Araştırma Makalesi
BibTex RIS Kaynak Göster

ZnO/Kitosan Hibrit Nano Geçirgen Mikroküreciklerin Ultrasonik Fabrikasyonu

Yıl 2022, , 738 - 743, 31.08.2022
https://doi.org/10.35414/akufemubid.1132357

Öz

Sonokimyasal reaksiyonlarda, sıvıdaki ultrasonik dalgaların ve kabarcıkların etkileşimi, kimyasal aktivitenin başlaması veya artması gibi birçok olaya neden olabilir. Nano malzemelerin sentezinde akustik kavitasyon sırasında oluşan H ve OH radikalleri bir çok yükseltgenme ve indirgemeleri tetikler. Bu çalışmada, sonokimyasal oluşum ile katalitik ve biyomateryal çekirdek/kabuk morfolojisinin sentezi ve ultrasonik dalga yoğunluğunun biyomalzeme boyutuna etkisi araştırılmıştır. Çekirdek kabuk morfolojisine sahip mikroküreler hazırlamak için yeni bir tek adımlı ultrasonik yöntem geliştirildi. Mikrokürelerin boyutunu ve morfolojisini belirlemek için optik mikroskop, Taramalı Elektron mikroskobu (SEM) kullanıldı. Yüzey morfolojisi, Atomik Kuvvet Mikroskobu (AFM) kullanılarak yeniden incelendi. Sonikasyon süresi 18 dk olarak ayarlandığında istenen mikroküreler elde edildi. Mikrokürelerin kabuğu biyolojik olarak parçalanabilen kitosandır ve çekirdek ZnO nanoparçacıklarıdır. Çekirdek kabuk morfolojisine sahip mikrokürelerin sentezi için geliştirilen reaksiyon yöntemi hızlı ve düşük maliyetlidir.

Destekleyen Kurum

Düzce Üniversitesi Bilimsel Araştırma Projeleri

Proje Numarası

2016.05.03.517

Teşekkür

Bu çalışma Düzce Üniversitesi Bilimsel Araştırma Projeleri tarafından desteklenmiştir. ( Proje No: 2016.05.03.517)

Kaynakça

  • Babgi, B., Zhou, M., Aksu,M., Alghamdi, Y. and Ashokkumar, M. 2016. Initial Growth of Sonochemically Active and Sonoluminescence Bubbles at Various Frequencies. Ultrasonics Sonochemistry, 29, 55–59.
  • Baxter, J., Bian, Z., Chen,G., Danielson, D., Dresselhaus, M.S., Fedorov, A.G., Fisher, T.S., Jones, C.W., Maginn, E., Kortshagen, U., Manthiram, A., Nozik, A., Rolison, D.R., Sands, T., Shi, L., Sholl, D. and Wu, Y. 2009. Nanoscale Design to Enable the Revolution in Renewable Energy. Energy & Environmental Science, 2, 6, 559–88.
  • Colombo, E., Li, W., Bhangu, S.K. and Ashokkumar, M. 2017. Chitosan Microspheres as a Template for TiO2 and ZnO Microparticles: Studies on Mechanism, Functionalization and Applications in Photocatalysis and H2S Removal. RSC Advances, 7, 31, 19373–83.
  • Filipović-Grčić, J., Voinovich,D., Moneghini, M., Bećirević-Laćan, M., Magarotto, L. and Jalšenjak, I. 2000. Chitosan Microspheres with Hydrocortisone and Hydrocortisone-Hydroxypropyl-Beta-Cyclodextrin Inclusion Complex. European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences, 9, 4, 373–79.
  • Genc, A. M., Akdeniz, M.V., Ozturk, T. and Kalay, Y.E. 2016. Synthesis of AlNiCo Core/Shell Nanopowders. Journal of Magnetism and Magnetic Materials, 417, 112–16.
  • Ghows, N. and Entezari, M.H. 2012. Sono-Synthesis of Core-Shell Nanocrystal (CdS/TiO2) without Surfactant. Ultrasonics Sonochemistry, 19, 5, 1070–78.
  • He, P., Davis, S.S. and Illum, L. 1999. Chitosan Microspheres Prepared by Spray Drying. International Journal of Pharmaceutics, 187, 1, 53–65.
  • Hiremath, L., Nipun, S., Sruti, O., Kala, N. G. and Aishwarya, B. M. 2020. Sonochemistry: Applications in Biotechnology in Sonochemical Reactions. Edited by Selcan Karakuş. London, IntechOpen, Ch 5, 160.
  • Illum, L. 1998. Chitosan and Its Use as a Pharmaceutical Excipient. Pharmaceutical Research, 15, 9, 1326–31.
  • Liu, C., Xu, J. and Wu, Z. 2011. Direct Electron Transfer and Electrochemical Study of Hemoglobin Immobilized in ZnO Hollow Spheres. Bioprocess and Biosystems Engineering, 34, 8, 931–38.
  • Mini, V., Archana, K., Raghu, S., Sharanappa, C. and Devendrappa, H. 2016. Nanostructured Multifunctional Core/Shell Ternary Composite of Polyaniline-Chitosan-Cobalt Oxide: Preparation, Electrical and Optical Properties. Materials Chemistry and Physics, 170, 90–98.
  • Neppiras, E. A. 1980. Acoustic Cavitation. Physics Reports, 61, 3, 159–251.
  • Pandiselvi, K. and Thambidurai S. 2014. Chitosan-ZnO/Polyanilne Nanocomposite Modified Glassy Carbon Electrode for Selective Detection of Dopamine. International Journal of Biological Macromolecules, 67, 270–78.
  • Panos, I., Acosta, N. and Heras, A. 2008. New Drug Delivery Systems Based on Chitosan. Current Drug Discovery Technologies, 5, 4, 333–41.
  • Perugini, P., Genta, I., Pavanetto, F., Conti, B., Scalia, S., and Baruffini, A. 2000. Study on Glycolic Acid Delivery by Liposomes and Microspheres. International Journal of Pharmaceutics, 196, 1, 51–61.
  • Ravi Kumar, M. N. V., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H. and Domb, A. J. 2004. Chitosan Chemistry and Pharmaceutical Perspectives. Chemical Reviews, 104, 12, 6017–84.
  • Savun-Hekimoğlu, B. 2020. A Review on Sonochemistry and Its Environmental Applications. Acoustics, 2, 4, 766–75.
  • Shukla, S. K., Swapneel R. Deshpande, S.R. and Tiwari, S.A. 2012. Fabrication of a Tunable Glucose Biosensor Based on Zinc Oxide/Chitosan-Graft-Poly(Vinyl Alcohol) Core-Shell Nanocomposite. Talanta, 99, 283–87.
  • Shukla, S.K., Mishra, A.K, Arotiba, O.A. and Mamba, B.B. 2013. Chitosan-Based Nanomaterials: A State-of-the-Art Review. International Journal of Biological Macromolecules, 59, 46–58.
  • Suslick, K.S. 1990. Sonochemistry. Science, 247, 4949, 1439–45.
  • Varshosaz, J. 2007. The Promise of Chitosan Microspheres in Drug Delivery Systems. Expert Opinion on Drug Delivery, 4, 3, 263–73.
  • Walton, D. J. 2002. Sonoelectrochemistry - The Application of Ultrasound to Electrochemicalsystems. Arkivoc, 2002, 3, 198–218.
  • Wang, Y.H., Yu, C.M, Gu,H.Y. and Tu, Y.F. 2016. The Hemoglobin-Modified Electrode with Chitosan/Fe3O4 Nanocomposite for the Detection of Trichloroacetic Acid. Journal of Solid State Electrochemistry, 20, 5, 1337–44.
  • Xiao, C., You, R., Dong, Y. and Zhang, Z. 2016. Tunable Core-Shell Particles Generated from Smart Water-Soluble Chitosan Seeds. Carbohydrate Polymers, 142, 51–55.
  • Xu, J. H., Li, S. W. ,Tostado, C., Lan, W. J. and Luo, G. S. 2009. Preparation of Monodispersed Chitosan Microspheres and in Situ Encapsulation of BSA in a Co-Axial Microfluidic Device. Biomedical Microdevices, 11, 1, 243–49.
  • Yusof, N.S.M., Babgi, B., Alghamdi, Y., Aksu, M., Madhavan, J. and Ashokkumar, M. 2016. Physical and Chemical Effects of Acoustic Cavitation in Selected Ultrasonic Cleaning Applications. Ultrasonics Sonochemistry, 29, 568–76.
  • Zhang, X., Zhao, X., and Su, H. 2011. Degradation Characteristic of TiO2-Chitosan Adsorbent on Rhodamine B and Purification of Industrial Wastewater. Korean Journal of Chemical Engineering, 28, 5, 1241–46.
  • Zhao, X., Sánchez, B.M., Dobson, P.J. and Grant, P.S. 2011. The Role of Nanomaterials in Redox-Based Supercapacitors for next Generation Energy Storage Devices. Nanoscale, 3, 3, 839–55.
  • Zhou, M., Babgi, B., Gupta, S., Cavalieri, F., Alghamdi, Y., Aksu, M. and Ashokkumar, M. 2015. Ultrasonic Fabrication of TiO2/Chitosan Hybrid Nanoporous Microspheres with Antimicrobial Properties. RSC Advances, 5, 26, 20265–69.
  • Zou, M., Wen,W., Li, J.,Lai, H. and Huang, Z. 2016. Electric Cu Nanoparticles Decorated V2O5 Spheres as High Performance Cathodes for Lithium Ion Batteries. Journal of Alloys and Compounds, 681, 268–74.
  • Zubieta, C.E., Messina, P.V., Luengo, C., Dennehy, M., Pieroni, O. and Schulz, P.C. 2008. Reactive Dyes Remotion by Porous TiO2-Chitosan Materials. Journal of Hazardous Materials, 152, 2, 765–77.

Ultrasonic Fabrication Of ZnO/Chitosan Nano Permeable Microspheres

Yıl 2022, , 738 - 743, 31.08.2022
https://doi.org/10.35414/akufemubid.1132357

Öz

In sonochemical reactions, the interaction of ultrasonic waves and bubbles in liquid phase can initiate or increase chemical activity. In the synthesis of nanomaterials, H and OH radicals formed during acoustic cavitation are triggered a lot of oxidation and reductions. In the present study, the synthesis of sonochemical formation and catalytic and biomaterial core/shell morphology and the effect of ultrasonic waves intensity on biomaterial size were investigated. A new one-step ultrasonic method was fabricated to prepare microspheres with core shell morphology. Optical microscope, Scanning Electron microscope (SEM) were used to determine the size and morphology of the microspheres. Surface morphology was examined using Atomic Force Microscopy (AFM). The desired microspheres were obtained when the sonication time was set to 18 min. The shell of the microspheres is biodegradable chitosan, and the core is ZnO nanoparticles. The reaction method developed for the synthesis of microspheres with core shell morphology is fast and low cost.

Proje Numarası

2016.05.03.517

Kaynakça

  • Babgi, B., Zhou, M., Aksu,M., Alghamdi, Y. and Ashokkumar, M. 2016. Initial Growth of Sonochemically Active and Sonoluminescence Bubbles at Various Frequencies. Ultrasonics Sonochemistry, 29, 55–59.
  • Baxter, J., Bian, Z., Chen,G., Danielson, D., Dresselhaus, M.S., Fedorov, A.G., Fisher, T.S., Jones, C.W., Maginn, E., Kortshagen, U., Manthiram, A., Nozik, A., Rolison, D.R., Sands, T., Shi, L., Sholl, D. and Wu, Y. 2009. Nanoscale Design to Enable the Revolution in Renewable Energy. Energy & Environmental Science, 2, 6, 559–88.
  • Colombo, E., Li, W., Bhangu, S.K. and Ashokkumar, M. 2017. Chitosan Microspheres as a Template for TiO2 and ZnO Microparticles: Studies on Mechanism, Functionalization and Applications in Photocatalysis and H2S Removal. RSC Advances, 7, 31, 19373–83.
  • Filipović-Grčić, J., Voinovich,D., Moneghini, M., Bećirević-Laćan, M., Magarotto, L. and Jalšenjak, I. 2000. Chitosan Microspheres with Hydrocortisone and Hydrocortisone-Hydroxypropyl-Beta-Cyclodextrin Inclusion Complex. European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences, 9, 4, 373–79.
  • Genc, A. M., Akdeniz, M.V., Ozturk, T. and Kalay, Y.E. 2016. Synthesis of AlNiCo Core/Shell Nanopowders. Journal of Magnetism and Magnetic Materials, 417, 112–16.
  • Ghows, N. and Entezari, M.H. 2012. Sono-Synthesis of Core-Shell Nanocrystal (CdS/TiO2) without Surfactant. Ultrasonics Sonochemistry, 19, 5, 1070–78.
  • He, P., Davis, S.S. and Illum, L. 1999. Chitosan Microspheres Prepared by Spray Drying. International Journal of Pharmaceutics, 187, 1, 53–65.
  • Hiremath, L., Nipun, S., Sruti, O., Kala, N. G. and Aishwarya, B. M. 2020. Sonochemistry: Applications in Biotechnology in Sonochemical Reactions. Edited by Selcan Karakuş. London, IntechOpen, Ch 5, 160.
  • Illum, L. 1998. Chitosan and Its Use as a Pharmaceutical Excipient. Pharmaceutical Research, 15, 9, 1326–31.
  • Liu, C., Xu, J. and Wu, Z. 2011. Direct Electron Transfer and Electrochemical Study of Hemoglobin Immobilized in ZnO Hollow Spheres. Bioprocess and Biosystems Engineering, 34, 8, 931–38.
  • Mini, V., Archana, K., Raghu, S., Sharanappa, C. and Devendrappa, H. 2016. Nanostructured Multifunctional Core/Shell Ternary Composite of Polyaniline-Chitosan-Cobalt Oxide: Preparation, Electrical and Optical Properties. Materials Chemistry and Physics, 170, 90–98.
  • Neppiras, E. A. 1980. Acoustic Cavitation. Physics Reports, 61, 3, 159–251.
  • Pandiselvi, K. and Thambidurai S. 2014. Chitosan-ZnO/Polyanilne Nanocomposite Modified Glassy Carbon Electrode for Selective Detection of Dopamine. International Journal of Biological Macromolecules, 67, 270–78.
  • Panos, I., Acosta, N. and Heras, A. 2008. New Drug Delivery Systems Based on Chitosan. Current Drug Discovery Technologies, 5, 4, 333–41.
  • Perugini, P., Genta, I., Pavanetto, F., Conti, B., Scalia, S., and Baruffini, A. 2000. Study on Glycolic Acid Delivery by Liposomes and Microspheres. International Journal of Pharmaceutics, 196, 1, 51–61.
  • Ravi Kumar, M. N. V., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H. and Domb, A. J. 2004. Chitosan Chemistry and Pharmaceutical Perspectives. Chemical Reviews, 104, 12, 6017–84.
  • Savun-Hekimoğlu, B. 2020. A Review on Sonochemistry and Its Environmental Applications. Acoustics, 2, 4, 766–75.
  • Shukla, S. K., Swapneel R. Deshpande, S.R. and Tiwari, S.A. 2012. Fabrication of a Tunable Glucose Biosensor Based on Zinc Oxide/Chitosan-Graft-Poly(Vinyl Alcohol) Core-Shell Nanocomposite. Talanta, 99, 283–87.
  • Shukla, S.K., Mishra, A.K, Arotiba, O.A. and Mamba, B.B. 2013. Chitosan-Based Nanomaterials: A State-of-the-Art Review. International Journal of Biological Macromolecules, 59, 46–58.
  • Suslick, K.S. 1990. Sonochemistry. Science, 247, 4949, 1439–45.
  • Varshosaz, J. 2007. The Promise of Chitosan Microspheres in Drug Delivery Systems. Expert Opinion on Drug Delivery, 4, 3, 263–73.
  • Walton, D. J. 2002. Sonoelectrochemistry - The Application of Ultrasound to Electrochemicalsystems. Arkivoc, 2002, 3, 198–218.
  • Wang, Y.H., Yu, C.M, Gu,H.Y. and Tu, Y.F. 2016. The Hemoglobin-Modified Electrode with Chitosan/Fe3O4 Nanocomposite for the Detection of Trichloroacetic Acid. Journal of Solid State Electrochemistry, 20, 5, 1337–44.
  • Xiao, C., You, R., Dong, Y. and Zhang, Z. 2016. Tunable Core-Shell Particles Generated from Smart Water-Soluble Chitosan Seeds. Carbohydrate Polymers, 142, 51–55.
  • Xu, J. H., Li, S. W. ,Tostado, C., Lan, W. J. and Luo, G. S. 2009. Preparation of Monodispersed Chitosan Microspheres and in Situ Encapsulation of BSA in a Co-Axial Microfluidic Device. Biomedical Microdevices, 11, 1, 243–49.
  • Yusof, N.S.M., Babgi, B., Alghamdi, Y., Aksu, M., Madhavan, J. and Ashokkumar, M. 2016. Physical and Chemical Effects of Acoustic Cavitation in Selected Ultrasonic Cleaning Applications. Ultrasonics Sonochemistry, 29, 568–76.
  • Zhang, X., Zhao, X., and Su, H. 2011. Degradation Characteristic of TiO2-Chitosan Adsorbent on Rhodamine B and Purification of Industrial Wastewater. Korean Journal of Chemical Engineering, 28, 5, 1241–46.
  • Zhao, X., Sánchez, B.M., Dobson, P.J. and Grant, P.S. 2011. The Role of Nanomaterials in Redox-Based Supercapacitors for next Generation Energy Storage Devices. Nanoscale, 3, 3, 839–55.
  • Zhou, M., Babgi, B., Gupta, S., Cavalieri, F., Alghamdi, Y., Aksu, M. and Ashokkumar, M. 2015. Ultrasonic Fabrication of TiO2/Chitosan Hybrid Nanoporous Microspheres with Antimicrobial Properties. RSC Advances, 5, 26, 20265–69.
  • Zou, M., Wen,W., Li, J.,Lai, H. and Huang, Z. 2016. Electric Cu Nanoparticles Decorated V2O5 Spheres as High Performance Cathodes for Lithium Ion Batteries. Journal of Alloys and Compounds, 681, 268–74.
  • Zubieta, C.E., Messina, P.V., Luengo, C., Dennehy, M., Pieroni, O. and Schulz, P.C. 2008. Reactive Dyes Remotion by Porous TiO2-Chitosan Materials. Journal of Hazardous Materials, 152, 2, 765–77.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnorganik Kimya
Bölüm Makaleler
Yazarlar

Özlem Ünlü 0000-0002-1818-6646

Mecit Aksu 0000-0002-9405-1217

Proje Numarası 2016.05.03.517
Yayımlanma Tarihi 31 Ağustos 2022
Gönderilme Tarihi 17 Haziran 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Ünlü, Ö., & Aksu, M. (2022). ZnO/Kitosan Hibrit Nano Geçirgen Mikroküreciklerin Ultrasonik Fabrikasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(4), 738-743. https://doi.org/10.35414/akufemubid.1132357
AMA Ünlü Ö, Aksu M. ZnO/Kitosan Hibrit Nano Geçirgen Mikroküreciklerin Ultrasonik Fabrikasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ağustos 2022;22(4):738-743. doi:10.35414/akufemubid.1132357
Chicago Ünlü, Özlem, ve Mecit Aksu. “ZnO/Kitosan Hibrit Nano Geçirgen Mikroküreciklerin Ultrasonik Fabrikasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, sy. 4 (Ağustos 2022): 738-43. https://doi.org/10.35414/akufemubid.1132357.
EndNote Ünlü Ö, Aksu M (01 Ağustos 2022) ZnO/Kitosan Hibrit Nano Geçirgen Mikroküreciklerin Ultrasonik Fabrikasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 4 738–743.
IEEE Ö. Ünlü ve M. Aksu, “ZnO/Kitosan Hibrit Nano Geçirgen Mikroküreciklerin Ultrasonik Fabrikasyonu”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 4, ss. 738–743, 2022, doi: 10.35414/akufemubid.1132357.
ISNAD Ünlü, Özlem - Aksu, Mecit. “ZnO/Kitosan Hibrit Nano Geçirgen Mikroküreciklerin Ultrasonik Fabrikasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/4 (Ağustos 2022), 738-743. https://doi.org/10.35414/akufemubid.1132357.
JAMA Ünlü Ö, Aksu M. ZnO/Kitosan Hibrit Nano Geçirgen Mikroküreciklerin Ultrasonik Fabrikasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:738–743.
MLA Ünlü, Özlem ve Mecit Aksu. “ZnO/Kitosan Hibrit Nano Geçirgen Mikroküreciklerin Ultrasonik Fabrikasyonu”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 4, 2022, ss. 738-43, doi:10.35414/akufemubid.1132357.
Vancouver Ünlü Ö, Aksu M. ZnO/Kitosan Hibrit Nano Geçirgen Mikroküreciklerin Ultrasonik Fabrikasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(4):738-43.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.