Araştırma Makalesi
BibTex RIS Kaynak Göster

Application of Classical Lamination Theory to Fused Deposition Method 3-D Printed Plastics and Full Field Surface Strain Mapping

Yıl 2022, , 342 - 352, 30.04.2022
https://doi.org/10.35414/akufemubid.1018774

Öz

In this study, five differently oriented sets of 3D-printed tensile samples are produced using the Fused Deposition Method (FDM). Among these five sets, three are used to determine the elastic constant to be used in Classical Lamination Theory (CLT), which is generally used to model fiber-reinforced polymers (FRP). Based on the obtained results, CLT is further applied to the remaining two sets of unreinforced 3D-printed polymer samples where the deposition direction varies in each layer. The stress and strain calculated with CLT are then compared with experimental results obtained through tensile testing. The comparison depicts that experimental and CLT results are in good agreement at lower strain levels. In contrast, the stress calculated with CLT deviates from the experimental result at the higher strain levels.
Thereafter, a full-field surface strain mapping is applied by using Digital Image Correlation (DIC) Techniques to reveal the damage progression and failure of Fused Deposition Method 3-D Printed Plastics.

Kaynakça

  • Alaimo, G., Marconi, S., Costato, L., & Auricchio, F. 2017. Influence of meso-structure and chemical composition on FDM 3D-printed parts. Composites Part B: Engineering, 113, 371–380.
  • Alexander, P., Allen, S., & Dutta, D. 1998. Part orientation and build cost determination in layered manufacturing. Computer-Aided Design, 30(5), 343–356.
  • Bacak, S., Varol, H. V. Ö., & Tatlı, M. 2020. Fdm Yöntemi İle Üretilen Pla Numunelerin Çekme Özelliklerine İşlem Parametrelerinin Etkisinin İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 9(1), 209–216.
  • Casavola, C., Cazzato, A., Moramarco, V., & Pappalettere, C. 2016. Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Materials & Design, 90, 453–458.
  • Demircioğlu, P., Sucuoğlu, H. S., Böğrekci, İ., & Gültekin, A. 2018. The effect of three dimensional printed infill pattern on structural strength. El-Cezeri Journal of Science and Engineering, 5(3), 785–796.
  • Erşan, K., Demiroğlu, Y. A., & Güldür, B. 2018. Design and Manufacturing of Real-Scale-Mockup-Car Door Via 3d Printer. Journal of New Results in Science, 7(3), 54–66.
  • Ghorpade, A., Karunakaran, K. P., & Tiwari, M. K. 2007. Selection of optimal part orientation in fused deposition modelling using swarm intelligence. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(7), 1209–1219.
  • Giri, J., Chiwande, A., Gupta, Y., Mahatme, C., & Giri, P. 2021. Effect of process parameters on mechanical properties of 3d printed samples using FDM process. Materials Today: Proceedings, 47, 5856–5861.
  • Gupta, A., Fidan, I., Hasanov, S., & Nasirov, A. 2020. Processing, mechanical characterization, and micrography of 3D-printed short carbon fiber reinforced polycarbonate polymer matrix composite material. The International Journal of Advanced Manufacturing Technology, 107(7), 3185–3205.
  • Hanon, M. M., Alshammas, Y., & Zsidai, L. 2020. Effect of print orientation and bronze existence on tribological and mechanical properties of 3D-printed bronze/PLA composite. The International Journal of Advanced Manufacturing Technology, 108(1), 553–570.
  • Internasional, A. 2014. ASTM D638-14 Standard Test Methods for Tensile Properties of Plastic. America Society for Testing and Material.
  • Joshi, S. C., & Sheikh, A. A. 2015. 3D printing in aerospace and its long-term sustainability. Virtual and Physical Prototyping, 10(4), 175–185.
  • Kamaal, M., Anas, M., Rastogi, H., Bhardwaj, N., & Rahaman, A. 2021. Effect of FDM process parameters on mechanical properties of 3D-printed carbon fibre–PLA composite. Progress in Additive Manufacturing, 6(1), 63–69.
  • Karakurt, I., & Lin, L. 2020. 3D printing technologies: techniques, materials, and post-processing. Current Opinion in Chemical Engineering, 28, 134–143.
  • Kiendl, J., & Gao, C. 2020. Controlling toughness and strength of FDM 3D-printed PLA components through the raster layup. Composites Part B: Engineering, 180, 107562.
  • Kumar, N., Jain, P. K., Tandon, P., & Pandey, P. M. 2018. The effect of process parameters on tensile behavior of 3D printed flexible parts of ethylene vinyl acetate (EVA). Journal of Manufacturing Processes, 35, 317–326.
  • Lee, J.-Y., An, J., & Chua, C. K. 2017. Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 7, 120–133.
  • Love, J. D., George, M. J., Aroom, K., & Gill, B. 2014. Inguinal hernia repair using 3 dimensional (3D) printed surgical instruments in the cadaveric model. Journal of the American College of Surgeons, 219(4, Supplement), e99.
  • Masood, S H, Rattanawong, W., & Iovenitti, P. 2003. A generic algorithm for a best part orientation system for complex parts in rapid prototyping. Journal of Materials Processing Technology, 139(1), 110–116.
  • Masood, Syed H, Rattanawong, W., & Iovenitti, P. 2000. Part build orientations based on volumetric error in fused deposition modelling. The International Journal of Advanced Manufacturing Technology, 16(3), 162–168.
  • Panbarasu, K., Ranganath, V. R., & Prakash, R. V. 2021. An investigation on static failure behaviour of CFRP quasi isotropic laminates under in-plane and out-of-plane loads. Materials Today: Proceedings, 39, 1465–1471.
  • Pandey, P. M., Thrimurthulu, K., & Reddy *, N. V. 2004. Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm. International Journal of Production Research, 42(19), 4069–4089.
  • Popescu, D., Zapciu, A., Amza, C., Baciu, F., & Marinescu, R. 2018. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polymer Testing, 69, 157–166.
  • Sachyani Keneth, E., Kamyshny, A., Totaro, M., Beccai, L., & Magdassi, S. 2021. 3D Printing Materials for Soft Robotics. Advanced Materials, 33(19), 2003387.
  • Tay, Y. W. D., Panda, B., Paul, S. C., Noor Mohamed, N. A., Tan, M. J., & Leong, K. F. 2017. 3D printing trends in building and construction industry: a review. Virtual and Physical Prototyping, 12(3), 261–276.
  • Thrimurthulu, K., Pandey, P. M., & Venkata Reddy, N. (2004). Optimum part deposition orientation in fused deposition modeling. International Journal of Machine Tools and Manufacture, 44(6), 585–594.
  • Yavuz, İ., Erçek, E., & Yuran, A. F. 2021. Ulaştırma Sektöründe İmdat Çekici Tasarımı ve 3B Yazıcı ile Üretimi. In International Journal of Multidisciplinary Studies and Innovative Technologies, 5 (1), 46–49.
  • Yilmaz, C., Akalin, C., Kocaman, E. S., Suleman, A., & Yildiz, M. (2016). Monitoring Poisson’s ratio of glass fiber reinforced composites as damage index using biaxial Fiber Bragg Grating sensors. Polymer Testing, 53, 98–107.
  • Zaldivar, R. J., Witkin, D. B., McLouth, T., Patel, D. N., Schmitt, K., & Nokes, J. P. (2017). Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-Printed ULTEM® 9085 Material. Additive Manufacturing, 13, 71–80.

Klasik Laminasyon Teorisinin Üç Boyutlu Yazıcı ile Eriyik Yığma Modelleme Yöntemi Kullanılarak Üretilmiş Plastiklere Uygulanması ve Tam Alanlı Yüzey Gerinim Haritalanması

Yıl 2022, , 342 - 352, 30.04.2022
https://doi.org/10.35414/akufemubid.1018774

Öz

Bu çalışmada üç boyutlu yazıcı ile Eriyik Yığma Modellemesi (EYM) yöntemi kullanılarak farklı yazma yönlerindeki katmanlara sahip toplamda beş set çekme örneği üretilmiştir. Üretilen üç farklı sete çekme testi yapılarak farklı yönlerdeki elastik sabitler daha sonra Klasik Laminasyon Teorisinde (KLT) kullanılmak üzere ölçülmüştür. Klasik Laminasyon Teorisi genel olarak tek yönlü fiberler ihtiva eden polimerik yapıların modellenmesi için kullanılmaktadır. Bu çalışma ile KLT üç boyutlu yazıcı ile üretilen ve içerisinde herhangi bir fiber takviyesi ihtiva etmeyen ve her katmanda yazma yönleri değişen iki farklı polimerik yapıya uygulanmıştır. KLT ile elde edilen gerinim ve gerilme değerleri çekme deneyi ile elde edilen gerinim ve gerilme değerleri ile karşılaştırmıştır. Elde edilen sonuçlara göre düşük gerinim değerleri için KLT ile elde edilen sonuçların deneysel sonuçlar ile uyumlu olduğu, yalnız gerinim değeri arttıkça KLT ile hesaplanan değerlerinin deneysel değerlerden uzaklaştığı görülmüştür. Daha sonra ise Eriyik Yığma Modelleme Yöntemi ile üretilen üç boyutlu plastiklerin hasar ilerlemesi ve kırılması Dijital Görüntü Korelasyon Tekniği ile Tam Alanlı Yüzey Gerinim Haritalanması kullanılarak çıkarılmıştır.

Kaynakça

  • Alaimo, G., Marconi, S., Costato, L., & Auricchio, F. 2017. Influence of meso-structure and chemical composition on FDM 3D-printed parts. Composites Part B: Engineering, 113, 371–380.
  • Alexander, P., Allen, S., & Dutta, D. 1998. Part orientation and build cost determination in layered manufacturing. Computer-Aided Design, 30(5), 343–356.
  • Bacak, S., Varol, H. V. Ö., & Tatlı, M. 2020. Fdm Yöntemi İle Üretilen Pla Numunelerin Çekme Özelliklerine İşlem Parametrelerinin Etkisinin İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 9(1), 209–216.
  • Casavola, C., Cazzato, A., Moramarco, V., & Pappalettere, C. 2016. Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Materials & Design, 90, 453–458.
  • Demircioğlu, P., Sucuoğlu, H. S., Böğrekci, İ., & Gültekin, A. 2018. The effect of three dimensional printed infill pattern on structural strength. El-Cezeri Journal of Science and Engineering, 5(3), 785–796.
  • Erşan, K., Demiroğlu, Y. A., & Güldür, B. 2018. Design and Manufacturing of Real-Scale-Mockup-Car Door Via 3d Printer. Journal of New Results in Science, 7(3), 54–66.
  • Ghorpade, A., Karunakaran, K. P., & Tiwari, M. K. 2007. Selection of optimal part orientation in fused deposition modelling using swarm intelligence. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(7), 1209–1219.
  • Giri, J., Chiwande, A., Gupta, Y., Mahatme, C., & Giri, P. 2021. Effect of process parameters on mechanical properties of 3d printed samples using FDM process. Materials Today: Proceedings, 47, 5856–5861.
  • Gupta, A., Fidan, I., Hasanov, S., & Nasirov, A. 2020. Processing, mechanical characterization, and micrography of 3D-printed short carbon fiber reinforced polycarbonate polymer matrix composite material. The International Journal of Advanced Manufacturing Technology, 107(7), 3185–3205.
  • Hanon, M. M., Alshammas, Y., & Zsidai, L. 2020. Effect of print orientation and bronze existence on tribological and mechanical properties of 3D-printed bronze/PLA composite. The International Journal of Advanced Manufacturing Technology, 108(1), 553–570.
  • Internasional, A. 2014. ASTM D638-14 Standard Test Methods for Tensile Properties of Plastic. America Society for Testing and Material.
  • Joshi, S. C., & Sheikh, A. A. 2015. 3D printing in aerospace and its long-term sustainability. Virtual and Physical Prototyping, 10(4), 175–185.
  • Kamaal, M., Anas, M., Rastogi, H., Bhardwaj, N., & Rahaman, A. 2021. Effect of FDM process parameters on mechanical properties of 3D-printed carbon fibre–PLA composite. Progress in Additive Manufacturing, 6(1), 63–69.
  • Karakurt, I., & Lin, L. 2020. 3D printing technologies: techniques, materials, and post-processing. Current Opinion in Chemical Engineering, 28, 134–143.
  • Kiendl, J., & Gao, C. 2020. Controlling toughness and strength of FDM 3D-printed PLA components through the raster layup. Composites Part B: Engineering, 180, 107562.
  • Kumar, N., Jain, P. K., Tandon, P., & Pandey, P. M. 2018. The effect of process parameters on tensile behavior of 3D printed flexible parts of ethylene vinyl acetate (EVA). Journal of Manufacturing Processes, 35, 317–326.
  • Lee, J.-Y., An, J., & Chua, C. K. 2017. Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 7, 120–133.
  • Love, J. D., George, M. J., Aroom, K., & Gill, B. 2014. Inguinal hernia repair using 3 dimensional (3D) printed surgical instruments in the cadaveric model. Journal of the American College of Surgeons, 219(4, Supplement), e99.
  • Masood, S H, Rattanawong, W., & Iovenitti, P. 2003. A generic algorithm for a best part orientation system for complex parts in rapid prototyping. Journal of Materials Processing Technology, 139(1), 110–116.
  • Masood, Syed H, Rattanawong, W., & Iovenitti, P. 2000. Part build orientations based on volumetric error in fused deposition modelling. The International Journal of Advanced Manufacturing Technology, 16(3), 162–168.
  • Panbarasu, K., Ranganath, V. R., & Prakash, R. V. 2021. An investigation on static failure behaviour of CFRP quasi isotropic laminates under in-plane and out-of-plane loads. Materials Today: Proceedings, 39, 1465–1471.
  • Pandey, P. M., Thrimurthulu, K., & Reddy *, N. V. 2004. Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm. International Journal of Production Research, 42(19), 4069–4089.
  • Popescu, D., Zapciu, A., Amza, C., Baciu, F., & Marinescu, R. 2018. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polymer Testing, 69, 157–166.
  • Sachyani Keneth, E., Kamyshny, A., Totaro, M., Beccai, L., & Magdassi, S. 2021. 3D Printing Materials for Soft Robotics. Advanced Materials, 33(19), 2003387.
  • Tay, Y. W. D., Panda, B., Paul, S. C., Noor Mohamed, N. A., Tan, M. J., & Leong, K. F. 2017. 3D printing trends in building and construction industry: a review. Virtual and Physical Prototyping, 12(3), 261–276.
  • Thrimurthulu, K., Pandey, P. M., & Venkata Reddy, N. (2004). Optimum part deposition orientation in fused deposition modeling. International Journal of Machine Tools and Manufacture, 44(6), 585–594.
  • Yavuz, İ., Erçek, E., & Yuran, A. F. 2021. Ulaştırma Sektöründe İmdat Çekici Tasarımı ve 3B Yazıcı ile Üretimi. In International Journal of Multidisciplinary Studies and Innovative Technologies, 5 (1), 46–49.
  • Yilmaz, C., Akalin, C., Kocaman, E. S., Suleman, A., & Yildiz, M. (2016). Monitoring Poisson’s ratio of glass fiber reinforced composites as damage index using biaxial Fiber Bragg Grating sensors. Polymer Testing, 53, 98–107.
  • Zaldivar, R. J., Witkin, D. B., McLouth, T., Patel, D. N., Schmitt, K., & Nokes, J. P. (2017). Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-Printed ULTEM® 9085 Material. Additive Manufacturing, 13, 71–80.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği, Kompozit ve Hibrit Malzemeler
Bölüm Makaleler
Yazarlar

Cagatay Yilmaz 0000-0002-8063-151X

Hafiz Qasim Ali Bu kişi benim 0000-0001-8288-2737

Mehmet Yıldız 0000-0003-1626-5858

Yayımlanma Tarihi 30 Nisan 2022
Gönderilme Tarihi 3 Kasım 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Yilmaz, C., Ali, H. Q., & Yıldız, M. (2022). Application of Classical Lamination Theory to Fused Deposition Method 3-D Printed Plastics and Full Field Surface Strain Mapping. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(2), 342-352. https://doi.org/10.35414/akufemubid.1018774
AMA Yilmaz C, Ali HQ, Yıldız M. Application of Classical Lamination Theory to Fused Deposition Method 3-D Printed Plastics and Full Field Surface Strain Mapping. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Nisan 2022;22(2):342-352. doi:10.35414/akufemubid.1018774
Chicago Yilmaz, Cagatay, Hafiz Qasim Ali, ve Mehmet Yıldız. “Application of Classical Lamination Theory to Fused Deposition Method 3-D Printed Plastics and Full Field Surface Strain Mapping”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, sy. 2 (Nisan 2022): 342-52. https://doi.org/10.35414/akufemubid.1018774.
EndNote Yilmaz C, Ali HQ, Yıldız M (01 Nisan 2022) Application of Classical Lamination Theory to Fused Deposition Method 3-D Printed Plastics and Full Field Surface Strain Mapping. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 2 342–352.
IEEE C. Yilmaz, H. Q. Ali, ve M. Yıldız, “Application of Classical Lamination Theory to Fused Deposition Method 3-D Printed Plastics and Full Field Surface Strain Mapping”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 2, ss. 342–352, 2022, doi: 10.35414/akufemubid.1018774.
ISNAD Yilmaz, Cagatay vd. “Application of Classical Lamination Theory to Fused Deposition Method 3-D Printed Plastics and Full Field Surface Strain Mapping”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/2 (Nisan 2022), 342-352. https://doi.org/10.35414/akufemubid.1018774.
JAMA Yilmaz C, Ali HQ, Yıldız M. Application of Classical Lamination Theory to Fused Deposition Method 3-D Printed Plastics and Full Field Surface Strain Mapping. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:342–352.
MLA Yilmaz, Cagatay vd. “Application of Classical Lamination Theory to Fused Deposition Method 3-D Printed Plastics and Full Field Surface Strain Mapping”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 2, 2022, ss. 342-5, doi:10.35414/akufemubid.1018774.
Vancouver Yilmaz C, Ali HQ, Yıldız M. Application of Classical Lamination Theory to Fused Deposition Method 3-D Printed Plastics and Full Field Surface Strain Mapping. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(2):342-5.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.