., 2015. Synthesis and Luminescence Properties of Eu3+/Dy3+ ions co-doped Ca2La8(GeO4)6O2 Phosphors for White Light Applications. Journal of Alloys and Compounds, 620, 263-268.
  • Kellerman, D.G., Medvedeva, N.I., Kalinkin, M.O., Syurdo, A.I., Zubkov, V.G., 2018. Theoretical and experimental evidences of defects in LiMgPO4. Journal Alloys Compounds, 766, 626–636.
  • Kumamoto, N., Nakauchi, D., Kato, T., Kawano, N., Okada, G., Kawaguchi, N., Yanagida T., 2018. Radioluminescence and photoluminescence properties of Dy-doped 12CaO"7Al2O3 single crystals synthesized by the floating zone methods. Japanese Journal of Applied Physics, 57, 02CB12.
  • Kumar, V., Pandey, A., Swami, S.K., Ntwaeaborwa, O.M., Swart, H.C., Dutta V., 2018. Synthesis and characterization of Er3+–Yb3+ doped ZnO upconversion nanoparticles for solar cell application. Journal of Alloys and Compounds, 766, 429-435.
  • Kurt, K. and Çavdar, T., 2017. The Equipment Setup for Luminescence Spectrum with X-Ray Excitation. OMEE Materials for quantum and optoelectronics and detectors of radiation. Section 5.
  • Lavat, A., Graselli C., Santiago, M., Pomarico, J., Caselli, E., 2004. Influence of the preparation route on the optical properties of dosimetric phosphors based on rare-earth doped polycrystalline strontium borates. Crystal Research and Technology, 39, 10, 840 – 848.
  • Lee, K.H., Crawford, J.H., 1979. Luminescence of the F center in sapphire. Physical Review, 19,6, 3217-3221.
  • Maheshwary, B.P., Singh, R.A., 2016. Effect of annealing on the structural, optical and emissive properties of SrWO4:Ln3+ (Dy3+, Eu3+ and Sm3+) nanoparticles. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy. 152, 199–207.
  • Malik, C., Kaur, N., Singh, B., Pandey, A., 2020. Luminescence properties of tricalcium phosphate doped with dysprosium. Applied Radiation and Isotopes, 158,109062.
  • Manam, J., Sharma, S.K., 2005. Evaluation of trapping parameters of thermally stimulated luminescence glow curves in Cu-doped Li2B4O7 phosphor. Journal Radiation Physics and Chemistry, 72, 423–427.
  • Nikl, M., 2006. Scintillation detectors for X-rays. Measurement Science and Technology, 17, 4, R37-R54.
  • Ozdemir, Z., Ozbayoglu, G., Aysen, Y., 2007. Investigation of thermoluminescence properties of metal oxide doped lithium triborate. Journal Material Science, 42, 8501–8508.
  • Pandey, A., Rai, V.K., 2014. Pr3+–Yb3+ codoped Y2O3 phosphor for display devices. Materials Research Bulletin, 57, 156-161.
  • Pandey, A. Rai, V.K., Kumar, V., Swart, H.C., 2015. Upconversion based temperature-sensing ability of Er3+–Yb3+ codoped SrWO4: an optical heating phosphor. Sensors and Actuators B, 209, 352-358.
  • Pandey, A., Kumar, Som, S., Yousif, A., Kroon, R.E., Coetsee, E., Swart, H.C., 2017. Photon and electron beam pumped luminescence of Ho3+ activated CaMoO4 phosphor. Applied Surface Science, 423, 1169-1175.
  • Pathak, T.K., Kumar, A., Erasmus, L.J.B., Pandey, A., Coetsee, E., Swart, H.C., Kroon R.E., 2019. Highly efficient infrared to visible up-conversion emission tuning from red to white in Eu/Yb co-doped NaYF4 phosphor. Spectrochimica Acta Part A, 207, 23-30.
  • Pawar, P.P., Munishwar, S.R., Gedam, R.S., 2017. Intense white light luminescent Dy3+ doped lithium borate glasses for W-LED: A correlation between physical, thermal, structural and optical properties. Solid State Sciences, 64, 41–50.
  • Pekpak, E., Yilmaz, A., Ozbayoglu, G., 2011. The effect of synthesis and doping procedures on thermoluminescenct response of lithium tetraborate. Journal of Alloys and Compounds, 509, 2466–2472.
  • Rajagukguk, J., Sarumaha, C.S., Chanthima, N., Wantana, N., Kothan, S., Wongdamnern, N., Kaewkhao, J., 2021. Radio and photo luminescence of Dy3+ doped lithium fluorophosphate scintillating glass. Radiation Physics and Chemistry, 185, 109520.
  • Rojas, S.S., Yukimitu, K., de Camargo, A.S.S., Nunes, L.A.O., Hernandes, A.C., 2006. Undoped and calcium doped borate glass system for thermoluminescent dosimeter. Journal of Non-Crystalline Solids, 352, 3608–3612.
  • Saha, S., Kim, H.J., Khan, A., Cho, J., Kang, S., Ntarisa, A.V., 2021. Synthesis and luminescence studies of Dy3+ doped Li3Sc(BO3)2 polycrystalline powder for warm white light. Ceramics International, Available online 11 January 2022.
  • Sahu, I.P., 2016. Studies on the luminescence properties of dysprosium doped strontium metasilicate phosphor by solid state reaction methods. Journal Material Science: Mater Electron, 27, 9094–9106.
  • Santiago, M., Marcazzó, J., Grasselli, C., Lavat, A., Molina, P., Spano, F., Caselli, E., 2011. Thermo- and radioluminescence of undoped and Dy-doped strontium borates prepared by sol-gel methods. Radiation Measurements, 46, 1488-1491.
  • Som, S., Kumar, V., Gohain, M., Pandey, A., Duvenhage, M.M., Terblans, J.J., Bezuindenhoud, B.C.B., Swart, H.C., 2016. Dopant distribution and influence of sonication temperature on the pure red light emission of mixed oxide phosphor for solid-state lighting. Ultrasonics Sonochemistry, 28, 79-89.
  • Wazir, N., Kumar, V., Sharma, J., Ntwaeaborwa, O.M., Swart, H.C., 2016. Synthesis and photoluminescence study of a single dopant near white light emitting Li4CaB2O6 : Dy3+ nanophosphor. Journal of Alloys and Compounds, 688, 939-945.
  • Xie, R.J., Hirosaki N., 2007. Silicon-based oxynitride and nitride phosphors for white LEDs. Science and Technology of Advanced Materials, 8, 7–8, 588-600.
  • Yang, C.H., Pan, Y.X., Zhang, Q.Y., 2007. Enhanced White Light Emission from Dy+3/ Ce+3 codoped GdAl3(BO3)4 Phosphors by combustion synthesis. Materials Science and Engineering, 137, 195-199.
  • Yen, W.M., Shionova, S., Yamamoto, H., 2007. Phosphor Handbook, CRC Press, Boca Raton.
  • Yousif, A., Abbas, B.H., Kumar, V., Pandey, A., Swart, H.C., 2018. Luminescence properties of Eu3+ activated Y2O3 red phosphor with incorporation of Ga3+ and Bi3+ trace hertero-cations in the Y2O3 lattice. Vacuum, 155, 73-75.
  • Zhang, J., He, G., Li, R., Chen, X., 2010. Fabrication and optical properties of single-crystalline beta barium borate nanorods. Journal of Alloys and Compounds, 489, 504–508.
  • Zhang, W., Liu, S., Hu, Z., Liang, Y., Feng, Z., Sheng X., 2014. Preparation of YBO3:Dy3+,Bi3+ phosphors and enhanced photoluminescence. Materials Science and Engineering B, 187, 108–112.
  • Zheng, J., Cheng, Q., Chen W., Guo Z., Chena C., 2015. Luminescence Properties of an Orange-Red Ba5(BO3)2(B2O5): Sm3+ Phosphor with High Color Purity. Solid State Sciences, 4, R72-R77.
  • Zheng, J., Cheng, Q., Wu, J., Jui, X., Chen, R., Chen, W., 2015. A Novel Single Phase White Phospor NaBaBO3: Dy3+ K+ for Near-UV White Light-emitting Diodes. Materials Research Bulletin, 73, 38-47.
  • Zhou, Q., Zhu, S., Ma, Z., Liu, Y., Liu, L., Gao L., 2021. Experimental and first-principles study on the effect of oxygen vacancy on infrared emissivity of CeO2. Ceramics International. Available online 1 January 2022.

Synthesis and Investigation of Optical Properties of Dy3+ Doped BaB4O7 Compound

Yıl 2022, , 33 - 44, 28.02.2022
https://doi.org/10.35414/akufemubid.1011824

Öz

In this study, dysporsium (Dy3+) doped barium tetraborate (BaB4O7) compounds produced using solid-state synthesis, microwave-assisted, and high-temperature solid-state synthesis methods. The crystal structure, morphology, chemical bond formation, Photoluminescence (PL), and Radioluminescence (RL) properties of all synthesized compounds were investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Fluorescence, and X-Ray Luminescence spectrometers respectively. Differential-Thermogravimetric (DTA/TGA) thermal analysis was used to characterize the thermal behavior. XRD patterns show that undoped and Dy3+ doped BaB4O7 compounds were successfully synthesized. FTIR spectra of the barium tetraborate support the formation of planar borate units. Results shows emission spectra of Dy3+ doped BaB4O7 compounds upon 351 nm excitation. The phosphors emitted three bands in 430-700 nm region at this excitation wavelength. The blue emission (463nm) corresponds to 4F9/26H15/2 transition, the yellow emission (575 nm) is associated with 4F9/26H13/2 transition, and the weak peak (683 nm) is related to the transition from 4F9/26H11/2 (665 nm). Radioluminescence spectra supported the energy transitions of Dy3+ metal ion and photoluminescence spectrum results.

Proje Numarası

2218 Yurt İçi Doktora Sonrası Araştırma Burs Programı

Kaynakça

  • Akselrod, M. S., Larsen, N.A., Whitley, V., McKeever, S.W.S., 1998. Thermal quenching of F-center luminescence in Al2O3:C. Journal of Applied Physics. 84, 6, 3364-3373.
  • Blasse, G., 1988. Luminescence of inorganic solids: From isolated centres to concentrated systems. Progress in Solid State Chemistry, 18, 2, 79 – 171.
  • Blasse, G., Grabmaier, B.C., 1994. Luminescent Materials. Springer.VerJag Berlin.
  • Depci, T., Ozbayoglu, G., Yilmaz, A., 2010. Comparison of Different Synthesis Methods to Produce Lithium Triborate and Their Effects on Its Thermoluminescent Property. Metallurgical and Materials Transactions A, 41, 2584–2594.
  • Dey, R., Pandey, A., Rai, V.K., 2014. The Er3+–Yb3+ codoped La2O3 phosphor in finger print detection and optical heating. Spectrochimica Acta Part A, 128, 508-513.
  • Dey, R., Pandey, A., Rai, V.K., 2014. Er3+–Yb3+ and Eu3+–Er3+–Yb3+ codoped Y2O3 phosphors as optical heater. Sensors and Actuators B, 190, 512-515.
  • Engelsen, D.D., Fern, G.R., Ireland, T.G., Yang, F., Silver, J., 2020. Photoluminescence and cathodoluminescence of BaAl2O4:Eu2+ and undoped BaAl2O4: evidence for F-centres. Optical Materials Express, 10, 8/1, 1962-1980.
  • Fawad, U., Kim, H.J., Khan, S., Khan, M., Ali, L., 2016. Photoluminescent properties of white-light-emitting Li6Y(BO3)3:Dy3+ phosphor. Solid State Sciences, 62, 1-5.
  • Feldmann, C., Jüstel, T., Ronda, C.R., Schmidt, P.J., 2003. Inorganic Luminescent Materials: 100 Years of Research and Application. Advanced Functional Materials, 13, 7, 511–516.
  • Gou, J., Wang, Y., Li, F., 2008. The luminescence properties of Dy3+-activated SrB4O7 under VUV excitation. Journal of Luminescence, 128, 728–731.
  • Gul, G.C., Kurtuluş, F., 2017. RE (Y, Er, Gd, La, Nd, Sm, Dy)-doped SrBPO5 colorful phosphors: definition of structural unit cell parameters and optical properties. Optik, 139, 265-271.
  • Höppe, H.A., 2009. Recent Developments in the Field of Inorganic Phosphors. Angewandte Chemie International Edition, 48, 20, 3572-3582.
  • Hussin, R., Hamdan, S., Halim, D.N.F.A., Husin, M.S., 2010. The origin of emission in strontium magnesium pyrophosphate doped with Dy2O3. Materials Chemistry and Physics, 121, 1–2, 37–41.
  • İflazoğlu, S., Yılmaz, A, Bulur, E., 2020. Structural, photo, optical and thermal luminescent properties of beta barium metaborate. Journal of Alloys and Compounds, 829, 154430.
  • Jamalaiah, B.C. and Rasool, S.N., 2016. Luminescence properties of GdAl3(BO3)4: Dy3+ phosphors for white-LEDs. Materials Today: Proceedings, 3, 4019-4022.
  • Jamalaiah, B.C., Venkatramaiah, N., Rao T.S., Rasool, S.N., Rao, B.N., Ram, D.V.R., Reddy A.S.N., 2020. UV excited SrAl2O4:Tb3+ nanophosphors for photonic applications. Materials Science in Semiconductor Processing, 105, 104722-104726.
  • Jeon, Y., Bharat, L.K., Yu J.S., 2015. Synthesis and Luminescence Properties of Eu3+/Dy3+ ions co-doped Ca2La8(GeO4)6O2 Phosphors for White Light Applications. Journal of Alloys and Compounds, 620, 263-268.
  • Kellerman, D.G., Medvedeva, N.I., Kalinkin, M.O., Syurdo, A.I., Zubkov, V.G., 2018. Theoretical and experimental evidences of defects in LiMgPO4. Journal Alloys Compounds, 766, 626–636.
  • Kumamoto, N., Nakauchi, D., Kato, T., Kawano, N., Okada, G., Kawaguchi, N., Yanagida T., 2018. Radioluminescence and photoluminescence properties of Dy-doped 12CaO"7Al2O3 single crystals synthesized by the floating zone methods. Japanese Journal of Applied Physics, 57, 02CB12.
  • Kumar, V., Pandey, A., Swami, S.K., Ntwaeaborwa, O.M., Swart, H.C., Dutta V., 2018. Synthesis and characterization of Er3+–Yb3+ doped ZnO upconversion nanoparticles for solar cell application. Journal of Alloys and Compounds, 766, 429-435.
  • Kurt, K. and Çavdar, T., 2017. The Equipment Setup for Luminescence Spectrum with X-Ray Excitation. OMEE Materials for quantum and optoelectronics and detectors of radiation. Section 5.
  • Lavat, A., Graselli C., Santiago, M., Pomarico, J., Caselli, E., 2004. Influence of the preparation route on the optical properties of dosimetric phosphors based on rare-earth doped polycrystalline strontium borates. Crystal Research and Technology, 39, 10, 840 – 848.
  • Lee, K.H., Crawford, J.H., 1979. Luminescence of the F center in sapphire. Physical Review, 19,6, 3217-3221.
  • Maheshwary, B.P., Singh, R.A., 2016. Effect of annealing on the structural, optical and emissive properties of SrWO4:Ln3+ (Dy3+, Eu3+ and Sm3+) nanoparticles. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy. 152, 199–207.
  • Malik, C., Kaur, N., Singh, B., Pandey, A., 2020. Luminescence properties of tricalcium phosphate doped with dysprosium. Applied Radiation and Isotopes, 158,109062.
  • Manam, J., Sharma, S.K., 2005. Evaluation of trapping parameters of thermally stimulated luminescence glow curves in Cu-doped Li2B4O7 phosphor. Journal Radiation Physics and Chemistry, 72, 423–427.
  • Nikl, M., 2006. Scintillation detectors for X-rays. Measurement Science and Technology, 17, 4, R37-R54.
  • Ozdemir, Z., Ozbayoglu, G., Aysen, Y., 2007. Investigation of thermoluminescence properties of metal oxide doped lithium triborate. Journal Material Science, 42, 8501–8508.
  • Pandey, A., Rai, V.K., 2014. Pr3+–Yb3+ codoped Y2O3 phosphor for display devices. Materials Research Bulletin, 57, 156-161.
  • Pandey, A. Rai, V.K., Kumar, V., Swart, H.C., 2015. Upconversion based temperature-sensing ability of Er3+–Yb3+ codoped SrWO4: an optical heating phosphor. Sensors and Actuators B, 209, 352-358.
  • Pandey, A., Kumar, Som, S., Yousif, A., Kroon, R.E., Coetsee, E., Swart, H.C., 2017. Photon and electron beam pumped luminescence of Ho3+ activated CaMoO4 phosphor. Applied Surface Science, 423, 1169-1175.
  • Pathak, T.K., Kumar, A., Erasmus, L.J.B., Pandey, A., Coetsee, E., Swart, H.C., Kroon R.E., 2019. Highly efficient infrared to visible up-conversion emission tuning from red to white in Eu/Yb co-doped NaYF4 phosphor. Spectrochimica Acta Part A, 207, 23-30.
  • Pawar, P.P., Munishwar, S.R., Gedam, R.S., 2017. Intense white light luminescent Dy3+ doped lithium borate glasses for W-LED: A correlation between physical, thermal, structural and optical properties. Solid State Sciences, 64, 41–50.
  • Pekpak, E., Yilmaz, A., Ozbayoglu, G., 2011. The effect of synthesis and doping procedures on thermoluminescenct response of lithium tetraborate. Journal of Alloys and Compounds, 509, 2466–2472.
  • Rajagukguk, J., Sarumaha, C.S., Chanthima, N., Wantana, N., Kothan, S., Wongdamnern, N., Kaewkhao, J., 2021. Radio and photo luminescence of Dy3+ doped lithium fluorophosphate scintillating glass. Radiation Physics and Chemistry, 185, 109520.
  • Rojas, S.S., Yukimitu, K., de Camargo, A.S.S., Nunes, L.A.O., Hernandes, A.C., 2006. Undoped and calcium doped borate glass system for thermoluminescent dosimeter. Journal of Non-Crystalline Solids, 352, 3608–3612.
  • Saha, S., Kim, H.J., Khan, A., Cho, J., Kang, S., Ntarisa, A.V., 2021. Synthesis and luminescence studies of Dy3+ doped Li3Sc(BO3)2 polycrystalline powder for warm white light. Ceramics International, Available online 11 January 2022.
  • Sahu, I.P., 2016. Studies on the luminescence properties of dysprosium doped strontium metasilicate phosphor by solid state reaction methods. Journal Material Science: Mater Electron, 27, 9094–9106.
  • Santiago, M., Marcazzó, J., Grasselli, C., Lavat, A., Molina, P., Spano, F., Caselli, E., 2011. Thermo- and radioluminescence of undoped and Dy-doped strontium borates prepared by sol-gel methods. Radiation Measurements, 46, 1488-1491.
  • Som, S., Kumar, V., Gohain, M., Pandey, A., Duvenhage, M.M., Terblans, J.J., Bezuindenhoud, B.C.B., Swart, H.C., 2016. Dopant distribution and influence of sonication temperature on the pure red light emission of mixed oxide phosphor for solid-state lighting. Ultrasonics Sonochemistry, 28, 79-89.
  • Wazir, N., Kumar, V., Sharma, J., Ntwaeaborwa, O.M., Swart, H.C., 2016. Synthesis and photoluminescence study of a single dopant near white light emitting Li4CaB2O6 : Dy3+ nanophosphor. Journal of Alloys and Compounds, 688, 939-945.
  • Xie, R.J., Hirosaki N., 2007. Silicon-based oxynitride and nitride phosphors for white LEDs. Science and Technology of Advanced Materials, 8, 7–8, 588-600.
  • Yang, C.H., Pan, Y.X., Zhang, Q.Y., 2007. Enhanced White Light Emission from Dy+3/ Ce+3 codoped GdAl3(BO3)4 Phosphors by combustion synthesis. Materials Science and Engineering, 137, 195-199.
  • Yen, W.M., Shionova, S., Yamamoto, H., 2007. Phosphor Handbook, CRC Press, Boca Raton.
  • Yousif, A., Abbas, B.H., Kumar, V., Pandey, A., Swart, H.C., 2018. Luminescence properties of Eu3+ activated Y2O3 red phosphor with incorporation of Ga3+ and Bi3+ trace hertero-cations in the Y2O3 lattice. Vacuum, 155, 73-75.
  • Zhang, J., He, G., Li, R., Chen, X., 2010. Fabrication and optical properties of single-crystalline beta barium borate nanorods. Journal of Alloys and Compounds, 489, 504–508.
  • Zhang, W., Liu, S., Hu, Z., Liang, Y., Feng, Z., Sheng X., 2014. Preparation of YBO3:Dy3+,Bi3+ phosphors and enhanced photoluminescence. Materials Science and Engineering B, 187, 108–112.
  • Zheng, J., Cheng, Q., Chen W., Guo Z., Chena C., 2015. Luminescence Properties of an Orange-Red Ba5(BO3)2(B2O5): Sm3+ Phosphor with High Color Purity. Solid State Sciences, 4, R72-R77.
  • Zheng, J., Cheng, Q., Wu, J., Jui, X., Chen, R., Chen, W., 2015. A Novel Single Phase White Phospor NaBaBO3: Dy3+ K+ for Near-UV White Light-emitting Diodes. Materials Research Bulletin, 73, 38-47.
  • Zhou, Q., Zhu, S., Ma, Z., Liu, Y., Liu, L., Gao L., 2021. Experimental and first-principles study on the effect of oxygen vacancy on infrared emissivity of CeO2. Ceramics International. Available online 1 January 2022.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yoğun Madde Fiziği, İnorganik Kimya
Bölüm Makaleler
Yazarlar

Sera İflazoğlu 0000-0001-6729-3184

Proje Numarası 2218 Yurt İçi Doktora Sonrası Araştırma Burs Programı
Yayımlanma Tarihi 28 Şubat 2022
Gönderilme Tarihi 19 Ekim 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA İflazoğlu, S. (2022). Dy3+ Katkılı BaB4O7 Bileşiğinin Sentezlenmesi ve Optiksel Özelliklerinin Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(1), 33-44. https://doi.org/10.35414/akufemubid.1011824
AMA İflazoğlu S. Dy3+ Katkılı BaB4O7 Bileşiğinin Sentezlenmesi ve Optiksel Özelliklerinin Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Şubat 2022;22(1):33-44. doi:10.35414/akufemubid.1011824
Chicago İflazoğlu, Sera. “Dy3+ Katkılı BaB4O7 Bileşiğinin Sentezlenmesi Ve Optiksel Özelliklerinin Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, sy. 1 (Şubat 2022): 33-44. https://doi.org/10.35414/akufemubid.1011824.
EndNote İflazoğlu S (01 Şubat 2022) Dy3+ Katkılı BaB4O7 Bileşiğinin Sentezlenmesi ve Optiksel Özelliklerinin Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 1 33–44.
IEEE S. İflazoğlu, “Dy3+ Katkılı BaB4O7 Bileşiğinin Sentezlenmesi ve Optiksel Özelliklerinin Araştırılması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 1, ss. 33–44, 2022, doi: 10.35414/akufemubid.1011824.
ISNAD İflazoğlu, Sera. “Dy3+ Katkılı BaB4O7 Bileşiğinin Sentezlenmesi Ve Optiksel Özelliklerinin Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/1 (Şubat 2022), 33-44. https://doi.org/10.35414/akufemubid.1011824.
JAMA İflazoğlu S. Dy3+ Katkılı BaB4O7 Bileşiğinin Sentezlenmesi ve Optiksel Özelliklerinin Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:33–44.
MLA İflazoğlu, Sera. “Dy3+ Katkılı BaB4O7 Bileşiğinin Sentezlenmesi Ve Optiksel Özelliklerinin Araştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 1, 2022, ss. 33-44, doi:10.35414/akufemubid.1011824.
Vancouver İflazoğlu S. Dy3+ Katkılı BaB4O7 Bileşiğinin Sentezlenmesi ve Optiksel Özelliklerinin Araştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(1):33-44.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.