Araştırma Makalesi
BibTex RIS Kaynak Göster

Accurate Prediction of Residual Stresses in Machining of Inconel 718 Alloy through Crystal Plasticity Modelling

Yıl 2023, , 247 - 259, 01.03.2023
https://doi.org/10.35414/akufemubid.1106218

Öz

This study presents the dynamic and buckling analysis of the laminated composite thin arch plate frame
structures employing Classical Plate Theory with Finite Element Analysis. For this purpose, the effects of the radius of curvature, aspect ratio, and stacking order of such structures on the first ten natural frequencies, mode shapes, critical buckling load, and the first unstable regions are investigated. Besides, the two-bay curved plate frame structure is investigated. In order to perform dynamic and buckling analyses, a computer code is developed and executed via MATLAB. The results are compared and validated with those of ANSYS. It is concluded that the aspect ratio or the stacking order affects the dynamic characteristics of the curved plate frame structure considerably while the radius of curvature relatively has less impact on such dynamic properties of the structure.

Destekleyen Kurum

TUBITAK

Proje Numarası

118M253

Teşekkür

The Authors gratefully acknowledge the Central Research Facility at the Abdullah Gul University for the availability and use of X-ray diffractometer (XRD). This work is also supported by the Scientific and Technological Research Council of Turkey through the program of Starting Research and Development Projects (TUBITAK 3001-118M253).

Kaynakça

  • Abualnour, M., Houari, M.S., Tounsi, A., Bedia, E.A., and Mahmoud, S.R., 2018. A novel quasi-3d trigonometric plate theory for free vibration analysis of advanced composite plates. Composite Structures, 184, 688–697.
  • Bolotin, V.V., 1964. The dynamic stability of Elastic Systems, Holden-Day.
  • Bourada, F., Amara, K., and Tounsi, A., 2016. Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory. Steel and Composite Structures, 21(6), 1287–1306.
  • Chen, J.E., Zhang, W., Sun, M., Yao, M.H., and Liu, J., 2017. Free vibration analysis of composite sandwich plates with different truss cores. Mechanics of Advanced Materials and Structures, 25(9), 701–713.
  • Chikh, A., Tounsi, A., Hebali, H., and Mahmoud, S.R., 2017. Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT. Smart Structures and Systems, 19(3), 289–297.
  • Demir, Ç., Ersoy, H., Mercan, K., and Civalek, Ö., 2017. Free vibration analysis of annular sector plates via conical shell equations. Curved and Layered Structures, 4(1), 146–157.
  • Dey, P. and Singha, M. K., 2006. Dynamic stability analysis of composite skew plates subjected to periodic in-plane load. Thin-Walled Structures, 44(9), 937–942.
  • Fang, J., Zheng, S., Xiao, J., and Zhang, X., 2020. Vibration and thermal buckling analysis of rotating nonlocal functionally graded nanobeams in thermal environment. Aerospace Science and Technology, 106, 106146.
  • Fazilati, J., 2017. Stability analysis of variable stiffness composite laminated plates with delamination using spline-FSM. Latin American Journal of Solids and Structures, 14(3), 528–543.
  • Hao, P., Yuan, X., Liu, H., Wang, B., Liu, C., Yang, D., and Zhan, S., 2017. Isogeometrıc buckling analysis of composite variable-stiffness panels. Composite Structures, 165, 192–208.
  • Marjanović, M., Kolarevic, N., Nefovska-Danilovic, M., and Petronijevic, M., 2017. Shear deformable dynamic stiffness elements for a free vibration analysis of composite plate assemblies – part II: Numerical examples. Composite Structures, 159, 183–196.
  • Petyt, M., 2015. Introduction to finite element vibration analysis, Cambridge University Press.
  • Rezaiee-Pajand, M., Sobhani, E., and Masoodi, A.R., 2020. Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method. Aerospace Science and Technology, 105, 105998.
  • Samukham, S., Raju, G., Wu, Z., and Vyasarayani, C.P., 2018. Dynamic instability analysis of variable angle tow composite plate with delamination around a cut-out. Mechanics of Advanced Materials and Structures, 26(1), 62–70.
  • Serdoun, S.M.N. and Hamza Cherif, S.M., 2016. Free vibration analysis of composite and sandwich plates by alternative hierarchical finite element method based on Reddy’s C1 HSDT. Journal of Sandwich Structures & Materials, 18(4), 501–528.
  • Shafei, E., Faroughi, S., and Rabczuk, T., 2019. Isogeometric HSDT approach for dynamic stability analysis of general anisotropic composite plates. Composite Structures, 220, 926–939.
  • Shankar, G. and Mahato, P.K., 2017. Vibration analysis and control of delaminated and/or damaged composite plate structures using finite element analysis. Materials at High Temperatures, 34(5-6), 342–349.
  • Thakur, B.R., Verma, S., Singh, B.N., and Maiti, D.K., 2020. Dynamic analysis of folded laminated composite plate using nonpolynomial shear deformation theory. Aerospace Science and Technology, 106, 106083.
  • Tornabene, F., Fantuzzi, N., and Bacciocchi, M., 2018. Strong and weak formulations based on differential and integral quadrature methods for the free vibration analysis of composite plates and shells: Convergence and accuracy. Engineering Analysis with Boundary Elements, 92, 3–37.
  • Vidal, P., Gallimard, L., and Polit, O., 2019. Free vibration analysis of composite plates based on a variable separation method. Composite Structures, 230, 111493.
  • Zghal, S., Frikha, A., and Dammak, F. (2018). Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Composites Part B: Engineering, 150, 165–183.

Kristal Plastisite Modellemesi ile Inconel 718 Alaşımının İşlenmesinde Artık Gerilmelerin Doğru Tahmini

Yıl 2023, , 247 - 259, 01.03.2023
https://doi.org/10.35414/akufemubid.1106218

Öz

Bu çalışma, ince eğri elyaflı kompozit plaka çerçeve yapıların dinamik ve burkulma analizlerini Klasik Plaka Teorisi ve Sonlu Elemanlar Analizi ile incelemektedir. Bu amaçla, yapının eğrilik yarıçapının, en-boy oranının ve elyaf düzeninin ilk on doğal frekans, mod şekilleri, kritik burkulma yükü ve birinci dinamik kararlılık bölgeleri üzerine olan etkileri araştırılmıştır. Ayrıca, iki bölütlü yapı da ele alınmıştır. Dinamik ve burkulma analizleri MATLAB üzerinden bir bilgisayar kodu aracılığı ile gerçekleştirilmiştir. Buradan elde edilen sonuçlar aynı analizlerin ANSYS üzerinden gerçekleştirilmesi ile doğrulanmıştır. Sonuçlar olarak yapının en-boy oranının ve laminasyon düzeninin dinamik özellikleri büyük ölçüde etkilediği, eğrilik yarıçapının ise diğer parametrelere göre yapının dinamik özellikleri üzerinde daha az etki oluşturduğu görülmüştür.

Proje Numarası

118M253

Kaynakça

  • Abualnour, M., Houari, M.S., Tounsi, A., Bedia, E.A., and Mahmoud, S.R., 2018. A novel quasi-3d trigonometric plate theory for free vibration analysis of advanced composite plates. Composite Structures, 184, 688–697.
  • Bolotin, V.V., 1964. The dynamic stability of Elastic Systems, Holden-Day.
  • Bourada, F., Amara, K., and Tounsi, A., 2016. Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory. Steel and Composite Structures, 21(6), 1287–1306.
  • Chen, J.E., Zhang, W., Sun, M., Yao, M.H., and Liu, J., 2017. Free vibration analysis of composite sandwich plates with different truss cores. Mechanics of Advanced Materials and Structures, 25(9), 701–713.
  • Chikh, A., Tounsi, A., Hebali, H., and Mahmoud, S.R., 2017. Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT. Smart Structures and Systems, 19(3), 289–297.
  • Demir, Ç., Ersoy, H., Mercan, K., and Civalek, Ö., 2017. Free vibration analysis of annular sector plates via conical shell equations. Curved and Layered Structures, 4(1), 146–157.
  • Dey, P. and Singha, M. K., 2006. Dynamic stability analysis of composite skew plates subjected to periodic in-plane load. Thin-Walled Structures, 44(9), 937–942.
  • Fang, J., Zheng, S., Xiao, J., and Zhang, X., 2020. Vibration and thermal buckling analysis of rotating nonlocal functionally graded nanobeams in thermal environment. Aerospace Science and Technology, 106, 106146.
  • Fazilati, J., 2017. Stability analysis of variable stiffness composite laminated plates with delamination using spline-FSM. Latin American Journal of Solids and Structures, 14(3), 528–543.
  • Hao, P., Yuan, X., Liu, H., Wang, B., Liu, C., Yang, D., and Zhan, S., 2017. Isogeometrıc buckling analysis of composite variable-stiffness panels. Composite Structures, 165, 192–208.
  • Marjanović, M., Kolarevic, N., Nefovska-Danilovic, M., and Petronijevic, M., 2017. Shear deformable dynamic stiffness elements for a free vibration analysis of composite plate assemblies – part II: Numerical examples. Composite Structures, 159, 183–196.
  • Petyt, M., 2015. Introduction to finite element vibration analysis, Cambridge University Press.
  • Rezaiee-Pajand, M., Sobhani, E., and Masoodi, A.R., 2020. Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method. Aerospace Science and Technology, 105, 105998.
  • Samukham, S., Raju, G., Wu, Z., and Vyasarayani, C.P., 2018. Dynamic instability analysis of variable angle tow composite plate with delamination around a cut-out. Mechanics of Advanced Materials and Structures, 26(1), 62–70.
  • Serdoun, S.M.N. and Hamza Cherif, S.M., 2016. Free vibration analysis of composite and sandwich plates by alternative hierarchical finite element method based on Reddy’s C1 HSDT. Journal of Sandwich Structures & Materials, 18(4), 501–528.
  • Shafei, E., Faroughi, S., and Rabczuk, T., 2019. Isogeometric HSDT approach for dynamic stability analysis of general anisotropic composite plates. Composite Structures, 220, 926–939.
  • Shankar, G. and Mahato, P.K., 2017. Vibration analysis and control of delaminated and/or damaged composite plate structures using finite element analysis. Materials at High Temperatures, 34(5-6), 342–349.
  • Thakur, B.R., Verma, S., Singh, B.N., and Maiti, D.K., 2020. Dynamic analysis of folded laminated composite plate using nonpolynomial shear deformation theory. Aerospace Science and Technology, 106, 106083.
  • Tornabene, F., Fantuzzi, N., and Bacciocchi, M., 2018. Strong and weak formulations based on differential and integral quadrature methods for the free vibration analysis of composite plates and shells: Convergence and accuracy. Engineering Analysis with Boundary Elements, 92, 3–37.
  • Vidal, P., Gallimard, L., and Polit, O., 2019. Free vibration analysis of composite plates based on a variable separation method. Composite Structures, 230, 111493.
  • Zghal, S., Frikha, A., and Dammak, F. (2018). Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Composites Part B: Engineering, 150, 165–183.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Makaleler
Yazarlar

Sinan Kesriklioğlu 0000-0002-2914-808X

Mehmet Fazıl Kapçı 0000-0003-3297-5307

Ridvan Buyukcapar 0000-0002-2550-7911

Barış Çetin 0000-0001-8615-8383

Okan Deniz Yılmaz 0000-0002-5431-4334

Burak Bal 0000-0002-7389-9155

Proje Numarası 118M253
Yayımlanma Tarihi 1 Mart 2023
Gönderilme Tarihi 20 Nisan 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Kesriklioğlu, S., Kapçı, M. F., Buyukcapar, R., Çetin, B., vd. (2023). Accurate Prediction of Residual Stresses in Machining of Inconel 718 Alloy through Crystal Plasticity Modelling. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(1), 247-259. https://doi.org/10.35414/akufemubid.1106218
AMA Kesriklioğlu S, Kapçı MF, Buyukcapar R, Çetin B, Yılmaz OD, Bal B. Accurate Prediction of Residual Stresses in Machining of Inconel 718 Alloy through Crystal Plasticity Modelling. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Mart 2023;23(1):247-259. doi:10.35414/akufemubid.1106218
Chicago Kesriklioğlu, Sinan, Mehmet Fazıl Kapçı, Ridvan Buyukcapar, Barış Çetin, Okan Deniz Yılmaz, ve Burak Bal. “Accurate Prediction of Residual Stresses in Machining of Inconel 718 Alloy through Crystal Plasticity Modelling”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, sy. 1 (Mart 2023): 247-59. https://doi.org/10.35414/akufemubid.1106218.
EndNote Kesriklioğlu S, Kapçı MF, Buyukcapar R, Çetin B, Yılmaz OD, Bal B (01 Mart 2023) Accurate Prediction of Residual Stresses in Machining of Inconel 718 Alloy through Crystal Plasticity Modelling. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 1 247–259.
IEEE S. Kesriklioğlu, M. F. Kapçı, R. Buyukcapar, B. Çetin, O. D. Yılmaz, ve B. Bal, “Accurate Prediction of Residual Stresses in Machining of Inconel 718 Alloy through Crystal Plasticity Modelling”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 1, ss. 247–259, 2023, doi: 10.35414/akufemubid.1106218.
ISNAD Kesriklioğlu, Sinan vd. “Accurate Prediction of Residual Stresses in Machining of Inconel 718 Alloy through Crystal Plasticity Modelling”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/1 (Mart 2023), 247-259. https://doi.org/10.35414/akufemubid.1106218.
JAMA Kesriklioğlu S, Kapçı MF, Buyukcapar R, Çetin B, Yılmaz OD, Bal B. Accurate Prediction of Residual Stresses in Machining of Inconel 718 Alloy through Crystal Plasticity Modelling. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:247–259.
MLA Kesriklioğlu, Sinan vd. “Accurate Prediction of Residual Stresses in Machining of Inconel 718 Alloy through Crystal Plasticity Modelling”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 1, 2023, ss. 247-59, doi:10.35414/akufemubid.1106218.
Vancouver Kesriklioğlu S, Kapçı MF, Buyukcapar R, Çetin B, Yılmaz OD, Bal B. Accurate Prediction of Residual Stresses in Machining of Inconel 718 Alloy through Crystal Plasticity Modelling. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(1):247-59.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.