Araştırma Makalesi
BibTex RIS Kaynak Göster

The Usability of Waste Sour Cherry Kernel Pyrolytic Oil as Alternative Fuel in Diesel Engines

Yıl 2022, , 963 - 971, 31.08.2022
https://doi.org/10.35414/akufemubid.1077035

Öz

In this study, pyrolytic oil (PO) obtained from waste sour cherry kernels by pyrolysis method was characterized physiochemically. The physicochemical fuel properties of PO were found to be insufficient when compared to diesel. Therefore, PO had to be modified in order to be used as an alternative fuel in diesel engines. A good approach would be to mix PO with diesel to improve fuel properties. However, PO did not mix directly with diesel homogeneously. An organic solvent was required to mix the PO homogeneously with the diesel. Therefore, we have successfully prepared diesel blends with PO in various weight ratios (wt.%) using n-butanol as a co-solvent. The homogeneity of the triple mixtures was evaluated after 48 hours. The results are illustrated in the triple phase diagram demonstrating that it is possible to create a wide variety of stable homogeneous mixtures of PO and diesel using n-butanol. The blended fuels showed increased calorific value and cetane number and decreased kinematic viscosity, density and water content compared to PO in terms of physicochemical properties. However, since the increase in cetane number was not at optimum value compared to diesel, 2-EHN was added to the mixtures as a cetane improver. As a result, it was determined that mixed fuels containing 40% diesel by weight (PO/Diesel/N-Butanol/2-EHN) in terms of physicochemical properties can be used as an alternative fuel in a diesel engine.

Kaynakça

  • Alcala, A., Bridgwater, A.V., 2013. Upgrading fast pyrolysis liquids: Blends of biodiesel and pyrolysis oil. Fuel, 109, 417-426.
  • Almasi, S., Najafi, G., Ghobadian, B., Jalili, S., 2021. Biodiesel production from sour cherry kernel oil as novel feedstock using potassium hydroxide catalyst: optimization using response surface methodology. Biocatalysis and Agricultural Biotechnology, 35, 102089
  • Alptekin, E., Canakci, M., 2008. Determination of the density and the viscosities of biodiesel–diesel fuel blends. Renewable Energy, 33(12), 2623-2630.
  • Barth, T., Kleinert, M., 2008. Motor Fuels From Biomass Pyrolysis. Chemical Engineering & Technology, 31(5), 773-781.
  • Bridgwater, A.V., 2012. Upgrading biomass fast pyrolysis liquids. Environmental Progress & Sustainable Energy, 31(2), 261-268.
  • Bridgwater, T., Meier, D., Radlein, D., 1999. An Overview of Fast Pyrolysis of Biomass. Organic Geochemistry, 30, 1479-1493.
  • Chong, K.J., Bridgwater, A.V., 2017. Fast Pyrolysis Oil Fuel Blend for Marine Vessels. Environmental Progress & Sustainable Energy, 36(3), 677-684.
  • Doğan, O., Çelik, M.B., Özdalyan, B., 2012. The effect of tire derived fuel/diesel fuel blends utilization on diesel engine performance and emissions. Fuel, 95, 340-346.
  • Gözke, G., Açıkalın, K., 2021. Pyrolysis characteristics and kinetics of sour cherry stalk and flesh via thermogravimetric analysis using isoconversional methods. Journal of Thermal Analysis and Calorimetry, 146, 893–910.
  • Hossain, A.K., Serrano, C., Brammer, J.B., et al., 2016. Combustion of fuel blends containing digestate pyrolysis oil in a multi-cylinder compression ignition engine. Fuel, 171, 18-28.
  • Huang, Y., Han, X., Shang, S., Wang, L., 2012. Performance and emissions of a direct-injection diesel engine operating on emulsions of corn stalk bio-oil in diesel. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 226(8), 1119-1129.
  • Karagöz, M., 2020. Investigation of performance and emission characteristics of an CI engine fuelled with diesel – waste tire oil – butanol blends. Fuel, 282, 118872.
  • Kim, T.Y., Lee, S.H., 2015. Combustion and emission characteristics of wood pyrolysis oil-butanol blended fuels in a DI diesel engine. International Journal of Automotive Technology, 16(6), 903-912.
  • Kim, T.Y., Lee, S., Kang, K., 2015. Performance and emission characteristics of a high-compression-ratio diesel engine fueled with wood pyrolysis oil-butanol blended fuels. Energy, 93, 2241-2250.
  • Lapuerta, M., Rodriguez-Fernandez, J., de Mora, E.F., 2009. Correlation for the estimation of the cetane number of biodiesel fuels and implications on the iodine number. Energy Policy, 37(11), 4337-4344.
  • Lee, S., Woo, S.H., Kim, Y., Choi, Y., Kang, K., 2020. Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel. Energy, 206, 118201.
  • Lee, S., Kim, T., Kang, K., 2014. Performance and emission characteristics of a diesel engine operated with wood pyrolysis oil. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 228(2), 180-189.
  • Lin, B.J., Chen, W.H., Budzianowski, W.M., Hsieh, C.T., Lin, P.H., 2016. Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers. Applied Energy, 178, 746-757.
  • Maroa, S., Inambao, F., 2019, The effect of cetane number and oxygen content in the performance and emissions characteristics of a diesel engine using biodiesel blends. Journal of Energy in Southern Africa, 30, 1–13.
  • Midhun Prasad, K., Murugavelh, S., 2020. Experimental investigation and kinetics of tomato peel pyrolysis: Performance, combustion and emission characteristics of bio-oil blends in diesel engine. Journal of Cleaner Production, 254, 120115.
  • Murugan, S., Ramaswamy, M.C., Govindan, N., 2008. Use of tyre pyrolysis oil in diesel engines. Waste Management, 28, 2743-2749.
  • Nguyen, D., Honnery, D., 2008. Combustion of bio-oil ethanol blends at elevated pressure. Fuel, 87(2), 232-243.
  • Oasmaa, A., van de Beld, B., Saari, P., Elliott, D.C., Solantausta, Y., 2015. Norms, Standards, and Legislation for Fast Pyrolysis Bio-oils from Lignocellulosic Biomass. Energy & Fuels, 29(4), 2471-2484.
  • Park, I., Kim, Y., Lee, S., 2018. Morphological Change and Number-Size Distributions of Particulate Matter (PM) from a Diesel Generator Operated with Wood Pyrolysis Oil-Butanol Blended Fuel. International Journal of Automotive Technology, 19(3), 413-420.
  • Simsek, S., Uslu, S., 2020. Investigation of the effects of biodiesel/2-ethylhexyl nitrate (EHN) fuel blends on diesel engine performance and emissions by response surface methodology (RSM). Fuel, 275, 118872.
  • Yalçın, A.H., Mutlu, İ., 2021. Pyrolysis of sour cherry kernels: physicochemical characterization of pyrolysis oil in blends of diesel and n-butanol. International Journal of Science and Research (IJSR), 10(5), 666-672.
  • Zhang, Q., Chang, J., Wang, T., Xu, Y., 2007. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management, 48(1), 87-92.

Atık Vişne Çekirdeği Pirolitik Yağın Dizel Motorlarda Alternatif Yakıt Olarak Kullanılabilirliği

Yıl 2022, , 963 - 971, 31.08.2022
https://doi.org/10.35414/akufemubid.1077035

Öz

Bu çalışmada, piroliz yöntemiyle atık vişne çekirdeklerinden elde edilen pirolitik yağ (PY) fizikokimyasal olarak karakterize edildi. PY’nin fizikokimyasal yakıt özellikleri dizel ile kıyaslandığında yetersiz olduğu görüldü. Bu nedenle PY'nin dizel motorlarda alternatif bir yakıt olarak kullanılabilmesi için modifiye edilmesi gerekmekteydi. Yakıt özelliklerini iyileştirmek için PY’yi dizel ile karıştırmak iyi bir yaklaşım olabilirdi. Ancak PY dizel ile doğrudan homojen olarak karışmadı. PY'yi dizel ile homojen olarak karıştırmak için organik bir çözücü gerekliydi. Bu yüzden, n-bütanolü yardımcı bir çözücü olarak kullanarak çeşitli ağırlık oranlarında (ağırlıkça %) PY ile dizel karışımlarını başarılı bir şekilde hazırladık. Üçlü karışımların homojen olarak karışım sağlaya bilirliği, 48 saat sonra değerlendirildi. Sonuçlar, n-bütanol kullanılarak çok çeşitli kararlı homojen PY ve dizel karışımları yaratmanın mümkün olduğunu ortaya koyan üçlü faz diyagramında gösterildi. Karışım yakıtlar fizikokimyasal özellik yönünden PY'ye kıyasla artan kalorifik değer ve setan sayısı ve azalan kinematik viskozite, yoğunluk ve su içeriği gösterdi. Ancak setan sayısındaki artış dizele kıyasla optimum değerde olmadığı için karışımlara setan arttırıcı olarak 2-EthylhexylNitrate (2-EHN) ilave edildi. Böylece karışım yakıtların setan sayıları yaklaşık %84 oranında iyileştirildi. Sonuç olarak fizikokimyasal özellik yönünden ağırlıkça %40 dizel içeren (PY/Dizel/N-Bütanol/2-EHN) karışım yakıtların bir dizel motorunda alternatif bir yakıt olarak kullanılabileceği belirlendi.

Kaynakça

  • Alcala, A., Bridgwater, A.V., 2013. Upgrading fast pyrolysis liquids: Blends of biodiesel and pyrolysis oil. Fuel, 109, 417-426.
  • Almasi, S., Najafi, G., Ghobadian, B., Jalili, S., 2021. Biodiesel production from sour cherry kernel oil as novel feedstock using potassium hydroxide catalyst: optimization using response surface methodology. Biocatalysis and Agricultural Biotechnology, 35, 102089
  • Alptekin, E., Canakci, M., 2008. Determination of the density and the viscosities of biodiesel–diesel fuel blends. Renewable Energy, 33(12), 2623-2630.
  • Barth, T., Kleinert, M., 2008. Motor Fuels From Biomass Pyrolysis. Chemical Engineering & Technology, 31(5), 773-781.
  • Bridgwater, A.V., 2012. Upgrading biomass fast pyrolysis liquids. Environmental Progress & Sustainable Energy, 31(2), 261-268.
  • Bridgwater, T., Meier, D., Radlein, D., 1999. An Overview of Fast Pyrolysis of Biomass. Organic Geochemistry, 30, 1479-1493.
  • Chong, K.J., Bridgwater, A.V., 2017. Fast Pyrolysis Oil Fuel Blend for Marine Vessels. Environmental Progress & Sustainable Energy, 36(3), 677-684.
  • Doğan, O., Çelik, M.B., Özdalyan, B., 2012. The effect of tire derived fuel/diesel fuel blends utilization on diesel engine performance and emissions. Fuel, 95, 340-346.
  • Gözke, G., Açıkalın, K., 2021. Pyrolysis characteristics and kinetics of sour cherry stalk and flesh via thermogravimetric analysis using isoconversional methods. Journal of Thermal Analysis and Calorimetry, 146, 893–910.
  • Hossain, A.K., Serrano, C., Brammer, J.B., et al., 2016. Combustion of fuel blends containing digestate pyrolysis oil in a multi-cylinder compression ignition engine. Fuel, 171, 18-28.
  • Huang, Y., Han, X., Shang, S., Wang, L., 2012. Performance and emissions of a direct-injection diesel engine operating on emulsions of corn stalk bio-oil in diesel. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 226(8), 1119-1129.
  • Karagöz, M., 2020. Investigation of performance and emission characteristics of an CI engine fuelled with diesel – waste tire oil – butanol blends. Fuel, 282, 118872.
  • Kim, T.Y., Lee, S.H., 2015. Combustion and emission characteristics of wood pyrolysis oil-butanol blended fuels in a DI diesel engine. International Journal of Automotive Technology, 16(6), 903-912.
  • Kim, T.Y., Lee, S., Kang, K., 2015. Performance and emission characteristics of a high-compression-ratio diesel engine fueled with wood pyrolysis oil-butanol blended fuels. Energy, 93, 2241-2250.
  • Lapuerta, M., Rodriguez-Fernandez, J., de Mora, E.F., 2009. Correlation for the estimation of the cetane number of biodiesel fuels and implications on the iodine number. Energy Policy, 37(11), 4337-4344.
  • Lee, S., Woo, S.H., Kim, Y., Choi, Y., Kang, K., 2020. Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel. Energy, 206, 118201.
  • Lee, S., Kim, T., Kang, K., 2014. Performance and emission characteristics of a diesel engine operated with wood pyrolysis oil. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 228(2), 180-189.
  • Lin, B.J., Chen, W.H., Budzianowski, W.M., Hsieh, C.T., Lin, P.H., 2016. Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers. Applied Energy, 178, 746-757.
  • Maroa, S., Inambao, F., 2019, The effect of cetane number and oxygen content in the performance and emissions characteristics of a diesel engine using biodiesel blends. Journal of Energy in Southern Africa, 30, 1–13.
  • Midhun Prasad, K., Murugavelh, S., 2020. Experimental investigation and kinetics of tomato peel pyrolysis: Performance, combustion and emission characteristics of bio-oil blends in diesel engine. Journal of Cleaner Production, 254, 120115.
  • Murugan, S., Ramaswamy, M.C., Govindan, N., 2008. Use of tyre pyrolysis oil in diesel engines. Waste Management, 28, 2743-2749.
  • Nguyen, D., Honnery, D., 2008. Combustion of bio-oil ethanol blends at elevated pressure. Fuel, 87(2), 232-243.
  • Oasmaa, A., van de Beld, B., Saari, P., Elliott, D.C., Solantausta, Y., 2015. Norms, Standards, and Legislation for Fast Pyrolysis Bio-oils from Lignocellulosic Biomass. Energy & Fuels, 29(4), 2471-2484.
  • Park, I., Kim, Y., Lee, S., 2018. Morphological Change and Number-Size Distributions of Particulate Matter (PM) from a Diesel Generator Operated with Wood Pyrolysis Oil-Butanol Blended Fuel. International Journal of Automotive Technology, 19(3), 413-420.
  • Simsek, S., Uslu, S., 2020. Investigation of the effects of biodiesel/2-ethylhexyl nitrate (EHN) fuel blends on diesel engine performance and emissions by response surface methodology (RSM). Fuel, 275, 118872.
  • Yalçın, A.H., Mutlu, İ., 2021. Pyrolysis of sour cherry kernels: physicochemical characterization of pyrolysis oil in blends of diesel and n-butanol. International Journal of Science and Research (IJSR), 10(5), 666-672.
  • Zhang, Q., Chang, J., Wang, T., Xu, Y., 2007. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management, 48(1), 87-92.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Makaleler
Yazarlar

Arif Hakan Yalçın 0000-0001-7661-5296

İbrahim Mutlu 0000-0001-5563-1000

Yayımlanma Tarihi 31 Ağustos 2022
Gönderilme Tarihi 21 Şubat 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Yalçın, A. H., & Mutlu, İ. (2022). Atık Vişne Çekirdeği Pirolitik Yağın Dizel Motorlarda Alternatif Yakıt Olarak Kullanılabilirliği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(4), 963-971. https://doi.org/10.35414/akufemubid.1077035
AMA Yalçın AH, Mutlu İ. Atık Vişne Çekirdeği Pirolitik Yağın Dizel Motorlarda Alternatif Yakıt Olarak Kullanılabilirliği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ağustos 2022;22(4):963-971. doi:10.35414/akufemubid.1077035
Chicago Yalçın, Arif Hakan, ve İbrahim Mutlu. “Atık Vişne Çekirdeği Pirolitik Yağın Dizel Motorlarda Alternatif Yakıt Olarak Kullanılabilirliği”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, sy. 4 (Ağustos 2022): 963-71. https://doi.org/10.35414/akufemubid.1077035.
EndNote Yalçın AH, Mutlu İ (01 Ağustos 2022) Atık Vişne Çekirdeği Pirolitik Yağın Dizel Motorlarda Alternatif Yakıt Olarak Kullanılabilirliği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 4 963–971.
IEEE A. H. Yalçın ve İ. Mutlu, “Atık Vişne Çekirdeği Pirolitik Yağın Dizel Motorlarda Alternatif Yakıt Olarak Kullanılabilirliği”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 4, ss. 963–971, 2022, doi: 10.35414/akufemubid.1077035.
ISNAD Yalçın, Arif Hakan - Mutlu, İbrahim. “Atık Vişne Çekirdeği Pirolitik Yağın Dizel Motorlarda Alternatif Yakıt Olarak Kullanılabilirliği”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/4 (Ağustos 2022), 963-971. https://doi.org/10.35414/akufemubid.1077035.
JAMA Yalçın AH, Mutlu İ. Atık Vişne Çekirdeği Pirolitik Yağın Dizel Motorlarda Alternatif Yakıt Olarak Kullanılabilirliği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:963–971.
MLA Yalçın, Arif Hakan ve İbrahim Mutlu. “Atık Vişne Çekirdeği Pirolitik Yağın Dizel Motorlarda Alternatif Yakıt Olarak Kullanılabilirliği”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 4, 2022, ss. 963-71, doi:10.35414/akufemubid.1077035.
Vancouver Yalçın AH, Mutlu İ. Atık Vişne Çekirdeği Pirolitik Yağın Dizel Motorlarda Alternatif Yakıt Olarak Kullanılabilirliği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(4):963-71.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.